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Abstract. This paper aims at giving a method of approximating the distortion function
ΦK by means of elementary functions. As a consequence, new bounds for the function ΦK are
established. Moreover, the n -dimensional counterpart ΦK,n of ΦK , n = 2, 3, . . . is considered.

0. Introduction

Let ΦK(r) = µ−1
(
µ(r)/K

)
, 0 < r < 1, ΦK(0) = 0, ΦK(1) = 1, K > 0,

where µ stands for the module of the Grötzsch extremal domain B2 \ [0, r] . ΦK

is called the Hersch–Pfluger distortion function, cf. [HP], and it plays an impor-
tant role in the theory of plane quasiconformal mappings. In the first section we
examine the functions ϕK,t , ϕ̃K,t , ψK,t , ψ̃K,t , depending on a real parameter
t ≥ 1, defined by (1.8) and (1.20). We show (Theorem 1.3 and Corollary 1.4)
that these sequences are monotonically convergent to the function ΦK . Putting
t = 2n , n = 0, 1, 2, . . ., we are able to approximate ΦK in a simple way by
elementary functions with an arbitrarily preassigned accuracy. In Section 2 we
derive (Theorems 2.1 and 2.2) new upper and lower bounds for the function ΦK ,
which improve some recent results obtained by Anderson, Vamanamurthy, Vuori-
nen [AVV1], [AVV3] and Zaja̧c [Z1], [Z2]. In the last section of this paper we
study the approximation problem for the n -dimensional counterpart ΦK,n , cf. [V],
[AVV2], of ΦK , n = 2, 3, . . .. We establish Theorem 3.1, the n -dimensional coun-
terpart of Theorem 1.3.

Actually, in view of Theorem 1.5 and Corollary 1.6 the sequences ψK,2n ,

ψ̃K,2n , n = 0, 1, 2, . . . are convergent to the function ΦK very fast. So they may
be used conveniently for the calculation of the values of ΦK by a computer. The
details will be given in a separate paper [P] in which we shall also estimate the
familiar functions µ , µ−1 and the distortion function λ , cf. [LV], [L], introduced
by Lehto, Virtanen and Väisälä in [LVV], as an application of Theorems 1.3, 1.5
and Corollaries 1.4, 1.6.
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1. Basic approximation theorems

The function ΦK was studied by many mathematicians. Recently Anderson,
Vamanamurthy, Vuorinen, cf. [AVV1], [AVV3], [VV], and Zaja̧c, cf. [Z1], [Z2]
obtained many interesting results concerning the properties of the function ΦK

and its estimates. We shall now state some inequalities concerning ΦK which will
be used later on.

Lemma 1.1. ∗) For any p > 1 and 0 < x < 1

(1.1) ΦK(xp) < Φp
K(x), K > 1

and

(1.2) ΦK(xp) > Φp
K(x), 0 < K < 1.

Proof. We shall first prove by induction that the inequality (1.1) holds for all
p = 1 + 1/n , n = 1, 2, . . .. To this end we apply the fact shown in [AVV1] that
for any 0 < c < 1 and K > 1 the function

(1.3) f(t) =
ΦK(ct)

ΦK(t)
, 0 < t ≤ 1

is strictly increasing. Thus setting c = x and t1 = x < t2 = 1, we have f(t1) <
f(t2) for n = 1 so

(1.4) ΦK(x1+1/n) < Φ
1+1/n
K (x).

If now n = 1, 2, . . . is any positive integer and (1.4) holds then setting c = x1/(n+1)

and t1 = x < t2 = xn/(n+1) we have f(t1) < f(t2) from which

(1.5) ΦK(x1+1/(n+1)) < ΦK(x)
ΦK(x)

ΦK(xn/(n+1))
.

But, in view of the induction assumption we get

ΦK(x) = ΦK

(
(xn/(n+1))1+1/n

)
< Φ

1+1/n
K (xn/(n+1)).

