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Abstract. In this paper, it is shown that finite limit functions of iterates of entire functions
in wandering domains are limit points of the forward orbits of the finite singularities of the inverse
function. From this the absence of wandering domains for some classes of entire functions is
deduced.

1. Introduction and results

Let f be a nonlinear entire function. The Fatou set F is the subset of the
complex plane where the iterates fn of f form a normal family. The complement
of F is called the Julia set and denoted by J . If U is a component of F , then
fn(U) is contained in some component of F which we denote by Un . If Un 6= Um

for all n 6= m , then U is called wandering. Otherwise U is called preperiodic. In
particular, if Un = U for some n , then U is called periodic.

Sullivan [25, 26] proved that rational functions do not have wandering do-
mains. Transcendental entire functions, however, may have wandering domains,
cf. [2, 3, 5, 10, 11, 17, 26]. On the other hand, certain classes of transcendental
functions which do not have wandering domains are known, cf. [3, 8, 10, 13, 16,
24].

Denote by sing(f−1) the set of singularities of f−1 , that is, the set of critical
and asymptotic values of f , and limit points of these values. Let S be the class
of all entire functions for which sing(f−1) is finite. Eremenko and Lyubich [10,
13] and Goldberg and Keen [16] proved that if f ∈ S , then f does not have
wandering domains. Baker [3] had proved this for a subclass of S . Other classes
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of transcendental entire and meromorphic functions without wandering domains
have been considered in [8, 24].

The proofs in [3, 8, 10, 13, 16, 24] use quasiconformal mappings, a tool intro-
duced by Sullivan [25, 26] into this subject. We shall use an elementary method to
prove that certain entire transcendental functions do not have wandering domains.
Some of these functions are not contained in the classes considered in [3, 8, 10, 13,
16, 24].

We define E = ∪∞

n=0f
n
(

sing(f−1)
)

and denote by E′ the derived set of E ,

that is, the set of finite limit points of E , and by E the closure of E .
It is well-known that all limit functions of {fn|U} are constant if U is wan-

dering, cf. [9, p. 317] and [14, Section 28]. Baker [1] proved that constant limit
functions in (not necessarily wandering) domains of the Fatou set are in E∪{∞} .
Moreover, it is known (cf. e. g. [19, Theorem 6.6, Corollary 7.10] or [14, Section 30])
that constant limit functions in (pre)periodic domains are in E′ ∪ {∞} , except
possibly in (preimages of) superattracting domains.

Theorem. Let f be an entire function and let U be a wandering domain of

f . Then all limit functions of {fn|U} are contained in E′ ∪ {∞} .

This answers a question by Baker [1, p. 5, Remark 1].
Obviously, limit functions of {fn|U} are in J if U is a wandering domain.

Denote by A the class of all entire functions with J ∩ E′ = ∅ . It follows from
the theorem that if f ∈ A , then fn → ∞ in all wandering domains of f . Ere-
menko and Lyubich [13] considered the class B of all entire functions f for which
sing(f−1) is bounded and, using a logarithmic change of variable, proved that if
f ∈ B , then there does not exist a component U of F such that fn → ∞ in U .
Hence we obtain the following result.

Corollary. If f ∈ A ∩ B , then f does not have wandering domains.

As an introduction to iteration theory, we recommend Beardon’s book [7] and
Milnor’s lecture notes [19] for rational functions and the survey articles of Baker
[6] and Eremenko and Lyubich [12] for transcendental entire (as well as rational)
functions. The classical references are Fatou [14] and Julia [18] for rational and
Fatou [15] for transcendental entire functions.

2. Proof of the theorem

Suppose that U is a wandering domain of f and that a ∈ C \ E′ is a limit
function of {fn|U} , say fnk → a in U .

It is not difficult to prove that fn tends to ∞ in multiply-connected com-
ponents of F , cf. [27, p. 67]. Hence U and all Un are simply connected. By
hypothesis, U ∩ E = ∅ and Un ∩ E = ∅ for all n ∈ N so that f−n exists locally
on all Un and can be continued analytically in Un to a univalent function. Hence
fn|U is univalent.
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We choose z0 ∈ C , R > 0 such that D(z0, R) ⊂ U . (Here and in the sequel
D(z, r) denotes the disc around z with radius r .) Without loss of generality, we
shall assume that a = 0. We choose r > 0 such that D(0, r) ∩ E \ {0} = ∅ . We
may assume fnk

(

D(z0, R)
)

⊂ D(0, r) \ {0} .
From Koebe’s 1/4-theorem we obtain

∣

∣(fnk)′(z0)
∣

∣ ≤ 4
∣

∣fnk(z0)
∣

∣/R.

