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Abstract. Let L be a closed subset of Rk , with Hausdorff dimension δ , which supports
a probability measure m for which the m -measure of a ball of radius r and centred at a point
in L is comparable to rδ . By extending the notion of ubiquity from k -dimensional Lebesgue
measure to m , a natural lower bound for the Hausdorff dimension of a fairly general class of
lim sup subsets of L is obtained. This is applied to Patterson measure supported on the limit set
of a convex co-compact group, to obtain the Hausdorff dimension of the set of ‘well-approximable’
points associated with the limit set. The equivalent geometric result in terms of geodesic excursions
on the quotient manifold is also obtained. These results are counterparts of Jarńık’s theorem on
simultaneous diophantine approximation.

1. Introduction

The idea of ubiquity [4] has been used to obtain a lower bound for the Haus-
dorff dimension of a wide range of sets which arise in the theory of metric Diophan-
tine approximation [3], [4], [5]. In these applications, which include the Jarńık–
Besicovitch theorem [2] [7], the sets in question are those of ‘well-approximable’
points in either Euclidean space or submanifolds of Euclidean space. Although
of a fairly general geometric and statistical character, the original formulation of
ubiquity used open or relatively open ‘approximating’ sets.

Recently, ubiquity has been used to establish the natural analogue of the
Jarńık–Besicovitch theorem for non-elementary geometrically finite groups of the
first kind [15], [16]. These analogues have also been obtained by utilising the
notion of a ‘well distributed system’ [8]. This is a generalisation of the concept of
a regular system introduced by A. Baker and W.M. Schmidt [1]. In this setting it
is essentially equivalent to the restricted definition of ubiquity given in [15].

For an arbitrary geometrically finite group, the upper bound for the Haus-
dorff dimension of the set of ‘well-approximable’ points presents no difficulty, as is
commonly the case. In the case of groups of the first kind, the limit set is the unit
sphere Sk and therefore of positive k -dimensional Lebesgue measure. This allows
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the establishment of ubiquity and hence the complementary lower bound. For ge-
ometrically finite groups of the second kind, the limit set is of zero k -dimensional
Lebesgue measure in Sk . Consequently without modification, ubiquity cannot be
applied to obtain the analogue of the Jarńık–Besicovitch theorem for groups of the
second kind.

In this paper, ubiquity and its consequences are extended to measures satis-
fying the properties of Patterson measure [10] in the case of non-elementary geo-
metrically finite groups without parabolic elements, i.e. convex co-compact groups.
This extension is not routine and requires new ideas, although the basic structure
of the proof of Theorem 1 (Section 3) follows that of Theorem 1 in [4]. For convex
co-compact groups, Patterson measure is comparable to Hausdorff measure and is
easily seen to be the appropriate measure for the problem of metric diophantine
approximation, see Theorem 3 (Section 4). However, for groups of the second kind
with parabolic elements, Patterson measure is no longer comparable to Hausdorff
measure and the analysis is more difficult.

The proof of Theorem 3 can also be obtained by extending the concept of a
‘well distributed system’, already mentioned. This involves the construction of a
‘Cantor-like’ subset of the lim-sup set appearing in Theorem 3, on which a probabil-
ity measure satisfying the mass distribution principle [6] is constructed. However,
the ubiquity formulation allows one to obtain a more general result concerning the
Hausdorff dimension of a fairly general class of lim-sup sets. Furthermore, under
certain circumstances ubiquity allows one to obtain the Hausdorff measure at the
critical exponent.

The paper is organised as follows. In Section 2, the required properties of
a measure m are defined and Hausdorff measure and dimension are also defined
in a manner appropriate for the setting of this paper. In Section 3, ubiquity
is extended to the measures m introduced in the previous section, i.e. to m-
ubiquity. Consequently, results are obtained for the Hausdorff dimension of lim-
sup sets whose underlying sets are of positive m-measure. Finally, in Section 4,
m-ubiquity is used to obtain the analogue of the Jarńık–Besicovitch theorem for
convex co-compact groups. Furthermore, the equivalent geometric result analogous
to Theorem 1 in [8] is outlined.

We take this opportunity to thank J.G. Clunie and J.L. Fernández for many
fruitful discussions.

2. Centred measure and dimension

Throughout this paper, L will be a closed non-empty subset of Rk on which
a non-atomic probability measure m is supported. Suppose further that there
exists a fixed positive δ ≤ k , and positive constants a , b , r0 such that for each
Euclidean ball B(c, r) in Rk centred at c ∈ L with radius r ≤ r0 ,

(1) arδ < m
(
B(c, r)

)
< brδ.
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To simplify notation the symbols ≪ and ≫ will be used to indicate an
inequality with an unspecified positive multiplicative constant. If a ≪ b and
a≫ b we write a ∼ b , and say that the quantities a and b are comparable. Thus
(1) can be written as m

(
B(c, r)

)
∼ rδ and any small Euclidean ball centred at

a point of L has m-measure comparable to rδ . In particular, when δ = k , the
measure m is comparable to the k -dimensional Lebesgue measure. The conditions
on the measure m are chosen with Patterson measure on a limit set (see Section 4)
in mind.

When there is no risk of ambiguity, we will write B = B(c, r) . For any
positive θ , define θB to be the ball B(c, θr) of centre c and radius θr . Also r(B)
will denote the radius of the ball B .

Now let B be a finite or countable collection of balls B ⊂ Rk with centres c
in L and radii r(B) . Let F be any non-empty subset of L of Rk . If F ⊂

⋃
B∈B

B
and 0 < r(B) ≤ ̺ for each B in B , then the collection of balls B is said to be
an L-centred ̺-cover of F .

Let s be a positive number and for any positive ̺ define

H
s

̺;L(F ) = inf

{ ∑

B∈B

r(B)s : B is an L-centred ̺-cover of F

}

where the infimum is over all (countable) L -centred ̺ -covers of F . The L-centred

s-dimensional Hausdorff measure H s
L (F ) of F is defined by

H
s

L (F ) = lim
̺→0

H
s

̺;L(F ) = sup
̺>0

H
s

̺;L(F )

and the L-centred Hausdorff dimension dimL F of F by

dimL F = inf
{
s : H

s
L (F ) = 0

}
= sup

{
s : H

s
L (F ) = ∞

}
.

With L = Rk , the definitions of L -centred s -dimensional Hausdorff measure
H s

L (F ) , and L -centred Hausdorff dimension dimL F , are the usual s -dimensional
Hausdorff measure H s(F ) , and Hausdorff dimension dimF respectively. Further
details and alternative definitions of Hausdorff measure and dimension can be
found in [6].

Lemma 1. For any subset F of L

H
s(F ) ∼ H

s
L (F ).

