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UNBOUNDED POINCARE DOMAINS

Ritva Flurri-Syrjänen
University of Jyvdskylä, Department of Mathematics

P.O. Box 35, SF-40351 Jyvdskylä, Finland

Abstract. We show that unbounded John domains D in R' satisfy the Poincard inequality

jååll'- oll;"1o1 < cllvullPlP;

where q = npf(n-p), 1 1 p 1 n, c = c(p,q,D), and u e LP(D), and that in a certain sense

John domains form the largest subclass of (npl(n - p),p)-Poincar6 domains.

1. Introduction

A domain D in R" with finite n-Lebesgue measure lDl is a p-Poincard
domain, if there is a constant c: c(prD) < * such that

( 1.1) ll" - upllr,(D) I cllV"llr, @)

jeå ll" - oli.,(D) S cllVullt,(D)

for all u eW](D), p e [1,oo); here u2 is the average function of u over D. A
bounded domain with a smooth boundary was known to be a p-Poincar6 domain
for years. Recently, bounded Poincard domains have been under very extensive
study, see e.g. [EH], [H1], [M], [Maz] and [SS1-3]. Now it is well known that
bounded John domains form a proper subclass of p-Poincard domains for each
p e [1, m).

However, not very much attention has been paid to unbounded domains with
infinite n-Lebesgue measure. If the measure of D is infinite, (1.1) should be
replaced by

( 1.2)

where q: npf(n-p),71p <-Tt, c: "(p,D), 
and u e Lrp@). We call

domains D satisfying (1.2) ("pl@ - p),p)-Poincard domains and we write D €
e(nel@ - p),p).
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In this paper we concentrate on the extremum case q : npl(r-p) . Somewhat
implicit characterizations for (npl@ - p).,p)-Poincard domains have been given
by V.G. Maz'ya. R. Andersson notices that the whole space R' satisfies (1,.2),

[A]. B. Bojarski has shown that (1.2) is true for a bounded John domain.
We will prove that unbounded John domains arc (npl@ - p),p)-Poincard

domains for 1 ( p 1 n, Theorem 4.6. Our examples illuminate the fact that in a
certain sense John domains form the largest subclass of (npl@ - p),p)-Poincar6
domains, Examples 3.5, 3.7, and 4.3.

We consider also weighted inequalities:

( 1.3)
a€R "

where ur is a weight function, c is a constant which does not depend on a function
u, and 1 S p < S < npl(n - p).

Inequalities with different weights have been studied widely; see for example

[EO], [FKS], [GO] and references therein, [H2], [IN], [K] and [Maz]. A related
inequality to (1.3) is satisfied by a John domain, if 1 < p < q I kp, and & is
slightly bigger than one, and ur is the so called Muckenhoupt weight; [FKS], [IN].
We show that John domains satisfy (1.3) with q: npl(n-p),1< p < n, when
to is an .4r,0-weight; that is, there is a constant c ( oo such that

(å lo'@)o
o*)''o (lo, Ir('(')) 

-P/(P-\ d'') ''-t)/P 1c

for all cubes Q CF. .

I wish to thank O. Martio and W. Smith for reading my manuscript and
J. Väisälä for pointing out to me his Theorem 4.5.

2. Notation

Throughout this paper we let D be a domain of euclidean n-space Rn , n ) 2.
We suppose that p € [1, oo) and C € [1, m) unless otherwise stated.

Let C*(D) denote the space of functions on D which are infinitely differen-
tiable on D. The space Lp(D) is a set of Lebesgue measurable functions u on D
for which

ll" ll LP (D) -
Let LP(D,loc) denote the space of functions which are locally integrable of or-
der p on D. The space of Lebesgue measurable functions on D with the first
distributional derivativesin LP(D) is denotedby Lrn@). W" equip Z](D) with
the seminorm llVulllr(o); here Yu: (}ru,...,0,u) is the gradient of u. The
following properties of the space L)(D) are recalled:
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2.1. LemmalMaz,1.1.2. Theorem]. Any element of Lrp(D) isin .Dp(D,loc).

2.2. Lernrma [Maz, ]..1.5. Theorem 1,]. The space Li@) n C*(D) is dense

;n Lro@).

