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A PLY INEQUALITY FOR KLEINIAN GROUPS
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Abstract. We prove an inequality for the multipliers of loxodromic elements in certain
Kleinian groups. The inequality is a generalization of Bers inequality (see L. Bers [B, Theorem 3]
and C. McMullen [McM, Theorem 6.4 ]). It is also an analogue of an inequality by Ch. Pom-
merenke, G. M. Levin and J.-C. Yoccoz for multipliers of repelling periodic orbits of rational maps
[Po ] , [L ] , [Y] and [Pe ] .

1. Introduction

Let Γ be a Kleinian group. Suppose Ω0 is a simply connected domain of
discontinuity for Γ and φ: Ω0 → D is a Riemann map. Denote the stabilizer of
Ω0 by Γ0 and denote by Γ̂0 the Fuchsian group conjugate to Γ0 by φ . We will
call Γ̂0 a flat model of Γ on Ω0 .

Let γ ∈ Γ0 and γ̂ ∈ Γ̂0 be conjugate, i.e. γ̂ = φ ◦ γ ◦ φ−1 . If γ is not elliptic,
the fixed point(s) of γ is (are) accessible boundary points of Ω0 . In fact: (1) If
γ̂ is hyperbolic, it stabilizes a unique hyperbolic geodesic α̂ . The axis α of γ in
Ω0 given by α := φ−1(α̂) defines accesses to the fixed point(s) of γ ; (2) If γ̂ is
parabolic, γ is parabolic and the preimage of the line segment between 0 and the
fixed point for γ̂ defines an access to the fixed point of γ .

The main theorem of this paper is Theorem C. Theorems A and B are corollar-
ies of Theorem C. They have been singled out to exhibit more clearly the contents
of Theorem C. The layout of the paper is to formulate the theorems in the order
that their prerequisites are introduced and to leave the proofs to the end.
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2. Theorems

Let γ ∈ Γ be loxodromic. Conjugating by a Möbius transform if necessary,
we can assume that γ(z) = λz , with |λ| > 1, so that the fixed points are 0 and
∞ . Suppose there exist k simply connected domains of discontinuity for Γ,
Ω1, . . . ,Ωk , with γ in the intersection of their stabilizers. Then the two fixed
points 0 and ∞ are common boundary points of the k domains. Let γ̂1, . . . , γ̂k

be the corresponding elements of the flat models of Γ on Ω1, . . . ,Ωk . Let further
̺1, . . . , ̺k be the multipliers of the repelling fixed points for γ̂1, . . . , γ̂k ; then:

Theorem A. There exists a logarithm L of λ such that

|L| ≤
2 · sin(θ)

∑k
j=1(1/ log ̺j)

,

where θ is the angle between L and 2πi .

For quasi-Fuchsian groups this is the Bers inequality.
Let us next relax the assumptions on γ and introduce the combinatorial

rotation number. Suppose there exist a simply connected domain of discontinuity
Ω0 and q ∈ N such that γq ∈ Γ0 . We will suppose q to be minimal with this
property. Let γ̃ be the conjugate φ ◦ γq ◦ φ−1 . Let α0 be the axis of γq in Ω0 .
The orbit of α0 under γ consists of q disjoint arcs between 0 and ∞ . We define a
cyclic order on these arcs in the following way. Let C(r) be the circle with center
0 and radius r . For each arc mark its first intersection with C(r) starting from 0.
These intersections have a clockwise cyclic order on C(r), and we assign the same
order to the arcs. It is easy to see, using the Jordan curve theorem, that the cyclic
order of the arcs does not depend on r . Let α0

0, . . . , α
q−1
0 be the q arcs in the

orbit of α0 under γ labelled counter clockwise. Since the cyclic order does not
depend on r , there exists a p ∈ {0, . . . , q − 1} , (p, q) = 1 such that

γ(αj
0) = α

(j+p) mod q
0 .

Definition. The number p/q is called the combinatorial rotation number

for γ .