This and (1.5) yield

ΦK(x1+1/(n+1)) < Φ2
K(x)Φ

−n/(n+1)
K (x) = Φ

1+1/(n+1)
K (x)

∗) The inequalities (1.1) and (1.2) have been proved independently in a different
way in [VV].
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so the inequality (1.1) is true for every p = 1 + 1/n , n = 1, 2, . . .. If now m is any
positive integer and the inequality (1.1) holds for p = 1 + m/n , where n is any
fixed positive integer, then setting c = xm/n and t1 = x1+1/n < t2 = x we have
f(t1) < f(t2) so

ΦK(x1+(m+1)/n) < ΦK(x1+1/n)
ΦK(x1+m/n)

ΦK(x)
< Φ

1+1/n
K (x)

Φ
1+m/n
K (x)

ΦK(x)

= Φ
1+(m+1)/n
K (x),

because of (1.4). This way the inequality (1.1) holds for any rational number
p > 1. It follows from the continuity of the function ΦK that for every p > 1,
ΦK(xp) ≤ Φp

K(x) as 0 < x < 1. Then there exists a rational number q between
1 and p which allows us to improve the above inequality because

ΦK(xp) = ΦK

(
(xq)p/q

)
≤ Φ

p/q
K (xq) <

(
Φq

K(x)
)p/q

= Φp
K(x).

A substitution x := Φ1/K(x) in the inequality (1.1) yields the inequality (1.2) so
the lemma is proved.

Lemma 1.2. For any p > 1 and 0 < x < 1

(1.6) ΦK(41−pxp) > 41−pΦp
K(x), K > 1

and

(1.7) ΦK(41−pxp) < 41−pΦp
K(x), 0 < K < 1.

Proof. Applying the inequality ΦK(r) < 41−1/Kr1/K , K ≥ 1, cf. [W], [Hü],
[LV], [AVV1], and the inequality

ΦK(ab) ≥ max
{
b1/KΦK(a), a1/KΦK(b)

}
, 0 ≤ a, b ≤ 1,

showed in [AVV1] we obtain

ΦK(41−pxp) = ΦK

((x
4

)p−1

x
)
≥

(x
4

)(p−1)/K

ΦK(x)

= 41−p(41−1/Kx1/K)p−1ΦK(x) > 41−pΦp
K(x).

A substitution x := Φ1/K(x) in the inequality (1.6) yields the inequality (1.7) and
this ends the proof.
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Now we define the functions ϕK,t , ψK,t , t ≥ 1, important for our further
considerations. We put

(1.8) ϕK,t = Φt ◦ ϕK,1 ◦ Φ1/t and ψK,t = Φt ◦ ψK,1 ◦ Φ1/t

for any K > 0 and t ≥ 1 where

ϕK,1(x) = x1/K and ψK,1(x) = min{41−1/Kx1/K , 1}, 0 ≤ x ≤ 1.

Theorem 1.3. For any 0 ≤ x ≤ 1 and 1 ≤ t1 ≤ t2

(1.9) ϕK,t1(x) ≤ ϕK,t2(x) ≤ ΦK(x) ≤ ψK,t2(x) ≤ ψK,t1(x), K ≥ 1

and

(1.10) ψK,t1(x) ≤ ψK,t2(x) ≤ ΦK(x) ≤ ϕK,t2(x) ≤ ϕK,t1(x), 0 < K ≤ 1.

Moreover, for any 0 ≤ x ≤ 1 and K > 0

(1.11) lim
t→∞

ϕK,t(x) = lim
t→∞

ψK,t(x) = ΦK(x).

Proof. Let K ≥ 1 be fixed. Since

(1.12) ϕK,1(x) ≤ ΦK(x) ≤ ψK,1(x), 0 ≤ x ≤ 1,

cf. [AVV1], [LV], and ΦL is an increasing function for any L > 0 we obtain for
every t ≥ 1 the following inequality

(1.13)
ϕK,t(x) = Φt ◦ ϕK,1 ◦ Φ1/t(x) ≤ Φt ◦ ΦK ◦ Φ1/t(x)

= ΦK(x) ≤ Φt ◦ ψK,1 ◦ Φ1/t(x) = ψK,t(x).