Proof. Since the covers used in H s
L are restricted to L -centred balls,

H
s

L (F ) ≥ H
s(F ).



40 M.M. Dodson, M.V. Melián, D. Pestana, and S.L. Velani

In the other direction, any ̺ -cover of F by balls Ci (which without loss of gener-

ality all meet F ) can be replaced by an L -centred cover of balls Ĉi of radius 2ri .
It follows that for any ̺ with 0 < ̺ < r0/2,

H
s

̺,L(F ) ≤ H
s

̺ (F ),

whence letting ̺→ 0,
H

s
L (F ) ≪ H

s(F ),

as required.

It follows, as a direct consequence of Lemma 1 and the definitions of Hausdorff
dimension and L -centred Hausdorff dimension, that

dimF = dimL F.

Remark 1. The inequality (1) implies that

lim sup
r→0

m
(
B(c, r)

)

rδ
∼ 1,

for all closed Euclidean balls B(c, r) with centre c in L and radii r . It follows
from the density theorem in [6, p. 61] that for L compact,

dimL = δ.

In fact, it can be deduced from inequality (1) that the measure m is comparable to
the δ -dimensional Hausdorff measure on L . Another consequence of the density
theorem is that for any subset F of L with positive m-measure, dimF = δ . In
general the converse is not true.

In the application considered in this paper, δ will indeed correspond to the
Hausdorff dimension of the set L , i.e. the Hausdorff dimension of the ambient
space of any subset of L .

3. m-ubiquitous systems

Let U be an open ball with radius r(U) centred on a point c(U) of L and
let

Ω = U ∩ L.

Consider the generalized lim-sup set of the form

ΛF = {x ∈ Ω : x ∈ Fα for infinitely many α in J},

where F = {Fα : α ∈ J} is a family of subsets of Ω indexed by a countable set J .
When J is the set of positive integers, ΛF is the familiar lim-sup of the sequence
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of sets Fj , j = 1, 2, . . ., i.e. ΛF =
⋂∞

N=1

⋃∞
j=N Fj . Ubiquitous systems were

introduced in [4] and used to obtain a lower bound for the Hausdorff dimension of
sets of the form ΛF where the sets Fα in F are (or contain) open neighbourhoods
of certain sets Rα , called resonant sets (see [4, Theorem 1]). However in [4], the
set Ω is a non-empty open bounded subset of Rk and hence has positive Lebesgue
measure. The setting of ubiquity is now extended to a more general measure m ,
although because of the particular application to convex co-compact groups the
resonant sets Rα will be taken to be points. Using this m-ubiquity, an analogue
of Theorem 1 in [4] is obtained for a certain class of subsets Ω of L which are of
zero Lebesgue measure but of positive m-measure.

Definition 1. Let R = {Rα ∈ Ω : α ∈ J} be a set of points in Ω and let
β: J → R+: α 7→ βα be a positive function on J and for each N in N define
J(N) = {α ∈ J : βα ≤ N} . Suppose that there exists a positive decreasing
function λ: N → R+ with λ(N) → 0 as N → ∞ , such that

(2) m

(
Ω\

⋃
α∈J(N)

1
3B

(
Rα, λ(N)

))
→ 0

as N → ∞ . Then the pair (R, β) is said to be an m-ubiquitous system relative
to λ .

It follows from the definition that for each positive integer N there exists an
m-measurable subset A(N) of Ω, namely

⋃
α∈J(N)

1
3B

(
Rα, λ(N)

)
in the above

definition, and a positive number λ(N) such that:

(i) for any ball B in U centred on a point of Ω with r(B) = λ(N) and
1
2
B ∩A(N) 6= ∅ , there exists an α in J(N) such that for all ̺ satisfying 0 < ̺ ≤
λ(N) ,

(3) m
(
B ∩B(Rα, ̺)

)
∼ ̺δ

for N sufficiently large; where 0 < δ ≤ k is the fixed constant associated with the
measure m . The implied constants in (3) are dependent only on Ω and the pair
(R, β) ; and

(ii)

(4) lim
N→∞

m
(
Ω\A(N)

)
= 0.

The conditions (3) and (4) are the key to deriving a lower bound for the
Hausdorff dimension of lim-sup sets of the form ΛF , and so we will work with
them. In fact the more general definition of ubiquity in the Lebesgue measure
setting given in [4] is in terms of conditions corresponding to (3) and (4). The
set A(N) is an approximating set for Ω in the measure theoretical sense and is
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not required to be a union of open balls centred at ‘special’ resonant points as in
Definition 1 above. The factor of 1

3
appearing in (2) is to ensure consistency with

the definition of ubiquity given in [15].
The essential feature of a m-ubiquitous system (R, β) is that for each positive

integer N and any x in A(N) , there exists an α in J(N) such that the inequality
|x−Rα| < 2λ(N) is satisfied. This is guaranteed by condition (3) above. Condition
(4) implies that the m-measure of the set of points in Ω not lying within a distance
2λ(N) of a resonant point Rα with α in J(N) , tends to zero as N tends to
infinity. With A(N) =

⋃
α∈J(N)

1
3B(Rα, λ(N)) as in the definition, both these

features are immediate from (2). In applications the function λ associated with
a system (R, β) arises naturally from the theory of Diophantine approximation,
such as for example Dirichlet’s theorem.

Let ψ: R+ → R+ be a decreasing function with ψ(x) → 0 as x→ ∞ . Write

Λ(ψ) =
{
x ∈ Ω : |x−Rα| < ψ(βα) for infinitely many α in J

}
.

If the pair (R, β) and the function ψ can be chosen such that for each α in J ,

B
(
Rα, ψ(βα)

)
⊆ Fα

then clearly Λ(ψ) ⊆ ΛF and a lower bound for dimΛ(ψ) is also a lower bound
for dimΛF .

In determining a lower bound for Λ(ψ) a type of asymptotic density, given
by the function λ , of the resonant points Rα in Ω is required. This ensures that
‘most’ points in Ω are close to some point Rα with the ‘size’ of the ‘denominator’
βα not too large. A lower bound for Λ(ψ) is given by the following theorem (see
[4] for a more general result in the Lebesgue measure setting).

Theorem 1. Suppose that (R, β) is an m-ubiquitous system with respect

to λ and that ψ: R+ → R+ is a decreasing function. Then

dimΛ(ψ) ≥ γ δ

where

γ = min

{
1, lim sup

N→∞

logλ(N)

logψ(N)

}
.

If there exists a strictly increasing sequence {Nr : r = 0, 1, 2, . . .} such that

λ(Nr)/ψ(Nr)
γ → 0 as r → ∞ , then

H
δ γ

(
Λ(ψ)

)
= ∞.