An easy application of the Jordan curve theorem shows that if γq′

(with q′

minimal) is in the stabiliser of another simply connected domain of discontinuity
Ω1 , then q = q′ , and Ω1 gives rise to the same combinatorial rotation number
p/q . Thus the combinatorial rotation number is well defined.

The motivation for introducing the combinatorial rotation number comes from
the theory of iteration of polynomials and, more generally, rational maps of the
Riemann sphere. More precisely, it comes from the Yoccoz estimate of the size of
limbs of the Mandelbrot set (see [Y]).
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Theorem B. Let γ(z) = λz be loxodromic. Suppose γ has combinatorial

rotation number p/q and γq is in the stabilizer of Ω0 . Let γ̃ be the conjugate of

γq in a flat model of Γ on Ω0 and let ̺ be the eigenvalue of the repelling fixed

point for γ̃ . Then there exists a logarithm L of λ such that

∣∣∣L−
p

q
2πi

∣∣∣ ≤
2 sin(θ)

q2
· log(̺),

where θ is the angle between L− (p/q)2πi and 2πi .

We next introduce the logarithmic density to improve our inequality. This
improvement is motivated by Levin ([L]). Let Area(W, η) denote the area with
respect to the conformal metric η := |dz|/|z| of some Borel subset W of C . Sup-
pose 0 is a boundary point of the Borel subset U ⊂ C . Let r > 0 be given and
suppose the following limit exists:

B := lim
δ→0

Area
((
U ∩ A(δ, r)

)
, η

)

Area
(
A(δ, r), η

) ,

where A(δ, r) =
{
z ∈ C

∣∣ δ < |z| < r
}

. Then B ∈ [0, 1] does not depend on r ,
and we say that the set U has logarithmic density B at 0. Note that if λU = U
for some complex number λ, |λ| > 1, then U has a logarithmic density at 0.

Let γ , Ω0 and p/q be as in Theorem B. Suppose further that there exist
simply connected domains of discontinuity Ω1, . . . ,Ωk with γq in their stabilizers
and that the orbits of Ω0, . . . ,Ωk under γ are disjoint. Let γ̃0, . . . , γ̃k be the
elements of the flat model of Γ on Ω0, . . . ,Ωk corresponding to γq . Let further
̺1, . . . , ̺k be the multipliers of the repelling fixed points for γ̃0, . . . , γ̃k ; then:

Theorem C. There exists a logarithm L of λ such that

∣∣∣L−
p

q
2πi

∣∣∣ ≤ B ·
2 sin(θ)

q2 ·
∑k

j=1(1/ log ̺j)
,

where θ is the angle between L−(p/q)2πi and 2πi and B ∈ [0, 1] is the logarithmic

density of the set ∪k
j=0 ∪

q−1
l=0 γ

l
(
Ωj

)
at 0 .

Complement to Theorems A, B and C. Geometrically the inequality in

Theorem B indicates that L is contained in the disc D(r + (p/q)2πi, r) and thus

λ ∈ exp
(
D

(
r + i2π

p

q
, r

))
,

where r = log ̺/q2 and D(r + i2π(p/q), r) is the disc with center r + i2π(p/q)
and radius r . A similar interpretation is valid in Theorems A and C.
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Figure 1.

The groups with which this paper is concerned do exist. B. Maskit [M1]
has used combination theorems to construct Kleinian groups with an element γ
of prescribed combinatorial rotation number and a prescribed number of cycles
of simply connected domains of discontinuity stabilized by the appropriate iterate
of γ .

