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UNBOUNDED POINCARE DOMAINS

Ritva Hurri-Syrjanen

University of Jyvaskyla, Department of Mathematics
P.O. Box 35, SF-40351 Jyvaskyla, Finland

Abstract. We show that unbounded John domains D in R" satisfy the Poincaré inequality
Inf |lu ~ allze) < c||VullLs(p)

where ¢ = np/(n—p), 1 < p<n, c=c(p,q,D), and u € LP(D), and that in a certain sense
John domains form the largest subclass of (np/(n — p), p)-Poincaré domains.

1. Introduction

A domain D in R™ with finite n-Lebesgue measure |D| is a p-Poincaré
domain, if there is a constant ¢ = ¢(p, D) < oo such that

(1.1) lu — upllLr (D) < cl|VullLr (D)

for all u € W}(D), p € [1,00); here up is the average function of u over D. A
bounded domain with a smooth boundary was known to be a p-Poincaré domain
for years. Recently, bounded Poincaré domains have been under very extensive
study, see e.g. [EH], [H1], [M], [Maz] and [SS1-3]. Now it is well known that
bounded John domains form a proper subclass of p-Poincaré domains for each
p € [1,00).

However, not very much attention has been paid to unbounded domains with
infinite n-Lebesgue measure. If the measure of D is infinite, (1.1) should be
replaced by

(1.2) inf lu — allze(py < cl|VullLr (D)

where ¢ = np/(n —p), 1 < p < n, ¢ =c(p,D), and u € Ly(D). We call
domains D satisfying (1.2) (np/(n — p),p)-Poincaré domains and we write D €
'@(np/(n '—p)’p) .
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In this paper we concentrate on the extremum case ¢ = np/(n—p). Somewhat
implicit characterizations for (np/(n — p),p)-Poincaré domains have been given
by V.G. Maz’ya. R. Andersson notices that the whole space R" satisfies (1.2),
[A]. B. Bojarski has shown that (1.2) is true for a bounded John domain.

We will prove that unbounded John domains are (np/(n — p),p)-Poincaré
domains for 1 < p < n, Theorem 4.6. Our examples illuminate the fact that in a
certain sense John domains form the largest subclass of (np/(n — p), p)-Poincaré
domains, Examples 3.5, 3.7, and 4.3.

We consider also weighted inequalities:

(1.3) inf lu = allze(D,w) < cl|VullLr(D,w)>

where w is a weight function, ¢ is a constant which does not depend on a function
u,and 1 <p < q<np/(n-p).

Inequalities with different weights have been studied widely; see for example
[EO], [FKS], [GO] and references therein, [H2], [IN], [K] and [Maz]. A related
inequality to (1.3) is satisfied by a John domain, if 1 < p < ¢ < kp, and k is
slightly bigger than one, and w is the so called Muckenhoupt weight; [FKS], [IN].
We show that John domains satisfy (1.3) with ¢ = np/(n —p), 1 < p < n, when
w is an A, o-weight; that is, there is a constant ¢ < oo such that

(@i /. w<z>qu)”“(|?a ot dw)(P_l)/p <e

for all cubes Q C R".

I wish to thank O. Martio and W. Smith for reading my manuscript and
J. Viisala for pointing out to me his Theorem 4.5.

2. Notation

Throughout this paper we let D be a domain of euclidean n-space R*, n > 2.
We suppose that p € [1,00) and g € [1,00) unless otherwise stated.

Let C>°(D) denote the space of functions on D which are infinitely differen-
tiable on D. The space LP(D) is a set of Lebesgue measurable functions v on D

for which
» 1/p
lullLe(p) = (/D |u(z)| d:c) < oo.

Let LP(D,loc) denote the space of functions which are locally integrable of or-
der p on D. The space of Lebesgue measurable functions on D with the first
distributional derivatives in L?(D) is denoted by L}(D). We equip L}(D) with
the seminorm ||Vul||zs(p); here Vu = (O1u,...,0,u) is the gradient of u. The
following properties of the space L,(D) are recalled:
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2.1. Lemma [Maz, 1.1.2. Theorem|. Any element of L,(D) isin L?(D,loc).