The following covering result is used repeatedly throughout the proof of The-
orem 1 and is therefore included at this point.
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Lemma 2. Let B be a collection of balls contained in a bounded subset of

Rk . Then there exists a finite or countably infinite disjoint subcollection {Bi}
such that ⋃

B∈B

B ⊂
⋃
i

B̃i

where B̃i = 5Bi .

For the proof of Lemma 2 the reader is referred to [6, p. 60].
Proof of Theorem 1. By Lemma 1, dimΛ(ψ) = dimL Λ(ψ) and so it is

sufficient to show that
dimL Λ(ψ) ≥ γδ.

Throughout the proof N will be taken large enough to ensure that λ(N) is
small enough so that

m
(
B

(
c, 2λ(N)

))
∼ λ(N)δ

for any ball B centred on a point of L with radius 2λ(N) .
Define

U−
N =

{
x ∈ U : |x − c(U)| < r(U) − 10λ(N)

}

to be the open ball concentric with U of radius r(U−
N ) = r(U)− 10λ(N) , and let

Ω−
N = U−

N ∩ L.

Then by construction and the continuity of measures m(Ω−
N ) → m(Ω) as N → ∞ ,

whence m(Ω) ∼ m(Ω−
N ) for N sufficiently large.

Consider the collection B∗(N) of open balls with radii 2λ(N) and centres at
each point of Ω−

N . By Lemma 2, there exists a finite disjoint subcollection B(N)
of B∗(N) such that

m
(
Ω−

N\
⋃

B∈B(N)

B̃
)

= 0

where B̃ = 5B . Then for any ball B in B(N) , B ⊂ U and moreover B̃ ⊂ U .
By construction,

m(Ω) ≥ m
( ⋃

B∈B(N)

B
)

=
∑

B∈B(N)

m(B) ∼ #B(N)λ(N)δ

and
m(Ω−

N ) ≤ m
( ⋃

B∈B(N)

B̃
)
∼ #B(N)λ(N)δ,

where #A denotes the cardinality of the set A . Hence for N sufficiently large,

m(Ω) ∼ #B(N)λ(N)δ

since m(Ω−
N ) ∼ m(Ω), and so #B(N) ∼ m(Ω)λ(N)−δ .
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Good sampling sets. Next let E (N) denote the ‘exceptional’ set of balls
B in B(N) for which 1

4
B ∩ A(N) = ∅ and let G (N) = B(N)\E (N) be the

complementary set of ‘good’ balls B in B(N) for which 1
4B ∩ A(N) 6= ∅ . It

follows that

m
(
E (N)

)
= m

( ⋃
B∈E (N)

B
)
∼ #E (N)λ(N)δ −→ 0

as N → ∞ , since otherwise the measure of points not in A(N) ⊂ Ω would
be greater than some positive constant, contradicting the ubiquity condition (4),
namely that m(Ω\A(N)) → 0 as N → ∞ . Hence

m
(
G (N)

)
= m

( ⋃
B∈G (N)

B
)
→ m(Ω)

as N → ∞ , and so for N sufficiently large m
(
G (N)

)
∼ m(Ω). Thus for suffi-

ciently large N ,

(5) #G (N) = #B(N) − #E (N) ∼ λ(N)−δm(Ω).

For each ball B in G (N) choose α in J(N) = {α ∈ J : βα ≤ N} such that
(3) holds for 1

2
B . As a consequence of the ubiquity condition (3), Rα ∈ 1

2
B . Let

W (B) be the set of x in B such that

(6) |x−Rα| ≤ ψ(N) ≤ ψ(βα),

and let V (B) = W (B) ∩ L . By construction, V (B) is a closed subset of B ∩ Ω.
Now let

T (N) =
⋃

B∈G (N)

V (B) and T∞ = lim sup
{
T (N) : N ∈ N

}
.

Thus T (N) is the union of a finite number of disjoint closed subsets V (B) of Ω and
so it too is a closed subset of Ω. Without loss of generality, take ψ(N) ≤ λ(N) for
N = 1, 2, . . ., so that logλ(N)/ logψ(N) ≤ 1 for N sufficiently large. It follows
that B

(
Rα, ψ(N)

)
= W (B) . Then by (3), (5), (6) and the fact that the measure

m is supported on L , for all sufficiently large N , m
(
V (B)

)
= m

(
W (B)

)
∼ ψ(N)δ

and

(7) m
(
T (N)

)
= m

( ⋃
B∈G (N)

V (B)
)
∼ #G (N)ψ(N)δ ∼

(ψ(N)

λ(N)

)δ

.

Now suppose x ∈ T∞ . Then by definition, the inequality (6) holds for in-
finitely many integers Nr with α in J(Nr) , r = 1, 2, . . . . If x 6= Rα for any α
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in J , then (6) must hold for infinitely many distinct α in J since ψ(x) → 0 as
x → ∞ and so x ∈ Λ(ψ) . If x = Rα for some α in J , inequality (6) may hold
for just finitely many distinct α in J , in which case x /∈ Λ(ψ) . However, since
the set J is countable, the set of such points

T∞
1 = {x ∈ T∞ : x = Rα for some α ∈ J}

is also countable, so that H s
L (T∞

1 ) = 0. Hence, the set of points T∞ can be
written as the union of two disjoint sets T∞

1 and T∞
2 , where T∞

1 is the countable
set above and T∞

2 is a proper subset of Λ(ψ) . Thus

H
s

L (T∞) = H
s

L (T∞
1 ) + H

s
L (T∞

2 ) = H
s

L (T∞
2 ) ≤ H

s
L

(
Λ(ψ)

)
,

and a lower bound for dimL T
∞ is also a lower bound for dimL Λ(ψ) .

The interior of a subset X of L with respect to L will be denoted by Ẋ ,
and the closure of a subset X of L with respect to L by X̄ . The interior and
closure of a subset X of Rk with respect to the usual topology of Rk will be
denoted by int(X) and cl(X) respectively. It should be noted that for any ball
B of radius r(B) < r0 with centre in L , m

(
int(B)

)
∼ m

(
cl(B)

)
. Hence, for

sufficiently large N ,
m

(
Ṫ (N)

)
∼ m

(
T (N)

)
.

Lemma 3. For any closed set X ⊂ Ω , there exists an integer N∗(X) such

that for all N ≥ N∗(X) ,

(8) m
(
Ṫ (N) ∩ Ẋ

)
≥ K1m

(
Ṫ (N)

)
m(Ẋ)

where the positive constant K1 does not depend on X or N .

Proof. Without loss of generality assume that m(Ẋ) > 0, whence Ẋ 6= ∅ .
Let ∂X denote the boundary of the set X with respect to L , and for any positive
̺ write

X̺ =
{
x ∈ X : dist∞(x, ∂X) > ̺

}
,

where dist∞(x, ∂X) = inf
{
|x−y| : y ∈ ∂X

}
. By construction and the continuity

of measures m(X̺) → m(Ẋ) as ̺→ 0, whence for ̺∗ = ̺∗(X) sufficiently small

m(Ẋ) ≤ 2m(X̺∗
).