Define H = {z : Re z < log r} and gk: D(z0, R) → H by gk(z) = log fnk(z) , for
some branch of the logarithm. Then

∣

∣g′

k(z0)
∣

∣ =

∣

∣(fnk)′(z0)
∣

∣

∣

∣fnk(z0)
∣

∣

≤ 4

R
.

Since H is simply connected, the inverse function of gk can be continued analyti-
cally to a single-valued function hk in H , that is, hk: H → C and hk

(

gk(z)
)

= z
for z ∈ D(z0, R) .

First we assume that hk is univalent in H . Define wk = gk(z0) . Then
wk ∈ H , that is, Re wk < log r . By Koebe’s 1/4-theorem we have

hk(H) ⊃ hk

(

D(wk, log r − Re wk)
)

⊃ D
(

z0,
1

4

∣

∣h′

k(wk)
∣

∣(log r − Re wk)
)

.

For arbitrary entire transcendental f , there are infinitely many periodic cycles
of every order n ≥ 2, see [23]. This means, there are infinitely many cycles
{p0, . . . , pn−1} such that f j(p0) = pj and fn(p0) = p0 . Now let {p, q} be a
periodic cycle of order 2 with D(0, r) ∩ {p, q} = ∅ . Then

hk(H) ∩ {p, q} = ∅.

It follows that
1

4

∣

∣h′

k(wk)
∣

∣(log r − Re wk) ≤ M

where M = min
{

|z0 − p|, |z0 − q|
}

. Since Re wk → −∞ we conclude that

h′

k(wk) → 0. But hk

(

gk(z)
)

= z , so h′

k(wk)g′

k(z0) = 1 and this gives a con-
tradiction.

Now we assume that hk is not univalent in H . As R. Nevanlinna [21, p. 283]
we deduce that there exists lk ∈ N such that hk is periodic with period 2πlki
and hk is univalent in the half strip {z : Re z < log r; c < Im z < c +2πlki} if c is
real.

If lk → ∞ , we obtain a contradiction as before. Hence we may assume that
lk 6→ ∞ and, restricting to a subsequence if necessary, we may suppose that lk = l
for all k .
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We now consider Gk = exp(gk/l) , r′ = r1/l and the function Hk: D(0, r′) \
{0} → C defined by Hk(z) = hk(l log z) . Clearly, Hk

(

Gk(z)
)

= z for z ∈
D(z0, R) and using Koebe’s 1/4-theorem again we obtain

∣

∣G′

k(z0)
∣

∣ =
∣

∣Gk(z0)
∣

∣

1

l

∣

∣g′

k(z0)
∣

∣ ≤ 4
∣

∣Gk(z0)
∣

∣

lR

so that
∣

∣G′

k(z0)
∣

∣ → 0.
Since Hk is univalent, 0 is not an essential singularity of Hk . Suppose that

0 is a (simple) pole of Hk . Then Hk

(

D(0, r′) \ {0}
)

contains a neighborhood of
infinity. But every neighborhood of infinity contains periodic cycles of f , which,
as noted above, cannot be contained in Hk

(

D(0, r′) \ {0}
)

as soon as they have
an empty intersection with D(0, r) . This is a contradiction, hence Hk has an
analytic (and univalent) continuation to D(0, r′) . Define zk = Gk(z0) . As before,
we deduce from the Koebe 1/4-theorem that

∣

∣H ′

k(zk)
∣

∣ ≤ 4M

r′ − |zk|
.

Since |zk| → 0, we have
∣

∣H ′

k(zk)
∣

∣ ≤ 8M/r′ for sufficiently large k . This contra-
dicts H ′

k(zk)G′

k(z0) = 1 and therefore completes the proof.