In the Sobolev space W)(D) : LP(D) n LLp@) we use the norm

llull*i<ot: llull1,,1ov * llvulll,1r,'

The average of a function u over a domain .4 with finite Lebesgue measure

lAl is 7l
"o: AJou(x)dx.

Deffnition. Let D C R" beadomain andlet 1(p( q < oo. If thereis a

constant c:.(prq,D) < oo such that

jåå ll" - allu@) < cllvull;,1o;

whenever u e Lrp@), then D is a (g,p)-Poincard domain and we write D €
9(q,p).

Let u be a non-negative measurable function. The space LP(D,u.,) is a set

of functions u on D such that

ll,llr,@,-): (lrlu(a)lPw(x)o or)''n . *.

The weighted Sobolev space W)(D,ta) is the space of functions u €_ Lp(D,u),,
whose first distributional partiafderivatives belong to Lp(D,to). In W;(D,ur) we
use the norm

ll"ll*; to,*t : llull u @,-; + ll vu ll I c (D,ut).

The weighted average of u over D is

7tD,,,,: (lr,Ald.) ' 
lou@)w(a)dx,

where we suppose thaf [ou(x)dr < a.
Let A be a set. The euclidean distance from r € A to the boundary of Ä

is written as d(a,ä, ). We let dia(A) and .4 denote the diameter of .4 and the
closure of .4, respectively.

We let c(*,. . . 
, *) denote a constant which depends only on the quantities

appearing in the parentheses.
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3. Domains with ffnite n-Lebesgue measure

A domain D is called * (o, B)-John domain, 0 < a < P < oo, if there
is zs € D such that each x e D can be joined to ca by a curve y [0,1] --+ D
parametrized by arc length with / < 0 .nd

d(t(t),,0o) > it, t e lo,t),

[MS]. We write D e J(a,B), and we say rs is a John center. An (a,B)-John
domain is bounded.

3.1. Theorem. Supposethat D e J(a,B). Let 1 < p 1n and p 1q I
npl(n - p). Then

llu - u 2tll;,"1oy < cllVullu @),

where c: c(n,p,il$lo)lolr/n*tlc-tlp and u e Lrp@).

Theorem 3.1 is proved by B. Bojarski, [B]. A careful calculation gives the
above mentioned constant, see [H1, Lemma 8.3].

The quasihyperbolic distance between points o1 and 12 in D is given by

ko(*r.,az):rf,, l.r#
where the infimum is taken over all rectifiable curves 7 joining s1 a^rrd a2 in D,
[GP].

A domain D satisfies a quasihyperbolic boundary condition, if for co € D
and for some o ) 1

min { at to t AD), d,(r,0D)}

forall x€D.
John domains form a proper subclass of domains satisfying a quasihyperbolic

boundary condition, [GM, Lemma 3.11 and Remark 3.13].

A Whitney cube f -condition. Suppose that lDl < m and that

D:ÖUoi,
Ic=l j:!

where the Whitney decomposition of D, see [S, Chapter IV], is arranged so that
for Whitney cubes Qf

ko(xo,r) I alos (, * lro - nl

dia(A»- lDlr/nz-k for 7 - 1,. . .,.1[p.
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We say that D satisfies a Whitney cube f -condition, if there are constants M <
oo and .\ e (0, n) such that

N1, I MZ^k for & : L,2r... ,

[MV, Chapter 2].

Bounded domains satisfying a quasihyperbolic boundary condition are called
Hölder domains by W. Smith and D. Stegenga. In fact, domains with finite
Lebesgue measure satisfying a quasihyperbolic boundary condition are bounded.
I wish to thank W. Smith for discussions concerning Theorem 3.3. For the proof
we need the following lemma, see [H1, Lemma 7.231for a bounded case.