Let
GX(N) =

{
B ∈ G (N) : B ∩ L ⊆ Ẋ

}
.

The set L is a closed subset of Rk by hypothesis and X is a closed bounded
subset of L with respect to the relative topology of L , since X ⊂ Ω. Then
there exists a positive σ = σ(̺∗, X) such that any ball B with r(B) ≤ σ and
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B ∩ X̺∗
6= ∅ , satisfies B ∩ L ⊆ Ẋ . Thus for sufficiently large N ≥ N1(X) so

that λ(N) ≤ σ/10, for any ball B in G (N) with B ∩ X̺∗
6= ∅ implies that

B ∩ L ⊆ Ẋ , i.e. B ∈ GX(N) . Moreover for N ≥ N1(X) , for any ball B in G (N)
with 5B ∩X̺∗

6= ∅ implies that 5B ∩ L ⊆ Ẋ , i.e. 5B ∈ GX(N) .

Also for sufficiently large N ≥ N2(X) , Ẋ ⊆ Ω−
N , since X ⊂ Ω and Ω−

N → Ω
as N → ∞ . Hence

Ẋ ⊂
⋃

B∈B(N)

B̃.

Moreover, by the construction of the set X̺∗
, for N ≥ max

{
N1(X), N2(X)

}
,

X̺∗
⊆

⋃
B∈GX(N)

B̃ ∪
⋃

B∈E (N)

B̃.

However m
(
E (N)

)
∼ m

(⋃
B∈E (N) B̃

)
→ 0 as N → ∞ , whence m

(⋃
B∈E (N) B̃

)

can be made arbitarily small. Hence for N ≥ N∗(X) = max
{
N1(X), N2(X)

}
,

m(Ẋ) ≤ 2m(X̺∗
) ≪

∑

B∈GX (N)

m(B̃) ≪ #GX(N)λ(N)δ,

from which it follows that #GX(N) ≫ m(Ẋ)λ(N)−δ .
Now Ṫ (N) ∩ Ẋ ⊇

⋃
B∈GX(N) V̇ (B) , hence

m
(
Ṫ (N) ∩ Ẋ

)
≥ m

( ⋃
B∈GX (N)

V̇ (B)
)

= #GX(N)m
(
V̇ (B)

)

∼ #GX(N)ψ(N)δ ≫ m(Ẋ)
(ψ(N)

λ(N)

)δ

,

and the required result follows from (7).

Lemma 4. There exist a constant K2 and an integer N∗ such that, for any

N ≥ N∗ and for any ball C with centre in L ,

(9) m
(
Ṫ (N) ∩ cl(C)

)
≤ K2

[
m

(
Ṫ (N)

)
m

(
cl(5C)

)
+ ψ(N)δ

]
.

Proof. Without loss of generality assume that C is closed, so C = cl(C) .
Let C+

N be the 4λ(N) neighbourhood of C , i.e. C+
N is a ball of radius r(C+

N ) =

r(C) + 4λ(N) concentric with C . Assume that C ∩ Ṫ (N) 6= ∅ , thus C ∩ U 6= ∅ .
Now let

G+(N) =
{
B ∈ G (N) : B ⊂ C+

N

}
.

Then if B ∩ C 6= ∅ for B in G (N) then B ∈ G+(N) . By construction, for N
sufficiently large to ensure that 5λ(N) < r0 ,

(10) m(C+
N ) ≥ m

( ⋃
B∈G+(N)

B
)
∼ #G+(N)λ(N)δ.
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Now suppose, λ(N) ≤ r(C) , then m(C+
N ) ≤ m(5C) since r(C+

N ) ≤ 5r(C) . It
follows from (10) that #G+(N) ≪ m(5C)λ(N)−δ . On the other hand if λ(N) >
r(C) , then m(C+

N ) ≪ λ(N)δ since r(C+
N ) < 5λ(N) < r0 . It follows from (10)

that #G+(N) ≪ 1. In both cases, m
(
V̇ (B)∩C

)
≤ m

(
V̇ (B)

)
∼ ψ(N)δ . By these

estimates and (7),

m
(
Ṫ (N) ∩ C

)
= m

( ⋃
B∈G (N)

V̇ (B) ∩ C
)
≤ m

( ⋃
B∈G+(N)

V̇ (B)
)

≪
m(5C)

λ(N)δ
m

(
V̇ (B)

)
+ ψ(N)δ

≪ m(5C)
(ψ(N)

λ(N)

)δ

+ ψ(N)δ ≪ m(5C)m
(
Ṫ (N)

)
+ ψ(N)δ,

as required.

Since ψ(N) ≤ λ(N) < 1 for N sufficiently large, it follows that the ratio
logλ(N)/ logψ(N) ≤ 1 and so

γ = lim sup
{ logλ(N)

logψ(N)
: N = 1, 2, . . .

}
≤ 1.

Suppose first there exists a strictly increasing sequence {Nr : r = 0, 1, 2, . . .} such
that

lim
r→∞

λ(Nr)

ψ(Nr)γ
= 0.

Since δ > 0, when r → ∞ ,

h(Nr) =

(
λ(Nr)

ψ(Nr)γ

)δ

→ 0.

Let C be a collection of open balls, C with centres in L such that

(11)
∑

C∈C

r(C)δγ < 1.

It will be shown that there exists a positive number σ such that if r(C) < σ
for all balls C in C , then C cannot cover the set T∞ . By the definition of the
L -centred Hausdorff measure, it follows that H

δγ
L (T∞) ≥ 1 when the sequence

{Nr} and the limit above exist. The constant 1 in (11) can be replaced by an
arbitrarily large number, so that in the case where the above limit condition holds,
H

δγ
L (T∞) = ∞ . Hence dimL T

∞ ≥ δγ and so dimL Λ(ψ) ≥ δγ .
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Remark 2. Since H s
L (T∞) ≤ H s

L

(
Λ(ψ)

)
,

H
δγ

L (T∞) = ∞ ⇒ H
δγ

L

(
Λ(ψ)

)
= ∞.

By Lemma 1, H
δγ

L (F ) ∼ H δγ(F ) for any subset F of L . Hence, if there exists
a strictly increasing sequence {Nr : r = 0, 1, 2, . . .} such that λ(Nr)/ψ(Nr)

γ = 0
as r → ∞ , then H δγ

(
Λ(ψ)

)
= ∞ .