3. Examples

Eremenko and Lyubich [13] remarked that f(z) = sin z/z ∈ B \ S . It is easy
to see that f ∈ A . Hence f(z) = sin z/z has no wandering domains. This can
also be seen by using Baker’s result [1, Theorem 2] instead of our theorem.

As a second example we consider

fα(z) = π2 − α
sin

√
z√

z

where π2 < α < 2π2 . It is easy to check that all critical points of fα are real and
positive. We denote them by zj , 0 < z1 < z2 < · · ·. The critical values of fα are
denoted by ck , i.e., ck = fα(zk) . Obviously, ck → π2 as k → ∞ . We also note
that π2 is the only asymptotic value of fα . Hence fα ∈ B \ S .

Clearly, π2 is an attracting fixed point of fα and one can show that fα

has precisely one more real fixed point which we denote by xα . This fixed point
satisfies 0 < xα < π2 and xα → π2 as α → 2π2 . Also, fα(x) < x if x < xα or
x > π2 and x < fα(x) < π2 if xα < x < π2 .

We now consider the sequences fm
α (ck) as m → ∞ and distinguish four cases:

(i) fn
α (ck) ≥ π2 for all n :

Then fm+1
α (ck) ≤ fm

α (ck) for all m and hence fm
α (ck) → π2 .
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(ii) xα < fn
α (ck) < π2 for some n :

Then fm+1
α (ck) > fm

α (ck) for all m ≥ n and hence fm
α (ck) → π2 .

(iii) fn
α (ck) < xα for some n :

Then fm+1
α (ck) < fm

α (ck) for all m ≥ n and hence fm
α (ck) → −∞ .

(iv) fn
α (ck) = xα for some n :

Then fm
α (ck) = xα for all m ≥ n .

Because ck → π2 and π2 is an attracting fixed point of fα , cases (iii) and (iv)
occur for at most finitely many k so that fα ∈ A . Note, however, that cases (iii)
and (iv) do occur for certain values of α . It follows from our corollary that fα

does not have wandering domains. It seems impossible to deduce this result by
using Baker’s result [1, Theorem 2] instead of our theorem, if cases (iii) or (iv)
occur.

The third example we mention is

g(z) =
π2

π2 − z2
sin z.

One can show that |g(x)| < |x| for x ∈ R \ {0} so that gn(x) → 0 for all
x ∈ R . Moreover, it is not difficult to prove that all critical values of g are real
and that 0 is the only asymptotic value of g . We deduce that g ∈ B \ S and
that E′ = {0} . But 0 is also a fixed point of multiplier 1, hence 0 ∈ J so that
E′ ∩ J = {0} 6= ∅ . Hence g 6∈ A and our corollary is not applicable. On the
other hand, the behaviour of the iterates in the neighborhood of fixed points of
multiplier 1 is well understood. In particular, it is known that a fixed point of
multiplier 1 is a limit function in certain invariant domains attached to it, and
preimages thereof, but not limit function in any other domain of the Fatou set [14,
Section 13]. This implies that g does not have wandering domains.

More generally, using these ideas one can prove that an entire transcendental
function f does not have wandering domains if f ∈ B and if E′ ∩ J is finite and
consists only of rationally indifferent or repelling periodic points and preimages of
such points.

Finally, we mention that our corollary implies that the exponential function
does not have wandering domains. Once this is known, it is not difficult to prove
that the Julia set of the exponential function is C . This was proved first by
Misiurewicz [20], confirming a conjecture of Fatou. More generally, define gλ(z) =
λ exp z . We deduce from our corollary that if gn

λ(0) → ∞ , then gλ does not have
wandering domains and hence J = C . This was proved first by Baker and Rippon
[4, Corollary 1]. We note that Misiurewicz’s method was elementary while Baker
and Rippon used quasiconformal mappings.

Remark. Our method can also be applied to rational functions. We conclude
that constant limit functions are in E′ except possibly in (preimages of) superat-
tracting domains. This result was stated by Baker [1, p. 5] without proof. Thus we
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obtain an elementary proof that rational functions do not have wandering domains
if J ∩ E′ = ∅ or, more generally, if J ∩ E′ is finite and consists of rationally
indifferent or repelling periodic points or preimages of such points. Elementary
proofs that rational functions satisfying J∩E = ∅ do not have wandering domains
have been given by Beardon [7, p. 202] and Norton [22, p. 182].
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