Moreover, setting r = Φ
1/K
1/t (x) we get by Lemma 1.1 that

(1.14) ϕK,1(x) = Φ
1/K
t (rK) ≤ Φt(r) = Φt ◦ϕK,1 ◦Φ1/t(x) = ϕK,t(x), 0 ≤ x ≤ 1.

Let now r = 41−1/KΦ
1/K
1/t (x) . If r ≤ 1 then by Lemma 1.2 we have

(1.15) x = Φt(4
1−KrK) > 41−KΦK

t (r) = 41−KψK
K,t(x).

Otherwise 1 < r ≤ 41−1/Kx1/K so ψK,1(x) = 1 ≥ ψK,t(x) . This and (1.15) lead
to the following inequality

(1.16) ψK,1(x) ≥ ψK,t(x), 0 ≤ x ≤ 1.

Suppose 1 ≤ t1 ≤ t2 are arbitrary. Then t = t2/t1 ≥ 1 and in view of (1.14)

ϕK,t1(x) = Φt1 ◦ ϕK,1 ◦ Φ1/t1(x) ≤ Φt1 ◦ ϕK,t ◦ Φ1/t1(x)

= Φt1 ◦ Φt ◦ ϕK,1 ◦ Φ1/t ◦ Φ1/t1(x) = Φt2 ◦ ϕK,1 ◦ Φ1/t2(x) = ϕK,t2(x)

for 0 ≤ x ≤ 1, and similarly, it follows from (1.16) that

ψK,t1(x) ≥ ψK,t2(x), 0 ≤ x ≤ 1.

This proves the inequality (1.9).
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Let us consider the sequences ϕK,2n , ψK,2n , n = 0, 1, 2, . . .. Obviously for
any 0 < x ≤ 1

(1.17)
ψK,1(x)

ϕK,1(x)
≤ 41−1/K .

If n = 0, 1, 2, . . . is arbitrary then by (1.9) and the equality

(1.18) Φ2(r) =
2
√
r

1 + r
, 0 ≤ r ≤ 1

we obtain that
(1.19)

1 ≤ ψK,2n+1(x)

ϕK,2n+1(x)
=

Φ2

(
ψK,2n

(
Φ1/2(x)

))

Φ2

(
ϕK,2n

(
Φ1/2(x)

))

=

(
ψK,2n

(
Φ1/2(x)

)

ϕK,2n

(
Φ1/2(x)

)
)1/2(1 + ϕK,2n

(
Φ1/2(x)

)

1 + ψK,2n

(
Φ1/2(x)

)
)

≤ sup
0<x≤1

(
ψK,2n(x)

ϕK,2n(x)

)1/2

.

Hence and by (1.17) we conclude that

ϕK,2n(x) ≤ ψK,2n(x) ≤ 4(1−1/K)2−n

ϕK,2n(x), 0 ≤ x ≤ 1,

and this together with the inequality (1.9) implies (1.11). In a similar way we
arrive at the inequality (1.10) and derive (1.11) in the case when 0 < K ≤ 1,
which ends the proof.

The functions ϕK,t , ψK,t , t ≥ 1, behave nicely near 0 but not so nicely close
to 1. To improve this we shall introduce another couple of functions as follows:

(1.20) ϕ̃K,t = h ◦ ϕ1/K,t ◦ h, ψ̃K,t = h ◦ ψ1/K,t ◦ h, K > 0, t ≥ 1

where h(x) = (1 − x)/(1 + x) , 0 ≤ x ≤ 1. As shown in [AVV1]