3.2. Lemma. Suppose that D with lDl ( oo is a domain which satisfies a
quasihyperbolic boundary condition such that for some ro e D and a ) I

min {atto t AD), d,(r,, A D)}

for all x e D. Let 1 be a quasihyperbolic geodesic joining x to rs in D. Then
foreachy€1

wherc l(l@,y)) i" the length of 1 between poinfs c and y,

c0 : sup (a1r,Oo1)1(d(*o,aD)), and q: cL(a,co).
s€D

Proof. Since lDl < oo,

t o(,0,o) ( alog(, . #) =,.*(, - *.lu#)
for all a e D, where

d( x.0D\ lDlrl"
"o::EBffisd;ap)'*'

After this observation the proof is similar to the proof of [GHM, Lemma 3.1] and

[H1, Lemma7.23].

3.3. Theorem. If a domain D satisfying a quasihyperbolic boundary con-
dition has frnite n-Lebesgue measure lDl < - , then D is bounded.

ko(ro,r) I alos (, * l*, - rl

+
0:

n

r
l't
d(

lDt(t(r,y)) I cr d(y,aD)t''" (
colr

0D)
0

,/ o"

nl

) 

,, a-r) /(2(,-t))



474 Rit va "Elurri- S yrj änen

Proof. Suppose that D € R" with lDl < oo is a domain which satisfies a

quasihyperbolic boundary condition such that for some o0 € D and a > 1

min {d(*r, AD), d(n, A D)\

for all a e D. Assume that D is unbounded. We show that this leads to a
contradiction. Fix e > 0. Denote c0 : sup,€o(d(*,lD))l@@s,AD). Let
M > (lDltl")/Z"o suchthat d,(x,0D) < e forall r € R"\B(o6, M). Let at € Di
§"-t(ro,3M) and fix a quasihyperbolic geodesic 'y(ao,ar). Pick xz e 1(xo,ar)
with lz2 e DnS"-'(ro,2M) afi xs:= 1(rs,r1) with rs4_ DnS'-t(xs,M).

Since d(o, 0D) <e for all a e 1(r2,as),

lro(*o,n) 1 alos (t * lro - nl

lro(rr,rr): ,*,t I.rå»2. Mle.

On the other hand Lemma 3.2 yields

k»(*r,rr) ( bp(an,a2)

(alos(,* , ,., l'o-"1 ,\'"t\'- 
"ril {a@0,0D),d(a2,Ar)} )

(orog(r.#»)

I a,-- - (lol'/" *2caM\ (lDl'/" *coM\Qa-r)/(z(a-r))
rosc' \ r({CI;3»'?" )\q;oofr; I

l c2logcsM

since o > 1 and lDl'/" l2csM; here c; : "r(o,cs,d,(rs,A{,|DD, 
i:2,3.

Now, if € goes to 0, we obtain a contradiction. Theorem 3.3 is proved.

Our following theorem generalizes the result of [SS2, Corollary 8].

3.4. Theorem. Suppose that a domain D with lDl < * safisfies a quasi-
hyperbolic boundary condition with a constant a.

Ifp<n,then
(i) thereisaconstant po:po(D) ( n sucå that D e 9(p,p) for p)ps,
(ii) tåere is a constant p, : p{C,D) ( n sucå that D e 9(C,d for p1 < p <

q < ((" -\)ne)l(a("-p)),where ) < n is aWhitney cube ff-condition
consta,nt.
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Proof. Let W be a Whitney decomposition of D. Fix Qo €.W with co e Qo.
By [H1, Lemma 7.13] each cube Q eW car be joined to Qo by a chain of cubes

Qi €W, i :0,1,..., s, Q": Q, such that

lQtl < c(n,D)lQ1l, t> i.
Now

lrl"t.l - ueol' d* . z' » lot"r.l - 
ualo d,x * 2q 

,rf_ Irluq - uqolq d'r,

where by Theorem 3.1

»
Qew lot t.l - uolo d,r I c1(,,p,q) p*@t,*+'rr-''rn)r (lolr,a)l'o*)"

I cz(n,p,o,D(lrlv,1,;le o*)o'n ,

since p 1q 1("dl(" - p).
As in [H1, the proof for Theorem 4.4] we obtain using [H1, Proposition 6.1]

and Theorem 3.1

,?r-lrfue 
- uqolq d'r l cs(n,p,s) 

&loror*o,*)q-r 
d'*x

x 
E (,0,'' tn-tlp(lo,lo,oY o.)''')' .