Let {r(s) : s = 0, 1, 2, . . .} be a strictly increasing infinite subsequence of
integers with r(C) ≤ ψ

(
Nr(0)

)
for each C in C , and for each s ≥ 1 let

Cs =
{
C ∈ C : ψ

(
Nr(s)

)
< r(C) ≤ ψ

(
Nr(s−1)

)}
⊂ C ,

Es =
⋃

C∈Cs

C.

For the remainder of the proof r(0) will be taken to be sufficiently large so that
ψ

(
Nr(0)

)
≤ r0/10. Hence (1) holds for all balls 10C of radius 10r(C) concentric

with C in C .
The sets Es are open since the balls C in C are open. Write ψs for ψ

(
Nr(s)

)
,

Ts for T
(
Nr(s)

)
and hs for h

(
Nr(s)

)
. Note that for all s = 0, 1, 2, . . ., Ts is a

closed subset of Ω and for any C in C , r(C) < ψ0 .

Lemma 5. If r(0) is chosen sufficiently large so that (7) and (9) hold for all

N ≥ Nr(0) , then for each s = 0, 1, 2, . . .

(12) m
(
Ṫs+1 ∩ cl(Es+1)

)
≤ K3m(Ṫs+1)

[
m(Ṫs)hs + hs+1

]
,

where K3 does not depend on C or on the sequence {Nr(s) : s = 0, 1, 2, . . .} .

Proof. Since Nr(s) ≥ Nr(0) for s ≥ 0, it follows from (9) that

m
(
Ṫs+1 ∩ cl(Es+1)

)
≤

∑

C∈Cs+1

m
(
Ṫs+1 ∩ cl(2C)

)

≪
∑

C∈Cs+1

[
m(Ṫs+1)

(
10r(C)

)δ
+ (ψs+1)

δ
]

≪ m(Ṫs+1)
∑

C∈Cs+1

r(C)δ +
∑

C∈Cs+1

ψδ
s+1.

However from (7) and (11) it follows that
∑

C∈Cs+1

r(C)δ ≪ m(Ṫs)hs and
∑

C∈Cs+1

ψδ
s+1 ≪ m(Ṫs+1)hs+1.

Hence
m

(
Ṫs+1 ∩ cl(Es+1)

)
≪ m(Ṫs+1)

[
m(Ṫs)hs + hs+1

]

as required.
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Now let G0 = T0 and define the set Gs (⊆ Ts ) recursively as

Gs = (Gs−1 ∩ Ts)\Es, s = 1, 2, . . . ;

for each s = 0, 1, 2, . . ., the set Gs is compact and contains Gs+1 . Using induction,
a positive lower bound for m(Gs) will be obtained. Without loss of generality,
take K1 ≤ 1 in (8).

Lemma 6. The sequence of integers r(s) can be chosen so that, for each

s = 0, 1, 2, . . .,

(13) m(Gs) ≥ m(Ġs) ≥ ( 1
2K1)

s+1
s∏

j=0

m(Ṫj) > 0.

Proof. Clearly m(Gs) ≥ m(Ġs) for all s , and (13) holds when s = 0.
Now choose r(0) sufficiently large so that (12) holds and h0 < (2K3)

−1(K1/2)2

(this is possible since h(Nr) → 0 as r → ∞). By Lemma 3, with X = T0 ,
choose r(1) large enough so that Nr(1) > Nr(0) , h1 < (2K3)

−1(K1/2)3m(Ṫ0) and

m(Ṫ0 ∩ Ṫ1) ≥ K1m(Ṫ0)m(Ṫ1) . Then,

m(Ġ1) ≥ m(Ṫ0 ∩ Ṫ1) −m
(
Ṫ0 ∩ Ṫ1 ∩ cl(E1)

)

≥ K1m(Ṫ0)m(Ṫ1) −K3m(Ṫ1)
[
m(Ṫ0)h0 + h1

]

≥ K1m(Ṫ0)m(Ṫ1) −
1
2 ( 1

2K1)
2m(Ṫ0)m(Ṫ1)[1 + 1

2K1]

≥ ( 1
2
K1)

2, m(Ṫ0)m(Ṫ1) > 0,

and hence (13) holds when s = 1.
Now suppose that for n ≥ 2 a strictly increasing sequence of integers r(s) ,

s = 1, 2, . . . , n , has been chosen such that (13) and

(14) hs ≤ (2K3)
−1( 1

2K1)
s+2

s−1∏

j=0

m(Ṫj)

hold. Again using Lemma 3, with X = Gn , it is possible to choose r(n+1) > r(n)
sufficiently large so that (14) holds for s = n+ 1, and

m(Ġn ∩ Ṫn+1) ≥ K1m(Ġn)m(Ṫn+1).

Then by (13), (14) and Lemma 5

m(Ġn+1) ≥ m(Ġn ∩ Ṫn+1) −m
(
Ġn ∩ Ṫn+1 ∩ cl(En+1)

)

≥ K1m(Ġn)m(Ṫn+1) −K3m(Ṫn+1)
[
m(Ṫn)hn + hn+1

]

≥ K1(
1
2K1)

n+1
n+1∏

j=0

m(Ṫj) −
1
2 ( 1

2K1)
n+2

n+1∏

j=0

m(Ṫj)
[
1 + 1

2K1

]

≥ ( 1
2K1)

n+2
n+1∏

j=0

m(Ṫj) > 0,
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and so (13) holds for s = n+ 1. The result now follows by induction.

Thus for each s = 0, 1, 2, . . ., the compact set Gs is non-empty and so the
set G∞ =

⋂∞
s=0Gs is non-empty. Moreover r(C) < ψ0 for each C in C , so by

construction C =
⋃∞

s=1 Cs . Also if x ∈ C for some C in C , then C ∈ Cs for
some s and x ∈ Es , whence x 6∈ Gs ⊃ G∞ . Thus the collection C does not cover
the set G∞ . Since

G∞ ⊂
∞⋂

s=1
Ts ⊂ T∞

this proves Theorem 1 when there exists a strictly increasing sequence {Nr : r =
0, 1, 2, . . .} such that λ(Nr)/ψ(Nr)

γ → 0 as r → ∞ . Now suppose that no such
sequence {Nr} can be chosen. Then γ > 0 since λ(N) → 0 as N → ∞ . Choose
any η in (0, γ) and let γ̂ = γ − η > 0. Then by the definition of lim sup, there
exists a sequence {Nr} such that

lim
r→∞

λ(Nr)

ψ(Nr)γ̂
= 0.

Since δ > 0, when r → ∞ ,

ĥ(Nr) =
( λ(Nr)

ψ(Nr)γ̂

)δ

→ 0.

By repeating the above proof with h and γ replaced by ĥ and γ̂ respectively, it
can be shown that

dimL Λ(ψ) ≥ δγ̂ = δ(γ − η).

Since η can be made arbitrarily small, it follows that dimL Λ(ψ) ≥ δγ , and the
proof of Theorem 1 is complete.