To get an idea of the capabilities of Theorems A, B and C, let us consider a
family {Γε} of Kleinian groups which are deformations of some Kleinian group,
say Γ0 . Suppose each Γε has a simply connected domain of discontinuity, Ωε,0 ,
with stabilizer Γε,0 (for instance Γε could be a function group, in which case
Ωε,0 would be invariant). Suppose in addition the Γε,0 have a common flat model

Γ̂0 on Ωε,0 . Then Theorem A gives uniform estimates for the multipliers of the

loxodromic elements of Γε,0 , depending only on the flat model Γ̂0 .
We also have an immediate consequence of Theorem B. Let Γ be a Kleinian

group with a simply connected domain of discontinuity Ω. Further let ψt: C → C

be a family of quasiconformal deformations with Γ-invariant Beltrami differentials
supported in the orbit of Ω under Γ. Let ψ̃t: Γ → PSL(2,C) be the correspond-

ing family of Kleinian group monomorphisms, i.e. ψ̃t(γ) = ψt ◦ γ ◦ ψ−1
t for γ ∈ Γ.

Suppose that the conjugate (γ̃)t of ψ̃t(γ
q) in the flat model of ψ̃t(Γ) on ψt(Ω)

tends to a parabolic element when t tends to 0. Then it follows from Theorem B
that the multipliers of ψ̃t(γ) tend to exp(±p/q · 2πi). Thus, if the coefficients

of ψ̃t(γ) converge to the coefficients of some element γ0 , i.e. the sequence alge-
braically converges to γ0 for t tending to 0 and p/q 6= 0/1, then γ0 is an elliptic
element.

It was pointed out to the author by Maskit that this in conjunction with
Chuckrow’s theorem leads to the corollary below. For completeness we also state
Chuckrow’s theorem.

Chuckrow’s theorem. Let Γ be a non elementary, finitely generated Kleinian

group, and let {ψm} be a sequence of type-preserving isomorphisms of Γ into

PSL(2,C) . Suppose that ψm(Γ) is Kleinian for each m , and that ψm alge-
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braically converges to ψ: Γ → Γ̃ . Then ψ is an isomorphism.

The reader will find a proof of Chuckrow’s theorem in [M2, p. 97] .

Corollary. Suppose { ψ̃t: Γ → PSL(2,C)}t∈I is a family of group monomor-

phisms as described above and p/q 6= 0/1 . Then the family cannot have an alge-

braic limit when t tends to 0 .

Proof. Suppose this is false and that ψ̃ is an algebraic limit of ψ̃t when t tends
to 0. Then it follows from Chuckrow’s theorem that ψ̃ is a group isomorphism.
On the other hand, we have shown above that the image by ψ̃ of the loxodromic
element γ (thus of infinite order), is an elliptic element of (finite) order q . This
is a contradiction.

3. Proof of Theorems A, B and C

We need a few basic tools: the modulus of a torus with a non-trivial homotopy
class of Jordan curves and a Grötzsch inequality. Let T be a torus isomorphic to
C/G , where G := L · Z ⊕ 2πi · Z, Re(L) > 0. Furthermore let Π: C → T denote
the corresponding universal covering. A flat metric on T is a conformal metric,
which makes Π a local isometry, when C is equipped with a flat metric (propor-
tional to the euclidean). Suppose U is a Borel subset of T and let ̺ be a flat
metric on T . Define Area(U) := mes(U, ̺); then the quotient Area(U)/Area(T )
does not depend on the choice of a flat metric ̺ on T , and we call it the relative

flat area of U .
Suppose κ: [0, 1] → T , κ(0) = κ(1) is a non-trivial (i.e. not homotopic to a

constant) Jordan curve in the torus T . Let [κ] denote the homotopy class of
κ in T . A metric ̺ on T is called admissible if it is conformal Borel metric
and l̺(κ

′) ≥ 1 for all κ′ ∈ [κ] . The modulus for the pair (T, κ) is a conformal
invariant defined by mod(T, κ) = inf

{
mes(T, ̺)

∣∣ ̺ admidssible
}

. The modulus
is evidently a conformal invariant. Let us remind the reader that the modulus of
an annulus is defined in the same way.