2.2. Lemma [Maz, 1.1.5. Theorem 1]. The space L,(D)N C*(D) is dense
in L}(D).

In the Sobolev space W} (D) = LP(D) N L, (D) we use the norm

lullwy(py = llullze(p) + VullLe(D)-

The average of a function u over a domain A with finite Lebesgue measure

|A]| is
1
ug = W/Au(:c)dx.

Definition. Let D C R™ be a domain and let 1 < p < g < co. If there is a
constant ¢ = ¢(p,q, D) < oo such that

aig{lllu —allzep) < || VullLr (D)

whenever u € Ly(D), then D is a (g,p)-Poincaré domain and we write D €
Z(g,p).

Let w be a non-negative measurable function. The space LP(D,w) is a set
of functions v on D such that

ullzro = ( [ o) (e dz)l/p < oo

The weighted Sobolev space W, (D,w) is the space of functions u € L?(D,w),
whose first distributional partial derivatives belong to L?(D,w). In W;(D, w) we
use the norm

lullw(p,w) = llellze(p,w) + 1VullLr(D,w)-

The weighted average of u over D is

D w = (/Dw(m)dz)_l/Du(m)w(x)dm,

where we suppose that fD w(z)dz < co.

Let A be a set. The euclidean distance from ¢ € A to the boundary of A
is written as d(z,0A). We let dia(A) and A denote the diameter of A and the
closure of A, respectively.

We let ¢(*,---,*) denote a constant which depends only on the quantities
appearing in the parentheses.
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3. Domains with finite n-Lebesgue measure

A domain D is called an (a,f3)-John domain, 0 < a < 8 < oo, if there
is o € D such that each r € D can be joined to zo by a curve 4: [0,4] — D
parametrized by arc length with £ < § and

d(y(t),0D) > —t, t €[0,4],

~| R

[MS]. We write D € J(a,f3), and we say zo is a John center. An («,f)-John
domain is bounded.

3.1. Theorem. Suppose that D € J(a,3). Let 1 < p<n and p<q <

np/(n — p). Then
lu —ubllzepy < ¢l VullLr (D),

where c= c(n’p,q)(ﬂ/a)lDll/TH'l/Q"l/P and u € L;(D)

Theorem 3.1 is proved by B. Bojarski, [B]. A careful calculation gives the
above mentioned constant, see [H1, Lemma 8.3].
The quasihyperbolic distance between points z; and z; in D is given by

. ds
kD((tl,IEQ) = lgf[r W

where the infimum is taken over all rectifiable curves ¥ joining z; and z, in D,
[GP].

A domain D satisfies a quasihyperbolic boundary condition, if for zo € D
and for some a > 1

|zo — 2| )
k <al
p(zo,z) <a og(l + min {d(z,dD),d(z,dD)}

forall z € D.

John domains form a proper subclass of domains satisfying a quasihyperbolic
boundary condition, [GM, Lemma 3.11 and Remark 3.13].

A Whitney cube #-condition. Suppose that |D| < co and that

OON);

p=UUa:

k=1 j=1

where the Whitney decomposition of D, see [S, Chapter IV], is arranged so that
for Whitney cubes Qf

dia(Q%) = [D|'/"27%  forj=1,..., Ny
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We say that D satisfies a Whitney cube #-condition, if there are constants M <
oo and A € (0,n) such that

Ny < M2**  fork=1,2,...,

[MV, Chapter 2].

Bounded domains satisfying a quasihyperbolic boundary condition are called
Holder domains by W. Smith and D. Stegenga. In fact, domains with finite
Lebesgue measure satisfying a quasihyperbolic boundary condition are bounded.
I wish to thank W. Smith for discussions concerning Theorem 3.3. For the proof
we need the following lemma, see [H1, Lemma 7.23] for a bounded case.