The following theorem is a more general result for families of m-ubiquitous
systems and is an analogue of Theorem 2 in [4].

Theorem 2. For each i = 1, 2, . . ., suppose that (Ri, βi) is an m-ubiquitous

system with respect to λi and that ψi: R+ → R+ is a decreasing function. Then

dim
∞⋂

i=1

Λ(ψi) ≥ δ inf{γi : i = 1, 2, . . .} = δγ∞

where

γi = min

{
1, lim sup

N→∞

logλi(N)

logψi(N)

}
.

If there exist strictly increasing sequences {N i
r : r = 0, 1, 2, . . .} such that

λi(N i
r)/ψ

i(N i
r)

γi

→ 0
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as r → ∞ for all those i such that γi = γ∞ , then

H
δγ∞

( ∞⋂
i=1

Λ(ψi)
)

= ∞.

Proof. In view of Theorem 1, the proof follows the same line of argument as
the proof of Theorem 2 in [4].

4. Applications

The Euclidean norm of vectors x = (x1, . . . , xk, xk+1) in Rk+1 will be denoted
by ‖x‖ . The unit ball Bk+1 =

{
x ∈ Rk+1 : ‖x‖ < 1

}
, is a model of k + 1-

dimensional hyperbolic space and supports a metric s derived from the differential

ds =
‖dx‖

1 − ‖x‖2
.

An alternative model for k + 1-dimensional hyperbolic space is the upper half
space model Hk+1 =

{
x ∈ Rk+1 : xk+1 > 0

}
, which supports a metric ̺ derived

from the differential

d̺ =
‖dx‖

2|xk+1|
.

For z,w in Bk+1 let

L(z,w) = 1
2

+
‖z −w‖2

(
1 − ‖z‖2

)(
1 − ‖w‖2

) ,

and for z,w in Hk+1 let

LH(z,w) = 1
2

+
‖z − w‖2

4|zk+1||wk+1|
.

Let G be a convex co-compact group preserving the unit ball and let L(G)
denote the limit set of G , the set of cluster points in the unit sphere Sk of any
orbit of G in Bk+1 . By definition (see [9], [12]), the action of G on the convex
hull of L(G) has a compact fundamental region in Bk+1 . For s ∈ R define the
exponent of convergence of G as

δ(G) = inf

{
s > 0 :

∑

g∈G

L
(
z, g(w)

)−s
<∞

}
.

If G is of the first kind, then L(G) = Sk and it follows that dimL(G) = k .
However, if G is of the second kind the limit set is of zero Lebesgue measure
and dimL(G) = δ(G) . In fact these statements are true for any arbitrary non-
elementary geometrically finite group [14]. Associated with L(G) is the Patterson
measure µ [10], which is a non-atomic, ergodic probability measure supported
on L(G) . Furthermore, for convex co-compact groups, any small Euclidean ball
B(c, r) in Sk , with centre c in L(G) has µ measure comparable to rδ(G) .
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Lemma 7. Let G be a convex co-compact group. Then there are constants

a , b , r0 dependent only on G , such that if c ∈ L(G) and r ≤ r0 then

arδ(G) < µ
(
B(c, r)

)
< brδ(G).

This is proved in [9], [12] and [14]. For a full and detailed account of the
concepts and results mentioned above, the reader is referred to [9] and [12]. For
convex co-compact groups, Lemma 7 implies that the Patterson measure satisfies
(1) with L = L(G) and δ = δ(G) .

4.1. Orbital approximation. For each real number τ and an arbitrary
hyperbolic fixed point y (∈ Sk ) of G , let WG;y(τ) denote the set of points x in
L(G) which are τ -approximable with respect to y (Definition 1, [15], [16]), i.e.,

WG;y(τ) =
{
x ∈ L(G) : ‖x− g(y)‖ ≤ L(0, g(0))−τ for infinitely many g in G

}
.

It is easy to verify that L(0, g(0)) is comparable with 1/
(
1 − ‖g(0)‖

)
which

in turn is comparable with the exponential of the hyperbolic distance between the
orbit point g(0) and the origin.

By using the properties of the Patterson measure µ and µ-ubiquity, the hyper-
bolic analogue of the Jarńık–Besicovitch theorem is extended from non-elementary
geometrically finite groups of the first kind (Theorem 2, [8] and [16]) to convex
co-compact groups. Clearly this is only an extension for groups without parabolic
elements.

Theorem 3. Let G be a convex co-compact group and let y be an arbitrary

hyperbolic fixed point of G . For τ > 1

dimWG;y(τ) =
δ(G)

τ
.

Proof. By Theorem 1 in [16], it is sufficient to show that dimWG;y(τ) ≥
δ(G)/τ (τ > 1). First some notation is needed. Let C = Hk+1 ∩Sk , and without
loss of generality assume that µ(C) 6= 0. In order to simplify notation, write
Lg = L

(
0, g(0)

)
.

The lower bound for dimWG;y(τ) will now be obtained by using the notion
of m-ubiquity with m = µ ,

Ω = C ∩ L(G), J = G, Rα = g(y), βα =
Lg

k1
, ψ(x) = (k1x)

−τ

and then applying Theorem 1 with δ = δ(G) . It follows that Λ(ψ) is a subset of
WG;y(τ) and a lower bound for dim Λ(ψ) is also a lower bound for dimWG;y(τ) .
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Let P = {y, z} be a pair of fixed points of a hyperbolic element of G . Denote
by Gyz the stabilizer of y or equivalently of z (the stabilizer of y is equal to the
stabilizer of z since G is discrete), and let G‖Gyz be a set of representatives of
the cosets {gGyz : g ∈ G} so chosen that if g ∈ G‖Gyz , h ∈ Gyz then Lg ≤ Lgh .
In this notation the minimum of Lgh (h ∈ Gyz ) occurs when gh ∈ G‖Gyz .

In view of Theorem 4 in [16] and the definition of G‖Gyz , there is a positive
constant k2 with the following property: for each x in Ω, N > 1, there exist
w = w(x,N) in P , g = g(x,N) in G‖Gyz with Lg < N so that

(15) ‖x− g(w)‖ <
k2

N
.

Let

E(N) =
{
x ∈ Ω : Lg(x,N) <

N

logN

}

and
A(N) = {x ∈ Ω : dist∞(x, ∂Ω) ≫ N−1 logN} \ E(N),

so that for each x in A(N) , the point g(w) satisfying (15) lies in Ω. Here ∂Ω is
the boundary of Ω with respect to L . It is easy to see that

E(N) ⊂
⋃

w∈P

⋃
g∈G

Lg<N/log N

B
(
g(w), k2N

−1
)

and by Lemma 7, for sufficiently large N ,

µ
(
B

(
g(w), k2N

−1
))

∼ N−δ(G).