Q"=Q

If p < n) then [H1, Lemma 7.13] and [SS3, Corollary 1] yield

klr,uQ - 
uQolo d*

QC

f
1 cs(n,p,,q) » » l^rr("0,r)'-' d*lQlaq(t/n-l/p) llv"ll1,,«rl

i=i Q-ew JQ

dia(Q):lDftn2-i
1 c4(n, p, q, O)llV ullL, 

@.).

Condition (i) is proved.

The following example shows that the upper bound for g in Theorem 3.4 is es-

sentially sharp, and hence there are domains satisfying a quasihyperbolic boundary
condition and which are not ("pl@ - p),p)-Poincard domains for any 7 I p I n.
For simplicity we consider here the case n :2:



c: U G1uG.
j=L

Let ?: R2 - R2 be a translation such that ?(r1, *r): (*r,*, + |). Set O:
T(C). D satisfies a quasihyperbolic boundary condition with o : 36å.' Let G] be the open set bounded by the lines c1 :2-2i t o2 : 2-2i - 2-2bi ,

12 - )-2bj, sr * n2:)-2i -2-2bi . t et G| be the image of G] under reflection
across the line n2: -Lz. Set 

"(G,) 
: D] and TG»: bl.

Choose a piecewise linear continuous function u: D ---+ R such that

(Znito lr,r-Dj,j:t,2,...
u(r): { 0 in {(c1 ,xz)lq € (0,1), *re(-i,Lr)}

l_z+itt in bl,i :L,2,....

Now, zp :0, and

l,l"r.ll' d'x ) a,
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3.5. Example. Let Go be the open rectangle bounded by the lines

o1 : 0, a2:0, 0l: L, {2: -l
and for i : 1,2,. . . let G5 be the open triangle bounded by

ot - 2-2i , 12 : )-2i - 2-2bi, ar * xz :2-2i - 2-2bi ,

where b ) 2 is a consta.nt. Denote by 6 the reflection of the domain U;?6Gi with
respect to the line 12: -|. Set

and

lrlv"tOlo 
d*:3fz{tnte+zbp)j2-abi . * itU +bp-2b <0.

i:r q

So,if s:2pl(2-p) and 7<p ( 2, then D e g?elQ-d,d forany
l Sp ( 2. In fact, D is not a (g,p)-Poincar6 domainfor a,ny q>2plb(2-p),
where 11p<2.

3.6. A similar example of the well known 'rooms and passages' domain D in
R' shows that D is not an (np/(n - p),p)-Poincard domain for any L 1 p 1n.
See [Hl, 5.9].

A domain D in R" is called starshaped with respect to a point xs € D if
thereis apoint ooe D suchthat theset {"0+ (a-xs)tlt e [0,t]] C D foreach
x € D. Bounded domains starshaped with respect to a point are (p,p)-Poincar6
domains for each p € [1,m), [H1, Theorem 3.1] and [SS1, Theorem 6].



Examples 3.7 a.nd 4.3 show that there are domains starshaped with respec
to a point which are not ("pl@ - p),p)-Poincard domains.

3.7. Example. Let D : Dt U D2 where

Dr: {(c1,*z) ll*zl < r?, 0 < c1 < 1},

D2 : {(x1,rz) I lxzl < (r, - 2)' , 7 < q < 2).

D is not a John domain but D is starshaped with respect to (1,0). Set

T;: {(a1,,az) e Dr lZ-' < q <2-i+t},

and let 4 b" th" reflection of ?; with respect to the line u 1 : 1. Let ("t)E, b
a sequence of piecewise linear continuous functions defined by

( 2';lt' t QT;
u;(r): { o, x€DtUili-,trruql

l-zri/r, rei;.
Then

lrl,,@)lo 
o*. 

lr,l,,(,)l 
o o, .I,
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and

lolv,,{,)l' a, 'n lr.r"o'o*ili 
dt - ffz<-'*o*3t/di -- s,

if i-+oo and -3*p*lplq<0.
If g: zplQ-d and 1 1p < 2, then o ( 9(zelQ-d,d. More generalls

if. D: D1U D2, where

D1 : {(c1 ,rz) llrzl < ,f , or € (0,1)} and

D2 : {(r1,rz) llxzl <L, rr€ [1,2)], k ) L,

then D #g(s,d forany c>pl(t-p(b+1)-t), L<p<2.