3.2. Lemma. Suppose that D with |D| < oo is a domain which satisfies a
quasihyperbolic boundary condition such that for some zo € D and a > 1

|zo — z| )
k <al
p(z0,z) <a Og(l ¥ min {d(z0, 0D), d(z,0D)}

for all x € D. Let v be a quasihyperbolic geodesic joining z to zo in D. Then
for each y € v

b

|D|1/n + co|zo — $|>(2a—1)/(2(a—1))

I(v(z,y)) S e d(y,aD)I/za( d(zo,0D)1/"

where I(v(z,y)) is the length of v between points z and y,

co = sup (d(z,8D))/(d(zq,8D)), and c1 = ci(a, co).
z€D

Proof. Since |D| < oo,

|zo — z| ) ( co|x0—z|>
k <al 1 < al il S
p(20,2) < @ og< + min {d(xo,aD),d(x,aD)} s alog{1+ d(z,0D)

for all z € D, where

d(z,0D) |D|1/"
cop = sup < 00

- €D d(zo,aD) - d(II?o,aD) '

After this observation the proof is similar to the proof of [GHM, Lemma 3.1] and
[H1, Lemma 7.23].

3.3. Theorem. If a domain D satisfying a quasihyperbolic boundary con-
dition has finite n-Lebesgue measure |D| < oo, then D is bounded.
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Proof. Suppose that D € R™ with |D| < oo is a domain which satisfies a
quasihyperbolic boundary condition such that for some zo € D and a > 1

Iwo - 5'3| >
k <alog(1
p(z0,7) <a Og( ¥ min {d(z0, 0D), d(=,0D)}

for all £ € D. Assume that D is unbounded. We show that this leads to a

contradiction. Fix ¢ > 0. Denote ¢y = sup,¢p (d(z,8D))/(d(z0,dD)). Let

M > (|D|'/™)/2¢co such that d(z,0D) < ¢ for all z € R*\ B(zo, M). Let z; € DN

S™=1(z¢,3M) and fix a quasihyperbolic geodesic y(zo, ;). Pick z2 € y(zo,z1)

with z, € DN S™"(z9,2M) and z3 € ¥(z0,1) with z3 € DN S" " (z0, M).
Since d(z,0D) < € for all z € y(z2,x3),

ds
= - >
kp(z2,z3) H}rf[,d(z,aD) 2 M/e.
On the other hand Lemma 3.2 yields

kD($29 $3) S kD(xO, 1132)

<alog(1+ [0 — 22| )
- min {d(z¢,8D), d(z2,0D)}

d(z2,0D)

|D|Y/™ 4 2¢oM Y [ |D|M™ 4 coM (2a—1)/(2(a—1))
(+(22,25))™ ) ( d(zo, 0D)/a )

< czlogesM

< alog(l +

< alogcl(

since a > 1 and |D|'/™ < 2¢oM ; here ¢; = ci(a,co,d(z0,0D),|D|), i = 2,3.
Now, if £ goes to 0, we obtain a contradiction. Theorem 3.3 is proved.

Our following theorem generalizes the result of [SS2, Corollary 8].

3.4. Theorem. Suppose that a domain D with |D| < oo satisfies a quasi-
hyperbolic boundary condition with a constant a.
If p<n, then

(i) there is a constant py = po(D) < n such that D € &(p,p) for p > po,

(ii) there is a constant p; = pi(q,D) < n such that D € %(q,p) for py < p <
g < ((n — M)np)/(a(n — p)), where A\ < n is a Whitney cube #-condition
constant.



Unbounded Poincaré domains 415

Proof. Let W be a Whitney decomposition of D. Fix Qo € W with 2z € Qo .
By [H1, Lemma 7.13] each cube Q € W can be joined to Qo by a chain of cubes
QjewW,;=0,1,...,s, Q, = Q, such that

IQf|a SC(TL,D)IQ]“, ZZJ
Now

/lu(z)—qu|quSZq Z / |u(z)—uQ‘qdz+2q z / lug — ug,|? dz,
D Q Q

Qew Qew
where by Theorem 3.1

) /Qlu(a:)—uqlqd:c <a(npg) Y <|Q|1/n+1/q-1/p>q</q Vu(o) dz) a/p

Qew QeW

q/p
Sc:(n,p,q,D)(/ IVU(I)|pdz> :
D

since p < ¢ < (np)/(n — p).
As in [H1, the proof for Theorem 4.4] we obtain using [H1, Proposition 6.1]
and Theorem 3.1