There exists p, q ∈ Z, p and q relatively prime, such that any lift κ̃ of κ to
Π satisfies κ̃(1) = κ̃(0) + q · L− p · 2πi . The number σ := q · L− p · 2πi does not
depend on the choice of generator L , whereas the number p generally does. We
call σ the associated segment of κ or rather of [κ] , as it is a homotopy invariant.
Changing the orientation of κ if necessary, we can suppose that q ≥ 0. If q = 0,
then p = 1. Further, if q > 0, then a change of L to L+ 2πi leads to a change of
the number p to p+ q . Thus for a suitable choice of L we have p ∈ {0, . . . , q − 1} .
With this normalization we call p/q the combinatorial rotation number of [κ] .

Grötszch inequality (Annuli in a torus). Let T be a torus and let κ
be a non-trivial Jordan curve in T with combinatorial rotation number p/q ,

0 < q and associated segment σ . Let
{
Aj

}
j∈J

be any family of disjoint an-

nuli homotopic to κ in T . Denote by B the relative flat area of the family,
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B :=
∑

j∈J Area(Aj)/Area(T ) . Then:

∑

j∈J

mod(Aj) ≤ B · mod(T, κ) = B ·
2π · sin(θ)

q · |σ|
,

where θ is the oriented angle from σ to 2πi . Furthermore, equality is attained if

and only if each of the sets Π−1(Aj) is a straight strip in C parallel to σ .

Proof. Let ̺ be the flat metric on T corresponding to 1/|σ| on C . Then
̺ is admissible for both T and each Aj . Furthermore, the standard length-area
argument shows that mod(T, κ) = mes(T, ̺). We get

∑

j∈J

mod(Aj) ≤
∑

j∈J

mes(Aj , ̺) = B · mes(T, ̺) = B ·
2π · sin(θ)

q · |σ|
.

Equality is attained if and only if the restriction of ̺ to each Aj is the extremal
(or flat) metric on Aj (see e.g. [L-H, p. 33]), that is, the last condition of the
theorem is satisfied.

Proof of Theorem C. Let T be the torus generated by the action of γ on C∗ .
Furthermore, let Π̂: C∗ → T denote the corresponding projection map. Then T
is isomorphic to C/G , where G =

{
n · L+m · 2πi

∣∣ n,m ∈ Z, exp(L) = λ
}

. For
j = 0, . . . , k let αj be the axis of γq in Ωj . Define κj as the projection of

αj by Π̂. Then the κj are disjoint Jordan curves and thus homotopic in T .
Further, the combinatorial rotation number of the κj equals the combinatorial
rotation number p/q for the αj . Let L be the choice of a logarithm of λ , such
that the associated segment of the κj is q · L− p · 2πi . For each j = 0, . . . , k let

Aj := Π̂
(
Ωj

)
, let φj : Ωj → D be a Riemann map and let γ̃j be the conjugate of

γq by φj . Then Ãj := D/γ̃j is an annulus of modulus π/ log(̺j) , where ̺j is the
multiplier of the repelling fixed point for γ̃j . The map φj induces a biholomorphic

map Φj : Aj → Ãj . We have:
a) Aj is an annulus homotopic to κj in T with mod(Aj) = π/ log(̺j).

The preimage of Aj by Π̂ equals the orbit of Ωj under γ ; thus
b) the Aj are disjoint.

Furthermore, the conformal metric 1/|z| descends by Π̂ as a flat metric on T ,
and thus
c) the logarithmic density B of ∪k

j=1 ∪
q−1
l=0 γ

l
(
Ωj

)
at 0 equals the relative flat

area of ∪k
j=1Aj in T .

Using a), b) and c) in the Grötzsch inequality we get

k∑

j=0

π/ log(̺j) =

k∑

j=0

mod(Aj) ≤ B ·
2π · sin(θ)

q|q · L− p · 2πi|
,

where θ is the angle between L and 2πi . This is equivalent to the inequality in
Theorem C.
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Theorem A is obtained from Theorem C by using B ≤ 1 and p/q = 0/1.
Theorem B is similarly obtained from Theorem C by using B ≤ 1 and k = 0.
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