4. Unbounded Poincar6 domains with inffnite Lebesgue measure

4.1. Theorem. Suppose that D in R" is an unbounded domain such that
D : uZtD;, where D; e g(npl@ - il,n) with Poincari constants c(D;) < cs

for some constant cs, and D; CD; C Di+r, i:1,2,..., and lDl l > 0. Then
there is a constant cr ( oo such that

jåf* ll" - ally^,1 1.-r)(D) ( c1 llVulll,lpy

whenever u e Lro(D), l l p 1 n.
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The idea for the proof is from [IN].
Proof. Let u e Lre@). By [Maz, 1.1.2. Theorem] u e Lp(D,loc). Set

u,: fi lo u@)d,*, i:7,2,....

We will show that there is a convergent subsequence (u;i) of (u;) and ä e R
such that liml*oo uii : å and

(4.2) llu - blly",r@-il(D) I 
"(p,D, 

cs)llVull Lp(D).

The triangle inequality yields

l,;l : @t lo,fu;ldr S lDr t(lr,lu; - u(x)lo, * lr,l,@)ld,)
where f

Jo,l"{*) 
dxl < x, since u e Ln(D,loc).

Since D; is a (npl@ - p))-Poincard domain with a constant 
";(D) 

< c0, we
obtain

lo,lrtd-u;ld, 
< lD, lr-r/p+r/'llu - u;ll7^,1("-p)(Dr)

< 
l 
D rlr - t / n - r l n yu - u ;ll p, 1( " - 

p) ( D; ) 
( c6 

l 
D1 lr - 

r / p + r l " llv ull r,, < ol
( oo.

Thus (z;) is a bounded sequence and hence there is a convergent subsequence
(u;i) and å e R such that liml*oo uU: b.

Since

lirn-yp,(r)lu(r) - url"t/@-n) : xo(*) l"(r) - bl"n/@-il,
J+oo

Fatou's lemma and the fact that Poincard constants of D; are less than cs yield

lrt"t.l - bl*tt@-c) d,* : 
lrr,p*tr»;(r)lu(x) - u,l'n/@-il o*

< lipinf / xo;(x)lu(x) - ui1"nt@-o1da

S lirn inr cr ( n, p, co) ((l r,l v,1c; 
I 

P o.)''')"p 
/ (n- p)

I li.m inf c 1 ( n, p, c s)llY ull}',($-' : c r ( r, p) 
I I 
V "ll\i(g;') .

The inequality (a.\ is proved.



Unbounded Poincarå domains 4I9

4.3. Examples. (a) Theorem 4.1 yields that the following domains

1. R'
2. R \{(r,,n2,,...,n)In2:...:nn:0, or )0}
3. {(r',*,) € R" lr, > lr'l}

arc (npl@ - p),p)-Poincard domains for each 1 I p < n.

(b) The following domain D is a (ZplQ - p),p)-Poincar6 domain, for all
p € [1,2). The domain D is due to J. Väisälä. Fix points a2k+r : (lr,(2k+ 1)!) ,

bzk+r: (fr,(zk + 1)!) and c21.,1 : (*o, (2k+ 1)!) from the circles {r e R2 
|

lxl : (2k + 1)!); Ie :0,1,2,.... Fix points r2k : (lr,Zkl)t Uzk : (Lur,Zkl)
and. z2y: (*o,2b!) from the circles {c e R2 l lul:zkl\; lc :7,2,....
Fix c > 11. Join 12; to yz; by a c-cigar cig(.E, c) : Az;+r the core being