> [ lue-ueltds <crlnpa) 3 [ koeo, 7~ dox
Q Q

QewW Qew
i (IQ |1/n—1/p(/ |V ( )‘pd )1/1’)4
X ] u\r .
j=0 ’ Q; :
Q.=Q

If p < n, then [H1, Lemma 7.13] and [SS3, Corollary 1] yield

Z / IUQ - qu|qdz
Q

Qew

< es(n,p,g) Y / kp(zo, )" dz|Q[* /PPl )
Qew '@

<ampd), Y /Q kp(zo,)"~" dz|Q|* /P Vullt, )
Jj=1

Qew ,
dia(Q)=|D|'/"2~

_<.. c4(n7p7 q, D)“VUH%;:(D)
Condition (i) is proved.
The following example shows that the upper bound for ¢ in Theorem 3.4 is es-
sentially sharp, and hence there are domains satisfying a quasihyperbolic boundary

condition and which are not (np/(n — p), p)-Poincaré domains for any 1 < p < n.
For simplicity we consider here the case n = 2:
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3.5. Example. Let Gy be the open rectangle bounded by the lines
21 =0, 22=0, z1=1, zo=-1
and for j =1,2,... let G; be the open triangle bounded by
T = 2'2j, Io = 272 _ 2_2“, T, + 12 = 2727 _ 2_25j,

where b > 2 is a constant. Denote by G the reflection of the domain U520 Gj with
respect to the line z; = —%. Set

G = GGJ'UG.
j=1

Let T: R? — R? be a translation such that T(z1,z2) = (21,22 + 3). Set D =
T(G). D satisfies a quasihyperbolic boundary condition with a = 36b.

" Let G} be the open set bounded by the lines ; = 272/ z, = 2727 — 2725
g =272 g 4y =272 —272b] Let é} be the image of G’} under reflection
across the line z, = —3. Set T(G}) = D} and T(é}) = b; .

Choose a piecewise linear continuous function u: D — R such that

24i/q in D}, j =1,2,...
u(z) =40 in {A(xl,:cg)l:cl €(0,1),z2 € (—%,3)}
—24/1  in Dl,j=1,2,....

Now, up =0, and
/ |u(z)|qd:c > oo,
D

and

/ IVu(:v)|p dz =3 22(4P/q+2bp)j2—4bj < oo if p +bp—2b<0.
D q

Jj=1

So, if ¢ = 2p/(2—p) and 1 < p < 2, then D ¢ P(2p/(2 —p),p) for any
1 <p < 2. Infact, D is not a (g,p)-Poincaré domain for any ¢ > 2p/b(2 — p),
where 1 < p < 2.

3.6. A similar example of the well known ‘rooms and passages’ domain D in
R™ shows that D is not an (np/(n — p),p)-Poincaré domain for any 1 < p < n.
See [H1, 5.9].

A domain D in R" is called starshaped with respect to a point zo € D if
there is a point zo € D such that the set {zo+ (z —zo)t|t € [0,1]} C D for each
r € D. Bounded domains starshaped with respect to a point are (p, p)-Poincaré
domains for each p € [1,00), [H1, Theorem 3.1] and [SS1, Theorem 6].
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Examples 3.7 and 4.3 show that there are domains starshaped with respect
to a point which are not (np/(n — p), p) -Poincaré domains.