(1.21) Φ1/K = h ◦ ΦK ◦ h, K > 0,

so in view of Theorem 1.3 we immediately obtain the following

Corollary 1.4. For any 0 ≤ x ≤ 1 and 1 ≤ t1 ≤ t2

(1.22) ϕ̃K,t1(x) ≤ ϕ̃K,t2(x) ≤ ΦK(x) ≤ ψ̃K,t2(x) ≤ ψ̃K,t1(x), K ≥ 1

and

(1.23) ψ̃K,t1(x) ≤ ψ̃K,t2(x) ≤ ΦK(x) ≤ ϕ̃K,t2(x) ≤ ϕ̃K,t1(x), 0 < K ≤ 1.
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Moreover, for any 0 < x ≤ 1 and K > 0

(1.24) lim
t→∞

ϕ̃K,t(x) = lim
t→∞

ψ̃K,t(x) = ΦK(x), 0 ≤ x ≤ 1.

It follows from Theorem 1.3 that the sequences ϕK,2n , ψK,2n , n = 0, 1, 2, . . .
are convergent to ΦK but computer tests show that ψK,2n approaches much faster
ΦK than ϕK,2n as n → ∞ , K > 0. There is a simple justification of this fact.
Namely, it can be explained by the asymptotic behaviour of ΦK near 0 given by

lim
r→0+

ΦK(r)

r1/K
= 41−1/K = lim

r→0+

ψK,1(r)

r1/K
.

Actually the sequence ψK,2n , n = 0, 1, 2, . . . converges to ΦK very fast. We will
prove the following

Theorem 1.5. For any 0 < x < 1

(1.25) (1 − x2n+1/K)ψK,2n(x) ≤ ΦK(x) ≤ ψK,2n(x), K ≥ 1, n = 2, 3, 4, . . .

as well as

(1.26)

ψK,2n(x) ≤ ΦK(x) ≤ (1 − x2n+1

)−1/K2n

ψK,2n(x), 0 < K ≤ 1, n = 1, 2, 3, . . . .

Proof. At first we consider the case when K ≥ 1. We put

(1.27) rK,n(x) =
ψK,2n−1(x)

ψK,2n(x)
, 0 < x ≤ 1, n = 1, 2, . . . .

Similarly as in the proof of Theorem 1.3, see (1.19), we get by the inequality (1.9)
and the equality (1.18) that for any 0 < x ≤ 1 and n = 1, 2, . . .

(1.28)

1 ≤ rK,n+1(x) =
Φ2

(
ψK,2n−1

(
Φ1/2(x)

))

Φ2

(
ψK,2n

(
Φ1/2(x)

))

≤
(
ψK,2n−1

(
Φ1/2(x)

)

ψK,2n

(
Φ1/2(x)

)
)1/2

= r
1/2
K,n

(
Φ1/2(x)

)
.

Hence for any 0 < x ≤ 1 and n = 1, 2, . . .

(1.29) rK,n+1(x) ≤ r
1/2n

K,1

(
Φ1/2n(x)

)
.

It follows from (1.18) that

rK,1(x) ≤
(

1 +
√

1 − x2

2

)1/K

+ 41−1/K

(
1 −

√
1 − x2

2

)1/K

≤ 1 + 41−1/K

(
1 −

√
1 − x2

1 +
√

1 − x2

)1/K

= 1 + 41−1/K

(
x

1 +
√

1 − x2

)2/K

= 1 + 41−1/K
(
Φ1/2(x)

)1/K
.
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This together with (1.29) and (1.10) gives

(1.30)
rK,n+1(x) ≤

(
1 + 41−1/K

(
Φ1/2n+1(x)

)1/K
)1/2n

≤ 1 +
41−1/K

2n
x2n+1/K

≤ 1 + x2n+1/K

as n = 2, 3, . . . and 0 < x ≤ 1. By (1.11) we have for any 0 < x < 1 and
n = 2, 3, . . .