l*r;,or;+rfU [oz;+r,yz;]. Join Uz; to ,z; by a c-cigar cig(E, c): Bz;+r the core
being lUz;,br;+r)U [åz;+r, z2;]. Joir. z2; to rz; by a c-cigar cig(E,c): Czi+r the
core being lrr;r"r;+rlU ["zi+r,c2;]. Join c2;-1 to azt-r by a c-cigar cig(.E,c):
Xzi the core being f"r;-r,rri)Ul*r;,or;-r). Join a2;-1 to özl-r by a c-cigar
cig(E, c):Yz; the core being [42;-r,uz;lulyz;,bz;-rl. Join b2;-y to c2;-1Aby a

c-cigar cig(.E, c): Zz; the core being [62;-r,zz;lUlzz;,cz;-rl.
Define
Dr: XzUYzU ZzU AtUCtU X+,
Dz : DtU Bs U Y4U Z4U As U C5U X6,
Ds : Dz U Bs U YtU Zo,U At U CT lJ Xs,
'D'r': 

Dr-rU Bz;-tlJYz;U Zz;U Az;+rU Czt+rl) Xz;+t, ....
Domains D; car, be constructed so that D; is 2c-John domain for each i :

lr2r. .., a.nd hence

D-

satisfies (4.2) whenever 1 ( p <2: n and u e Lrr(D)U L|(Di) by Theorem 3.1
and proof for Theorem 4.1.

(c) The following domains are not ("pl@ - p),p)-Poincar6 domains for any
Llp<n:
l. Dt: {(rr,...,tn) € R'llr;l < 1, i:7,...)n- 1}. Forexample, definea

continuous piecewise linear function u on D1 such that u(a) : L, for ro ) 2,
and u(c):0, for 0<-a, ( 1 and u is odd in cr. Then u e I|(D1) and

/r, lv"1r;ln a* .2" and lo,l"@)lo dx : q, q : npl(n - p).
2. Dz: {(o',s,) € R" I l"'l - 7<-x,- < 1- lr'l}, ([Ma2,4.7.4. Example]).
3. Let D:Gu{(rr,n2) e F.'l"r> L and lo2l( rt},*h"r" G isthedomain

from Example 3.5. Then D satisfies a quasihyperbolic boundary condition,

lDl : *, and D ( 9(nel@ - p),p) for any 1< p <2.

i,,
i:1
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4. Let D: {(*r,az) €Pc'llrrl < r?}. Now D is starshaped with respect to
(1,0), and D ( 9(Ze/(Z - p),p) for any 1 < p < 2, seeExample 3.7.

4.4. Unbounded John domains. The concept 'a John domain'has been
extended for unbounded domains in [NV], [V1]. Let E be a closed arc with
endpoints a and b. Thesubarcbetween o and y isdenotedby E[c,y]. For r in
E \ to, ä) write

q(r) : min { dia (efa,rl),, dia (E[b, o])].

Let c ) 1. A domain D in R" is a c-John domain, if each pair of distinct points
a arrd b in D can be joined by an arc E such that

cisE(a,å): U {rG, 9l lx € E\ i,,åi} . r.

The set cigE(a,å) is called a c-cigar with core .E joining a and ä.

Whenever D is bounded this gives exactly an (a,B)-John domain for some
a and B.

The following result due to J. Väisälä, [V2], makes it possible to resolve the
Poincard domain question for unbounded John domains.

4.6. Theorem lY2). Let D be an unbounded c-John domain. There are
bounded c'-John domains D; such that D; CD; C Di+r, i :1,2,... and
D : U?rD;.

I would like to thank J. Väisälä for his interest in this problem and his time
invested in Theorem 4.5.

Theorems 3.1, 4.1 and 4.5 imply the main result of this chapter:

4.6. Corollary. An unbounded c-Johndomain D inP. isa (npl@-p),p)-
Poincar{ domain, 11 p <-n.

4.7. Remarks. (1) V.G. Maz'ya has given a necessary and sufficient condi-
tion for D to satisfy the inequality

llu - all y, r r. - il (D) < cllY ull p p1

where u e Lln@), 1 ( p I n, and c is independent of the function u and
o: inf {t, l{, :u(r) r r}l . *}, [Mu.r, 4.7.4.Theorem]. The number o < oo,

1Ma2,4.7.4. Lemma 2].