3.7. Example. Let D = D; U D, where

Dy = {(z1,22) | |z2] < 2%, 0 < 21 <1},
Dy = {(z1,22) | |z2| < (z1 —2)%, 1<z <2}

D is not a John domain but D is starshaped with respect to (1,0). Set
T,‘ = {(.’El,:tg) € D1 | 2_i <z < 2_i+1},

and let T; be the reflection of T; with respect to the line z; = 1. Let (u;)®2, be
a sequence of piecewise linear continuous functions defined by

23i/q, zeT; )
ui(z) = { 0, ze D\U;Li (U Ty)
—23i/q, T € T,‘.
Then
/ |u,~(:c)|qd:c > / Iui(:c)|qd:c > g,
D T;
and

/ |vui($)i” dz < 4/ o(3p/a+p)i g, %2(—3+p+3p/q)i =0
—_ : 3 )
D T

if i > 00 and -3+ p+3p/q < 0.
If ¢=2p/(2—p) and 1 < p <2, then D ¢ P(2p/(2—p),p). More generally,
if D= D1 U Dg, where
D, = {(.’131,.’132) | |z2] < z¥, 2, € (0,1)} and
D, = {(1‘1,.’172) ‘ |$2l <1, z9 € [1,2)}, k>1,

then D ¢ (q,p) for any ¢ > p/(1 —p(k+1)71), 1<p<2.

4. Unbounded Poincaré domains with infinite Lebesgue measure

4.1. Theorem. Suppose that D in R"™ is an unbounded domain such that
D = U2, D;, where D; € 2(np/(n — p),p) with Poincaré constants ¢(D;) < ¢
for some constant ¢y, and D; C D; C Di41, 1 = 1,2,..., and |D1| > 0. Then
there is a constant ¢; < oo such that

;rel%llu - a||an/(n—p)(D) < al|VullLe(p)

whenever u € L},(D), 1<p<n.
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The idea for the proof is from [IN].
Proof. Let u € L}(D). By [Maz, 1.1.2. Theorem] u € L,(D,loc). Set

_ 1
|Di| Jp,

Uy

u(z)dz, 1=1,2,....

We will show that there is a convergent subsequence (u;;) of (u;) and b € R
such that lim;_, u;; = b and

(4.2) flu— b“L"P/("—P)(D) < c(paDch)”VU’“LP(D)-

The triangle inequality yields

|u;| = |D1|/ lui|dz < IDII(/ ‘u,' — u(m)‘ dx +/ |u(z)| dz)
D, D, D,

/ |u(z) dz| < oo, since u € L,(D,loc).

D,

where

Since D; is a (np/(n - p)) -Poincaré domain with a constant ¢;(D) < ¢g, we
obtain

/ |u(z)—ui| dz < |Dy[* TP lu = wil| o)y
D,

D1 P M w = il prsrnenr(pyy < €0l DalP PRV Loy

< oo.

Thus (u;) is a bounded sequence and hence there is a convergent subsequence
(ui;) and b € R such that limj_, o uij = b.
Since

jli{{)lo xp; (z)|u(z) — uj]"”/("_”) = xp(z)|u(e) — b|"”/(""’),
Fatou’s lemma and the fact that Poincaré constants of D; are less than ¢, yield
/ |u(z) — blnp/(n_P) dz = / liminf x p; (z)|u(z) — uj|"P/("—P) dr

< liminf/ xp; (z)|u(z) — uj|np/(n_p)dx
J—oo D

1/p\ np/(n—p)
< liminf ¢ (n, p, c0)<</ qu(z)|pd:c> )
j—oo D;

< liminf ey (n,p, o) [Vull25(5, ™ = ea(n, p)| Vull (5.

The inequality (4.2) is proved.
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4.3. Examples. (a) Theorem 4.1 yields that the following domains
1. R"
2. R"\{(:tl,xg,...,:cn) |z =...=2,=0, 7y >0}
3. {(z'yza) ER" | zn > |2'|}

are (np/(n - p),p) -Poincaré domains for each 1 < p < n.