ψK,2n(x)

ΦK(x)
= lim

m→∞

ψK,2n(x)

ψK,2m(x)
= lim

m→∞

m∏

l=n+1

rK,l(x) =
∞∏

l=n+1

rK,l(x)

≤
∞∏

l=n+1

(1 + x2l/K) =
1

1 − x2n+1/K
,

because of (1.30). This proves the inequality (1.25).
Let now 0 < K ≤ 1. Similarly as in the first case we put

(1.31) rK,n(x) =
ψK,2n(x)

ψK,2n−1(x)
, 0 < x ≤ 1, n = 1, 2, . . . ,

and by (1.10) and (1.18) we get the inequalities (1.28) and (1.29) true for 0 <
K ≤ 1, 0 < x ≤ 1 and n = 1, 2, . . .. Applying the equality (1.18) once again we
have

(1.32)

rK,1(x) ≤ 21/K

(
1 +

√
1 − x2

)1/K
+ 41−1/K

(
1 −

√
1 − x2

)1/K

≤
(

2

1 +
√

1 − x2

)1/K

=
(
1 + Φ1/2(x)

)1/K

which together with (1.29) and (1.10) leads to

(1.33) rK,n+1(x) ≤
(
1 + Φ1/2n+1(x)

)1/K2n

≤ (1 + x2n+1

)1/K2n

as 0 < x ≤ 1 and n = 1, 2, . . .. Hence and by (1.11)

ΦK(x)

ψK,2n(x)
= lim

m→∞

ψK,2m(x)

ψK,2n(x)
= lim

m→∞

m∏

l=n+1

rK,l(x) ≤
(

lim
m→∞

m∏

l=n+1

(1 + x2l

)

)1/K2n

=

( ∞∏

l=n+1

(1 + x2l

)

)1/K2n

=
1

(1 − x2n+1)1/K2n
, 0 < x < 1, n = 1, 2, . . . .

This implies the inequality (1.26) and ends the proof.
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It follows from the above theorem and the equalities (1.20) and (1.21) that

the following counterpart of Theorem 1.5 for ψ̃K,t , t ≥ 1, holds.

Corollary 1.6. For any 0 < x < 1

(1.34) 0 ≤ ψ̃K,2n(x) − ΦK(x) ≤ 2
((

1 − h(x)2
n+1)−K2−n

− 1
)
hK(x)

as K ≥ 1 and n = 1, 2, 3, . . . as well as

(1.35) 0 ≤ ΦK(x) − ψ̃K,2n(x) ≤ 2
((

1 − h(x)K2n+1)−1 − 1
)

min
{

41−KhK(x), 1
}

as 0 < K ≤ 1 and n = 2, 3, 4, . . ..

Proof. Let K ≥ 1 be any fixed number. By the inequality

∣∣h(x) − h(y)
∣∣ ≤ 2|x− y|, 0 ≤ x, y ≤ 1,

the equalities (1.20), (1.21) and the inequalities (1.9), (1.10), (1.22) we get for any
0 < x < 1

0 ≤ ψ̃K,2n(x) − ΦK(x) ≤ 2
(
Φ1/K

(
h(x)

)
− ψ1/K,2n(h(x)

))

≤ 2

(
Φ1/K

(
h(x)

)

ψ1/K,2n

(
h(x)

) − 1

)
ψ1/K,2n

(
h(x)

)
.

Hence and by the inequalities (1.26) and (1.10) we obtain immediately the in-
equality (1.34). In a similar way we derive the inequality (1.35) which ends the
proof.

The convergence of another couple of sequences ϕK,2n , ϕ̃K,2n , n = 0, 1, 2, . . .,
K > 0, will be considered in a separate paper [P].