(2) Suppose that -4i C R" , i : 7,2, are ("pl@ - p),p)-Poincard domains
such that l/rl < oo, and lAzl: oo, and l4rn A2l > 0. Then .41 U Az e
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9(npl@-p),p), [A]. If both sets A;, i:1.,2,are unbounded ("p/("-p),p)-
Poincard domains with infinite measure, then the union ArU A2 is not necessarily
in 9(npl(n - p),p). See Example  .a(b)(2), where

A1 : {(x' ,r,) € R" | *n > lr'l - 1} and

A2 : {(x',r,) € R" | *n <t - lr'l}.

(3) Locatly .D-bilipschitz homeomorphisms preserve (g,p)-Poincard domains,
also when a domain is unbounded and q : npl(n - p). See [H1, Theorem 2.1].

5. Weighted Poincar6 inequalities

By a weight we mean a non-negative measurable function on R'.
A weight to is said to satisfy the Ao,r-condition, u e Ap,q, if for each cube

QcR"

(ä l"'@)o 
o*)''o (ä Lw@)-ctb-")'o-"'' ' "'

L <p < m, 1 ( g < oo. The infimum over the c's is called the Ar,o-constant of
to and is denoted by oo,o, [MW].

Forexample u(x): L and w(a):l*lo, o < 
"(1 -(lld),are Ar,r-weights,

q : npl (n - p(n- ))), 0 < .\ < n, and especially w(e) : lrlo, o< 
"(1 - (tlil)is an Ap,npl@-p)-weight, [SW, Theorem B*] and [MW, Theorem 4].

Recall that a weight ur is a Muckenhoupt weight, w e Ao,l < p ( oo, if for
eachcubeOCR"

(t
\rcf [ .@)dn)(ä 

Lw@1-t11,-,ra,)'-'. ".

If. w € Ar,r,then we e A,, where r:1* qpl@- 1). For an (o,B)-John domain
we obtain

5.1. Theorem. Suppose that D € J(a,,P) *rd w € Ao,o, where q:
np/(n - p), L < p < n. Then there is a constant c: c(n,p,ao,o) such that

ll, - up,*llro(D,*) I c(*) 
16nllv, 

llr,(D,*)

whenever u e C@(D).
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Proof. Let u e C*(D). Extend u as 0 into R" \ D. By [M, Lemma 3.3]

and [MW, Theorem 4]

(l,l"Al - uslqw(a)' d.)

< 
",(,) (*)"" Ururl, - vl'-'lv ,tolldr) .@)q o,)''o

d.)''o ,

where E: Bn (o6,c(n)(45)l@\) and os is a John center.
A lemma similar to [H2, Lemma 2.2] implies the required inequality.

As in the case without weights Theorem 5.1 yields:

5.2. Theorem. Suppose that D is a.n unbounded cs-John domain in R".
Let u e Ap,c,where q:npl(r-p), ulr.dl <p <n. Thenthereis aconstant
c1 : c1(nrpron,qr"o) ( oo sucå tåat

jåå ll" - all7.o11,-il(D,u) < clllVull1,e(D,u)

whenever u e C*(D).
5.3. Remark. E. Fabes, C. Kenig and R. Serapioni have proved the weighted

(kp,p)-Poincar6 inequality for a cube Q in R":

(lrt"r"l - uq,-lrn*(d d,)''o' . "(lolo^,)l',(,) o*)''n ,

where c: c(lc,n,p)lell/"w1g1r/*n-r/n , w € An, L 1p ( oo, a positive number
& can be slightly bigger than one, and c is a constant independent of u € C*(Q),
lFKSl.

This result can be generalized to an (o,B)-John domain in R" using the
integral representation from [M, Lemma 3.3] and the technique from [FKS].

References

tA] ANorRssoN, R.: Unbounded Soboleffregions. - Math. Scand. 13, 1963,75-89.

tB] BoJaRSKI, B.: Remarks on Sobolev imbedding inequalities. - Proceedings of the conference
Complex Analysis, Joensuu, 1987. Lecture Notes in Mathematics 1351, Springer-
Verlag, 1988,52-68.

[EO] EDMUNDs, D.E., and B. Oplc: Weighted Poincard and Friedrichs inequalities. - To appear.