(b) The following domain D is a (2p/(2 — p),p)-Poincaré domain, for all
p € [1,2). The domain D is due to J. Vaisala. Fix points asx4+1 = (57, (2k+1)!),
bakt1 = (L7, (2k + 1)) and cakq1 = (57, (2k +1)!) from the circles {z € R? |
lz] = (2k + 1)!}; k =0,1,2,.... Fix points zox = (%w,2k!), Yok = (%w,2k!)
and z9; = (%W,Qk!) from the circles {x € R? | |z| = 2k!}; k=1,2,....
Fix ¢ > 11. Join z2; to y2; by a c-cigar cig(E,c) = Asi41 the core being
[z2i,a2i+1] U [a2i41,Y2i]- Join y2; to 22; by a c-cigar cig(E,c) = Bai+1 the core
being [y2i, b2i4+1] U [b2i+1, 22i] . Join 22; to z2; by a c-cigar cig(E,c) = Cai41 the
core being [z2i,c2i+1] U [c2i41,Z2i]. Join czi—1 to azi—1 by a c-cigar cig(E,c) =
X»; the core being [c2i—1,%2:] U [z2:i,a2i—1]. Join az;—; to by;—; by a c-cigar
cig(E, c) = Y2, the core being [azi—1,y2i] U [y2i, b2i—1]. Join bgi—1 to ¢2i—1A4 by a
c-cigar cig(E,c) = Z2; the core being [b2i—1, z2i] U [22i, c2i—1].

Define

D, =X2UY2UZ2UA3UC3UX4,

Dy =D,UB3;UY;UZ;UA5UCsU X,

D3 =D,UBsUYsUZgUA; UC7 U Xg,

cee,
D; =D;_1UB3i_1UY3;UZ3 UAit1UCoiy1U Xoiqq, ...
Domains D; can be constructed so that D; is 2¢-John domain for each : =

1,2,..., and hence
D=|JD;
i=1

satisfies (4.2) whenever 1 <p <2 =n and u € L (D) U L*(D;) by Theorem 3.1
and proof for Theorem 4.1.

(c) The following domains are not (np/(n — p), p) -Poincaré domains for any
1<p<n:

1. Dy ={(z1,...,za) ER™ | |zi| < 1, i=1,...,n — 1}. For example, define a
continuous piecewise linear function v on D; such that u(z) =1, for z, > 2,
and u(z) =0, for 0 < 2z, <1 and v is odd in z,. Then u € L}(D;) and
fD1 qu(a:)|P dz < 2" and fDl 'u(z)lq dz = 00, ¢ =np/(n —p).

2. Dy ={(a',z2) ER™ | |2'| -1 < zn <1—|2|}, (Maz, 4.7.4. Example]).

3. Let D = GU{(z1,22) € R? |21 > 1 and |z2| < 21}, where G is the domain
from Example 3.5. Then D satisfies a quasihyperbolic boundary condition,
|D| = o0, and D ¢ Z(np/(n —p),p) for any 1 < p < 2.
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4. Let D = {(z1,%2) € R? | |z2] < 2?}. Now D is starshaped with respect to
(1,0), and D ¢ Z(2p/(2 — p),p) for any 1 < p < 2, see Example 3.7.

4.4. Unbounded John domains. The concept ‘a John domain’ has been
extended for unbounded domains in [NV], [V1]. Let E be a closed arc with
endpoints a and b. The subarc between z and y is denoted by E[z,y]. For z in
E\ {a,b} write

g(z) = min { dia (E[a, z]), dia (E[b,z]) }.

Let ¢ > 1. A domain D in R" is a ¢-John domain, if each pair of distinct points
a and b in D can be joined by an arc E such that

cig E(a,b) = | J {B(z, @) |z € E\ {a,b}} c D.

The set cig E(a,b) is called a c-cigar with core E joining a and b.
Whenever D is bounded this gives exactly an (a,)-John domain for some

a and 3.
The following result due to J. Vaisila, [V2], makes it possible to resolve the

Poincaré domain question for unbounded John domains.

4.5. Theorem [V2]. Let D be an unbounded c-John domain. There are
bounded c¢'-John domains D; such that D; C D; C D;y;, ¢ = 1,2,... and
D =ug,D;.

I would like to thank J. Vaiséld for his interest in this problem and his time
invested in Theorem 4.5.