By Theorem 3 in [15],

µ
(
E(N)

)
≪

∑

g∈G
Lg<N/log N

( 1

N

)δ(G)

≪
1

N δ(G)

( N

logN

)δ(G)

.

Hence for N large, µ
(
E(N)

)
≪ (logN)−δ(G) , so that µ

(
Ω\A(N)

)
→ 0 as N →

∞ . It follows from the definition of A(N) that for each x in A(N) , there exist
w(x,N) in P , g(x,N) in G‖Gyz such that (15) is satisfied and

(16)
N

logN
≤ Lg ≤ N.

Suppose first that w = z , then by (16) and Proposition 2 in [16], there exists an
element h in G‖Gyz such that

‖g(z)− h(y)‖ ≤ k3
logN

N
and k4

N

logN
≤ Lh ≤ k1N.
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On using the triangle inequality and (15), it is easily verified that

‖x − h(y)‖ ≤ k5N
−1 logN

where k5 = k2 + k3 and Lh ≤ k1N . Thus for each x in A(N) there exists an

α = g(x,N) ∈ J(N) = {g ∈ G : Lg ≤ k1N}

such that

(17) ‖x−Rα‖ ≤ k5N
−1 logN,

where Rα = g(y) lies in Ω. From now on write g instead of h . In the case of
w = y , it is easy to see that (17) is satisfied for some g in J(N) . Thus

A(N) ⊂
⋃

g∈G‖Gyz

Lg<k1N

B
(
g(y), k5N

−1 logN
)
⊂

⋃
g∈J(N)

1
3
B

(
g(y), λ(N)

)
,

where λ(N) = 3k5N
−1 logN , whence

µ
(
Ω\

⋃
g∈J(N)

1
3B

(
g(y), λ(N)

))
→ 0

as N → ∞ . This verifies that the system (R, β) is µ-ubiquitous relative to
the function λ . The proof can now be completed by applying Theorem 1, since
γ = 1/τ and δ = δ(G) .

Remark 3. Let A be a non-empty set of hyperbolic fixed points of G . In
view of Theorem 3 and the fact that

dim
( ⋃

y∈A

WG;y(τ)
)

= max
y∈A

{
dimWG;y(τ)

}

for any finite set A , it is easy to see that when τ > 1, the set of τ -approximable
points with respect to A (Definition 1, [15], [16]) has Hausdorff dimension δ(G)/τ ,
i.e.

dim
( ⋃

y∈A

WG;y(τ)
)

=
δ(G)

τ
.

In view of Theorem 2, which deals with the intersection of families of m-
ubiquitious systems, it is easy to verify that for τ > 1,

dim
( ⋂

y∈A

WG;y(τ)
)

=
δ(G)

τ
.
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4.2. Geometric results. In this subsection, let G be a convex co-compact
group acting in the upper half plane H2 model. The unit disk B2 and the upper
half plane H2 models are ‘equivalent’ and Theorem 3 clearly translates to the
latter with Lg = LH

(
e2, g(e2)

)
, where e2 = (0, 1).

Let M = H2/G denote the associated complete, non-compact Riemann sur-
face of constant negative sectional curvature. It is well known that

M = Xo ∪
n⋃

i=1
Zi,

where Xo is compact and each Zi is isometric to S1 × [0,+∞) with respect to
the metric dr2 + cosh2 r dθ2 [10]. The Zi ’s are usually referred to as funnels.
The infimum of the lengths of the curves in the non-trivial free homotopy classes
on each funnel is positive and equals the length of the simple closed geodesic G

limiting the funnel.
Given a point p on M , let S(p) be the unit disc in the tangent space of M

centred at p , and for every direction v in S(p) let γv be the geodesic emanating
from p in the direction v . Finally, for t in R , let γv(t) denote the point achieved
after traveling time t along γv . With this notation in mind, the geometric result
can now be stated as follows:

Theorem 4. Let dist be the distance in M and let G denote a simple closed

geodesic.

(1) For 0 ≤ α ≤ 1 , if G is limiting a funnel

dim
{
v ∈ S(p) : lim sup

t→∞

− log
(
dist

(
γv(t),G

))

t
≥ α

}
=

1 − α

1 + α
δ.

(2) With respect to µ , for almost all directions v in S(p)

lim sup
t→∞

− log
(
dist

(
γv(t),G

))

log t
=

1

2δ
.

Remark 4. As will become apparent in the proof, Part 1 of the above
theorem is the geometric interpretation of Theorem 3 with k = 1. For α = 0,
the statement of Part 1 is trivial, since the set under consideration is the whole
limit set. Part 2 is a ‘Khinchin-like’ result, analogous to Theorem 6 [13], and is a
refinement of Part 1 in the case of α = 0.

Proof of Theorem 4. Part 1. If γv satisfies the inequality

(18) lim sup
t→∞

− log
(
dist

(
γv(t),G

))

t
≥ α,
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then there exists a sequence {ti : i ∈ N} tending to infinity such that

(19) dist
(
γv(ti),G

)
< e−αti

Let γ̃v be a lift of γv into H2 with endpoint ξ in R , and let G̃i be the lift
of G such that G̃i is closer to the point γ̃v(ti) than any other lift of G . Finally,

let {η−i , η
+
i } be the endpoints of G̃i with η−i closer to ξ than η+

i .
Since G is limiting a funnel, ξ, η−i , η

+
i are co-linear. Then for ti sufficiently

large

(20)
ri
Ri

∼ d2
i and riRi ∼ e−2ti ,

where di = ̺
(
γ̃v(ti), G̃i

)
, Ri = 1

2‖η
−
i − η+

i ‖ and ri = ‖ξ − η−i ‖ . It follows from
(20) that inequality (19) is equivalent to

(21) ri ≤ k6R
(1+α)/(1−α)
i

where k6 = k6(p) is a positive constant. Hence, if ξ is not an endpoint of any lift
of G , there are infinitely many solutions of (21). The argument above is clearly
reversible, hence if (21) has infinitely many solutions then the projection of the
geodesic γ̃v to M satisfies (18). A simple calculation shows that if {g(η−), g(η+)}
are the end points of a lift of G with g ∈ G‖Gη−η+ , then

Lg = LH

(
e2, g(e2)

)
∼ ‖g(η−) − g(η+)‖−1.

Hence, part one of Theorem 4 follows as a consequence of Theorem 3 with τ =
(1 + α)/(1 − α) .

Part 2. Let G̃ be a lift of G with end points {η−, η+} and for gi in G , let

{η−i , η
+
i } and Ri be the endpoints and the euclidean radius of gi(G̃ ) respectively.