2. Applications

By Theorem 1.3 we obtain upper and lower bounds for the function ΦK of
the form

(2.1) ϕK,2n(x) ≤ ΦK(x) ≤ ψK,2n(x) as K ≥ 1

and

(2.2) ψK,2n(x) ≤ ΦK(x) ≤ ϕK,2n(x) as 0 < K ≤ 1

for 0 ≤ x ≤ 1 and n = 0, 1, 2, . . .. In view of (1.18) the estimates (2.1) and (2.2)
are expressed in an explicit form by elementary functions. Moreover, Theorem 1.3
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says that they are closer step by step to the function ΦK as n increases to infinity.
In particular, if n = 0, we obtain from (2.1) the classical bounds

x1/K ≤ ΦK(x) ≤ 41−1/Kx1/K , 0 ≤ x ≤ 1, K ≥ 1,

cf. [W], [Hü], [LV], [AVV1]. If n = 1 then (2.1) yields for any K ≥ 1 and
0 ≤ x ≤ 1 the estimate

2x1/K

(1 +
√

1 − x2 )1/K + (1 −
√

1 − x2 )1/K
≤ ΦK(x)

≤ 22−1/Kx1/K

(1 +
√

1 − x2 )1/K + (1 −
√

1 − x2 )1/K

which coincides with that established in [AVV1]. So setting n = 2 we obtain a
new improvement of the above mentioned results:

Theorem 2.1. For K ≥ 1 and 0 ≤ x ≤ 1 the following bounds hold

(2.3) ΦK(x) ≥ 23/2x1/K

(1 +
√

1 − x2 )1/2K

(
(1 + 4

√
1 − x2 )2/K + (1 − 4

√
1 − x2 )2/K

)1/2

(
(1 + 4

√
1 − x2 )1/K + (1 − 4

√
1 − x2 )1/K

)2

and

(2.4)

ΦK(x) ≤ 22−1/2Kx1/K

(1 +
√

1 − x2 )1/2K

(
(1 + 4

√
1 − x2 )2/K + 41−1/K(1 − 4

√
1 − x2 )2/K

)1/2

(
(1 + 4

√
1 − x2 )1/K + 21−1/K(1 − 4

√
1 − x2 )1/K

)2

as 0 ≤ x < Φ4(41−K) and ΦK(x) ≤ 1 as Φ4(41−K) ≤ x ≤ 1 .

From the inequalities (2.2), estimates of the function ΦK for 0 < K ≤ 1
corresponding to (2.3) and (2.4) can be derived.

Contrary to Theorem 1.3, Corollary 1.4 yields upper and lower bounds for
the function ΦK , good for x near 1, of the form

(2.5) ϕ̃K,2n(x) ≤ ΦK(x) ≤ ψ̃K,2n(x) as K ≥ 1

and

(2.6) ψ̃K,2n(x) ≤ ΦK(x) ≤ ϕ̃K,2n(x) as 0 < K ≤ 1

for 0 ≤ x ≤ 1 and n = 0, 1, 2, . . .. Similarly as (2.1) and (2.2), the estimates (2.5)
and (2.6) can be expressed in an explicit form by elementary functions and they
are, in view of Corollary 1.4, closer step by step to the function ΦK as n increases
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to infinity. Setting, for example, n = 0, 1 in (2.5) we obtain the following explicit
estimates of ΦK for K ≥ 1 and 0 ≤ x ≤ 1, good for x close to 1, cf. [Z1],

(1 + x)K − (1 − x)K

(1 + x)K + (1 − x)K
≤ ΦK(x) ≤ (1 + x)K − 41−K(1 − x)K

(1 + x)K + 41−K(1 − x)K

and a more precise bound

(
(1 +

√
x )K − (1 −√

x )K

(1 +
√
x )K + (1 −√

x )K

)2

≤ ΦK(x) ≤
(

(1 +
√
x )K − 21−K(1 −√

x )K

(1 +
√
x )K + 21−K(1 −√

x )K

)2

,

found in [Z2] and [AVV3]. So, if n = 2 then the inequalities (2.5) yield a new
improvement of the above mentioned results.