Theorems 3.1, 4.1 and 4.5 imply the main result of this chapter:

4.6. Corollary. An unbounded c-John domain D in R" isa (np/(n—p),p) -
Poincaré domain, 1 < p < n.

4.7. Remarks. (1) V.G. Maz’ya has given a necessary and sufficient condi-
tion for D to satisfy the inequality

lu = all prerin-»)(py < €l|VullLr(D)

where u € Li(D), 1 < p < n, and ¢ is independent of the function u and
a=inf{t: |{z : u(z) > t}| < 0o}, [Maz, 4.7.4. Theorem]. The number a < oo,
[Maz, 4.7.4. Lemma 2].

(2) Suppose that A; C R", 7 = 1,2, are (np/(n — p),p)-Poincaré domains
such that |A;| < oo, and |A2| = oo, and |A; N Az] > 0. Then A; U A, €
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P(np/(n —p),p), [A]. If both sets A;, i = 1,2, are unbounded (np/(n — p),p)-
Poincaré domains with infinite measure, then the union A; U A, is not necessarily

in Z(np/(n —p),p). See Example 4.4(b)(2), where

Ay ={(a',zs) ER" | 2, > |2’ — 1} and
Ay ={(z',zn) ER" |20 < 1—|2'|}.
(3) Locally L-bilipschitz homeomorphisms preserve (g, p)-Poincaré domains,
also when a domain is unbounded and ¢ = np/(n — p). See [H1, Theorem 2.1].
5. Weighted Poincaré inequalities

By a weight we mean a non-negative measurable function on R™.
A weight w is said to satisfy the A, ;-condition, w € A, 4, if for each cube

QCR
1 2V da 1/q<_1_ RN
(1@|/Q‘”( ) d) |QI/Q“’(’”) ’ ) <o

1<p<o0,1<g<oo. The infimum over the c’s is called the A, ,-constant of
w and is denoted by a, 4, [MW].

For example w(z) = 1 and w(z) = |z|*, a <n(1—(1/p)), are A, ,-weights,

g=np/(n—p(n—1A)), 0 <X <n, and especially w(z) = |z|*, & < n(1—(1/p))
is an A, np/(n—p)-weight, [SW, Theorem B*] and [MW, Theorem 4].

Recall that a weight w is a Muckenhoupt weight, w € A,, 1 < p < oo, if for
each cube Q C R™

(o) G frr )

If we Ap,q,then w? € A, where r =1+ ¢p/(p—1). For an (a,8)-John domain
we obtain

5.1. Theorem. Suppose that D € J(a,B) and w € A, ,, where ¢ =
np/(n —p), 1 < p < n. Then there is a constant ¢ = c¢(n,p,a, q) such that

ﬁ 16n
lu = up,wllLe(D,w) < C(;) IVullLr(D,w)

whenever u € C*°(D).
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Proof. Let u € C*®(D). Extend u as 0 into R"\ D. By [M, Lemma 3.3]
and [MW, Theorem 4]

(/D|u(x) — up|Tw(z)? d:c)l/q
<am (@) ([ ([ le - 19ue)]as) wiar dx)w

<eatnnang) (2)" ([ [vuePuter &)

where E = B"(zo,c(n)(a®)/(8*)) and zo is a John center.

A lemma similar to [H2, Lemma 2.2] implies the required inequality.
As in the case without weights Theorem 5.1 yields:

5.2. Theorem. Suppose that D is an unbounded cy-John domain in R"™.
Let w € A, 4, where ¢ = np/(n —p), and 1 < p < n. Then there is a constant
c1 = c1(n,p,ap,q,c0) < 0o such that

;rég lu — all rern-p)(D,w) L €1l VullLe(D,w)

whenever u € C*(D).

5.3. Remark. E. Fabes, C. Kenig and R. Serapioni have proved the weighted
(kp, p)-Poincaré inequality for a cube @ in R":

(/Q |u(z) - quw|kPw(x)d:z>l/kp < c(/Q |vu(x)|pw((lj)dz)1/p,

where ¢ = c¢(k,n,p)|Q|"/"w(Q)/**~1/P w € A,, 1 < p < 0o, a positive number
k can be slightly bigger than one, and c is a constant independent of u € C*(Q),
[FKS].

This result can be generalized to an (a,f)-John domain in R"™ using the
integral representation from [M, Lemma 3.3] and the technique from [FKS].
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