For an arbitrary positive ε , let Cε(G ) be the set of points in M within a distance

ε of G , and let Cε(G̃ ) be the corresponding ε-neighbourhood of G̃ , i.e.

Cε(G̃ ) :=
{
x ∈ H2 : ̺(x, G̃ ) < ε

}
.

For obvious geometric reasons, the set Cε(G ) is usually referred to as a collar. It
is a well known fact that for ε = ε(G ) sufficiently small, the countable union

⋃
gi∈G\Gη−η+

gi

(
Cε(G̃ )

)

is pairwise disjoint.
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On combining various ideas contained in the proof of Theorems 4.3.2, 4.5.1
and 4.6.5 in [9], and using similar arguments to those in the proof of Lemmas 1.2
and 1.3 in [8], the following can be deduced. Given a closed interval B in R with
centre in L(G) there exists a number ̺ in (0, 1) with the following property: the

number νn of ε-neighbourhoods gi

(
Cε(G̃ )

)
in H2 with at least one of its end

points in B and radii Ri ∈ [̺n+1, ̺n) , satisfies for all n ≥ n0(G,B,G )

(22) νn ∼
( 1

̺n

)δ

µ(B),

where the implied constants depend only on G and G . The above comparability
is central to the proof.

It is easy to verify that there exists a positive χ = χ(ε, ̺) < cosh ε− 1, such
that for all Ri , Rj ∈ [̺n+1, ̺n) with i 6= j

(23) B(ci, χRi) ∩B(cj , χRj) = ∅,

where ci ∈ {η−i , η
+
i } and cj ∈ {η−j , η

+
j } .

Let a : [1,∞) −→ (0, χ] be a non-increasing continuous function with the
property that a(x1) ∼ a(x2) , for 1/x1, 1/x2 ∈ [̺n+1, ̺n) . Now, for a positive
integer K , consider the following sets:

An,K(a) =
⋃

gi∈G

Ri∈[̺n+1,̺n)

B
(
ci, Ka(R

−1
i )Ri

)

A∞,K(a) = lim sup
n→∞

An,K(a)

and let

A∞(a) =
∞⋃

K=1

A∞,K(a).

It follows from (22) and (23), that the sets {An,K(a) : n = n0, n0 + 1, . . .}
are pairwise quasi-independent; i.e. there is a positive constant k7 so that for
n0 < i < j ,

µ
(
Ai,K(a) ∩Aj,K(a)

)
≤ k7µ

(
Ai,K(a)

)
µ
(
Aj,K(a)

)
.

Hence on using (22), the Borel–Cantelli lemma and its pairwise quasi-inde-
pendent version (Proposition 2 [13]) as in Section 3 and 4 of [13], it follows that

∫ ∞

1

(
a(x)

)δ

x
dx <∞ =⇒ µ

(
A∞,K(a)

)
= 0, for all K

∫ ∞

1

(
a(x)

)δ

x
dx = ∞ =⇒ µ(A∞,K(a)) > 0, for all K.
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Since A∞(a) is G-invariant and the action of G on L(G) is ergodic with
respect to µ (see [9]), the set A∞(a) has either zero or full µ-measure. Note that
the results outlined in the above discussion constitute the convex co-compact ana-
logue of Patterson’s ‘Khinchin-like’ result for groups of the first kind, Theorem 9.1
[11]. The reader is referred to [17] for a Hausdorff dimensional ‘interpretation’

of the above discussion, in which the integral
∫ ∞

1

(
a(x)

)δ
/x dx is replaced by the

lower order at infinity of the function 1/a and the Patterson measure of the set
A∞(a) is replaced by its Hausdorff dimension.

Now for any real positive σ ≤ δ , define the function

aσ(x) =

{ χ

(log x)1/σ
if x ∈ [e,+∞)

χ if x ∈ [1, e) .

It follows from (20) that

(24) A∞(aδ) ⊆

{
v : lim sup

t→∞

− log
(
dist

(
γv(t),G

))

log t
≥

1

2δ

}
,

and

(25)
⋂

0<σ<δ

(
A∞(aσ)

)c
⊆

{
v : lim sup

t→∞

− log
(
dist

(
γv(t),G

))

log t
≤

1

2δ

}
,

where
(
A∞(aσ)

)c
denotes the complement of the set A∞(aσ) .

From the above discussion µ
(
A∞(aδ)

)
= 1, whence the set appearing on the

right hand side of (24) has full µ-measure. For σ < δ , the set A∞(aσ) has zero
µ-measure, whence

(
A∞(aσ)

)c
has full µ-measure. By construction,

(
A∞(aσ1

)
)c

⊃
(
A∞(aσ2

)
)c

for σ1 < σ2 , hence the set appearing on the left hand side of (25) has full µ-
measure. This implies that the set appearing on the right hand side of (25) also
has full µ-measure. Thus the proof of Part 2 is now complete.

Remark 5. In (20) the inequalities

ri
Ri

≫ d2
i and riRi ∼ e−2ti ,

hold in higher dimensions for any simple closed geodesic G on M k+1 = Hk+1/G .
Here G is a convex co-compact group acting in Hk+1 . It is these inequalities that
are used in establishing (24) and (25). In view of this, the statement of Part 2 is
valid in higher dimensions.
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An analogous statement to Part 1 in higher dimensions can be established in
the following way. Let G denote a simple directed closed geodesic of M k+1 =
Bk+1/G , where G is a convex co-compact group acting in the unit ball model
Bk+1 . For any point x on G consider the unit ball S(x) in the tangent space of
M k+1 centred at x . Let ζG (x) be the unit tangent vector to G at x . With this
in mind, let

ΩG =
{(

x, ζG (x)
)

: x ∈ G
}
.

Then for a given point p on M k+1 and α in [0, 1] ,

dim

{
v ∈ S(p) : lim sup

t→∞

− log
(
dist

((
γv(t), γ

′

v(t)/‖γ
′

v(t)‖
)
,ΩG

))

t
≥ α

}
=

1 − α

1 + α
δ,

where dist is the canonical invariant distance in the unit tangent space of M k+1

induced by the metric given, for example, in Theorem 8.1.1 [9].

Finally, let {Gl}
n
l=1 be a collection of non-intersecting, simple closed geodesics

on M limiting the funnels {Zl}
n
l=1 . Given Gl , let Tl be the set of times t such

that γv(t) lies in Cε(Gl) . In view of Remark 3, the following generalization of
Theorem 4 (Part 1) can be obtained.

Corollary 1. For 0 ≤ α ≤ 1 , the Hausdorff dimension of the set of directions

v in S(p) such that

lim sup
t→∞,
t∈Tl

− log
(
dist

(
γv(t),Gl)

)

t
≥ α for all l ∈ L ⊆ {1, . . . , n},

is equal to (1 − α)/(1 + α)δ .
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