Theorem 2.2. For K ≥ 1 and 0 ≤ x ≤ 1 the following bounds hold

(2.7)(
1 − p(x)√

1 + p2(x) +
√

2p(x)

)4

≤ ΦK(x) ≤
(

1 − 21−Kp(x)√
1 + 41−Kp2(x) +

√
22−Kp(x)

)4

where

p(x) =

(√
1 + x− 4

√
4x√

1 + x+ 4
√

4x

)K

, 0 ≤ x ≤ 1.

From the inequalities (2.6), estimates of the function ΦK for 0 < K ≤ 1
corresponding to (2.7) can be derived.

It follows from Theorem 1.3 and Corollary 1.4 that the sequences ψK,2n ,

ψ̃K,2n , n = 0, 1, 2, . . . are convergent to the distortion function ΦK and the con-
vergence is very fast, because of Theorem 1.5 and Corollary 1.6. For example, if
1 ≤ K ≤ 2 and 0 ≤ x ≤ 0.1 then by virtue of Theorem 1.5

0 ≤ ψK,27(x) − ΦK(x) ≤ x28/KψK,27(x) ≤ 10−128ψK,27(x) < 10−100

and

0 ≤ ψK,210(x) − ΦK(x) ≤ x210/KψK,210(x) ≤ 10−1024ψK,210(x) < 10−1000.

This way we obtained a convenient algorithm for computation of values of the
function ΦK with an arbitrary accuracy, which can be easily handled with a
computer. Details will be presented in a separate paper [P]. We shall present
there some other applications of the results obtained in the first section to the
estimates of functions µ , µ−1 and λ closely related to ΦK as well as a method
of numerical computation of their values.
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3. Generalization to the n-dimensional case

Let γn(r) , r > 1 denote the conformal capacity of the Grötzsch extremal ring
in Rn , n = 2, 3, 4, . . ., cf. [AVV2]. We define the function µn(r) , 0 < r < 1, by

µn(r) =

(
1

ωn−1
γn

(1

r

))1/(1−n)

where ωn−1 is the n−1-dimensional measure of the unit sphere Sn−1 in Rn . For
K > 0 the function

(3.1) ΦK,n(r) = µ−1
n

(
K1/(1−n)µn(r)

)
, 0 < r < 1, ΦK,n(0) = 0, ΦK,n(1) = 1

is called the n -dimensional distortion function. Obviously, the function ΦK,2

coincides with the function ΦK .

Theorem 3.1. For every K > 0 and n = 2, 3, 4, . . .

(3.2) lim
t→∞

Φt,n ◦ ϕ ◦ Φ1/t,n(x) = ΦK,n(x), 0 ≤ x ≤ 1

where ϕ: [0, 1] → [0, 1] is any function such that

(3.3) lim
r→0+

logϕ(r)

log r
= K1/(1−n).

Proof. Let n ≥ 2 be an arbitrary positive integer and x be any point between
0 and 1. As shown in [G1], [G2], the limit

lim
r→0+

(
µn(r) − log r

)
= log λn

exists and λn is called the Grötzsch ring constant. Hence, by (3.3) and the equality

µn

(
ϕ(τ)

)

µn(τ)
=

log τ

µn(τ)

µn

(
ϕ(τ)

)

logϕ(τ)

logϕ(τ)

log τ
, 0 < τ < 1,

we get

(3.4) lim
τ→0+

µn

(
ϕ(τ)

)

µn(τ)
= K1/(1−n).

Setting τ = Φ1/t,n(x) we derive from (3.1) that µn(τ) = t1/(n−1)µn(x) and further
on

Φt,n ◦ ϕ ◦ Φ1/t,n(x) = µ−1
n

(
t1/(1−n)µn

(
ϕ(τ)

))
= µ−1

n

(µn

(
ϕ(τ)

)

µn(τ)
µn(x)

)
.

Hence, by (3.4) and the continuity of the function µn we finally obtain the con-
vergence statement in (3.2), because of limt→∞ Φ1/t,n(x) = 0. This ends the
proof.
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