[EH] EvlNs, W.D., and D.J. Hlnnts: Sobolev embeddings for generalized ridged domains. -
Proc. London Math. Soc. (3) 54, 1987, 141-175.



(Jnbounded Poincarö domains 423

[fKS] FnaEs, E., C. Kunrc, and R. SpRlploNI: The local regularity of solutions of degenerate
elliptic equations. - Comm. Partial Differential Equations 7, L982,77-116.

[GHM] Gouuxc, F.W., K. Hlc, and O. Mlntro: Quasihyperbolic geodesics in John domains.
- Math. Scand. 65, 1989,75-92.

[GM] GruRtNc, F.W., and O. Mlntro: Lipschitz classes and quasiconformal mappings. - Ann.
Äcad. Sci. Fenn. Ser. A I Math. 10, 1985, 203-219.

[GP] GruuNc, F.W., and B.P. Pr,rxl: Quasiconformally homogeneous domains. - J. Änalyse
Math. 30, 1976, 172-199.

[GO] GuRxl, P., and B. Orrc: N-dimensional Hardy inequality and imbedding theorems for
weighted Sobolev spaces on unbounded domains. - Proceedings of the International
Summer School on Function Spaces, Differential Operators and Nonlinear Analysis
held in Sodankylä. Longman Scientific and Technical Publishers, 1989, 108-124.

[H1] HunRl, R.: Poincar6 domains in R" . - Änn. Acad. Sci. Fenn. Ser. Ä I Math. Dissertationes
71, 1988, 1-41.

EI2] HuRu, R.: The weighted Poincard inequalities. - Math. Scand. 67, 1990, 145-160.

tIN] IwlNIec, T., and C.A. Nor,opn: Hardy-Littlewood inequalityfor quasiregular mappings
in certain domains in R,n . - Ann. Acad. Sci. Fenn. Ser. A I Math. 10, L985,267-282.

tK] KUFNER, A.: Weighted Sobolev spaces. - John Wiley & Sons, 1985.

tMj M.tRtIo, O.: John domains, bilipschitz balls and Poincard inequality. - Rev. Roumaine
Math. Pures Appl. 33:1-2, 1988, 107-112.

[MS] MaRTIo, O., and J. Snnvns: Injectivity theorems in plane and space. - Ann. Acad. Sci.
Fenn. Ser. A I Math. 4,1978-79,383-401.

[MV] MeRTlo, O., and M. VuontNpN: Whitney cubes, p-capacity, and Minkowski content. -
Exposition. Math. 5, 1987, L7-40.

[MW] MucrcNnouPT, B., and B.L. WuppopN: Weighted norm inequalities for fractional in-
tegrals. - Tlans. Amer. Math. Soc. 192, 1974,261-274.

[Maz] MAz'YA, V.G.: Sobolev spaces. - Springer-Verlag, 1985.

[NV] NÅxxr, R., and J. VÄlsÅr,Ä: John disks. - Exposition. Math. 9, 1991, 3-43.

[SS1] Slttttt, W., and D. Stpcouc.c.: Hölder domains and Poincard domains. - T]ans. Amer.
Math. Soc. 319, 1990,67-100.

[SS2] SMIIH, W., and D. Srrcsxc.q,: Sobolev imbeddings and integrability of harmonic func-
tions on Hölder domains. - To appear.

[SS3] SMIttt, W., and D. StponNc.c,: Exponential integrability of the quasi-hyperbolic metric
on Eölder domains. - Ann. Acad. Sci. Fenn. Ser. A I Math. 16, 1991,344-359.

tS] Srrtr, E.M.: Singular integrals and differentiability properties of functions. - Princeton
Univ. Press, Princeton, N.J., 1970.

[SW] StutN, E., and G. Wprss: ftactional integrals on n-dimensional Euclidean space. - J.
Math. Mech. 7, 1958, 503-514.

tV1] VftsÄr,Ä, J.: Quasiconformal maps of cylindrical domains. - Acta Math. 162, 1989, 201-
225.

tV2] VÅrsÅr,Å, J.: Exhaustions of John domains. - Unpublished manuscript.

Received 11 February 1992


