ON THE MOVEMENT OF THE POINCARÉ METRIC
WITH THE PSEUDOCONVEX DEFORMATION
OF OPEN RIEMANN SURFACES

Takashi Kizuka
Kyushu University 36 (Faculty Eng.), Graduate School of Mathematics
Fukuoka 812, Japan; kizuka@math.kyushu-u.ac.jp

Abstract. The movement of the Poincaré metrics of open Riemann surfaces belonging to
an analytic family defined on a 2-dimensional complex manifold Ω is logarithmically plurisubhar-
monic in Ω if Ω is Stein. As a corollary, we get a theorem due to Nishino.

0. Introduction

It has been known since Riemann that differentiable surfaces having a common
constant Gauss curvature k are locally isometric to each other. Hence, thanks to
Gauss–Bonnet’s theorem, we know that a Riemann surface R of non-exceptional
type has the unique complete hermitian metric ds_R^2 with constant Gauss curvature
$k = -4$, which we call the Poincaré metric of R. Let \tilde{R} denote the universal
covering surface of R with the canonical projection $\pi: \tilde{R} \rightarrow R$. The induced
metric $\pi^*ds_R^2$ is the erstwhile Poincaré metric of \tilde{R}, which is biholomorphically
equivalent to the unit disc D.

Let Ω be a two-dimensional Stein manifold and let f be a holomorphic function
defined on Ω such that $df \neq 0$ at each point of Ω. We treat the foliation
defined by prime surfaces (irreducible components of level surfaces) of f in this
paper. Let S_c be a prime surface of f with value c and suppose that S_c is not of
exceptional type. We denote the Poincaré metric of S_c by ds_c^2. In the case where
S_c is of exceptional type, set $ds_c^2 \equiv 0$ on S_c. We also call ds_c^2 the Poincaré metric
of S_c in the latter case. We prove that the movement of ds_c^2 is logarithmically
plurisubharmonic in Ω in the following sense: Each point of Ω has a neighborhood
U and a holomorphic function g in U such that $z = g(p)$, $w = f(p)$ ($p \in U$)
defines a biholomorphic mapping of U onto a domain of \mathbb{C}^2. Suppose that the
Poincaré metrics ds_w^2 of prime surfaces S_w satisfying $S_w \cap U \neq \emptyset$ have the expression
$ds_w = A(z,w)|d(z|S_w)|$ on $S_w \cap U$ with respect to the local holomorphic
coordinate system (z,w). Then $\log A(z,w)$ must be a plurisubharmonic function
in U. This assertion is independent of the choice of the function g.

This fact was first noted by H. Yamaguchi [4, Corollary 3] in 1981 for the special
case that each level surface of f is biholomorphically equivalent to the

1991 Mathematics Subject Classification: Primary 32A10; Secondary 32G05.
unit disc and that the boundaries of Ω and S_c are smooth, where he has used Hadamard’s variational method. We prove this result generally and directly using a purely function-theoretic idea.

1. Robin constant and Poincaré metric of the unit disc

Let ds^2 denote the Poincaré metric of the unit disc D. Let z be a local holomorphic coordinate system around a point p of D such that $z(p) = 0$. Assume that ds^2 has the expression

$$ds = A(z)|dz|$$

with respect to the local coordinate system z. Since $k = -(\Delta z \log A)/A^2 = -4$, $\log A$ is a subharmonic function on the variable z.

Let ζ be a standard holomorphic coordinate system of D such that $\zeta(p) = 0$. Then $A(z) = |d\zeta/dz|/(1 - |z|^2)$, and so $A(0) = |d\zeta/dz|_{z=0}$. Let g_p denote the Green function of D with pole at p. The Robin constant λ_z for (D, p) with respect to the local coordinate system z is the real number $\lim_{z \to 0} g_p(z) + \log |z|$.

Since $g_p = -\log |\zeta|$, we get $\lambda_z = \log(|dz/d\zeta|_{\zeta=0})$. Therefore $\lambda_z = -\log A(0)$. The following result can now be easily proved.

Lemma 1.1. Let $D_j (j = 1, 2, \ldots)$ be a sequence of simply connected subdomains of the unit disc D such that $D_j \subset D_{j+1}$ and $D = \cup D_j$. Then the sequence of the Poincaré metrics ds_j^2 of D_j converges monotonously to the Poincaré metric ds^2 of D.

2. The movement of $ds_{c, \alpha}^2$

Let Ω be a two-dimensional Stein manifold. Suppose that there exists a holomorphic function f on Ω such that $df \neq 0$ at each point of Ω. Fix a smooth strictly plurisubharmonic function ϱ in Ω such that $\Omega^\alpha = \{p \in \Omega \mid \varrho(p) < \alpha\}$ is relatively compact in Ω for each real number α.

For a point p_0 of Ω, fix a holomorphic function g in a relatively compact neighborhood U of p_0 such that $z = g(p)$, $w = f(p)$ ($p \in U$) defines a biholomorphic mapping G of U onto a bidisc $B = \{(z, w) \in \mathbb{C} \mid |z| < 1, |w - f(p_0)| < \varepsilon\}$ for some positive constant ε. Fix a real number α such that $U \subset \subset \Omega^\alpha$. Set $O = G^{-1}(\{(z, w) \in B \mid z = 0\})$. Let c be a complex number satisfying $|c - f(p_0)| < \varepsilon$. Let S_c^α denote the prime surface of $f \mid \Omega^\alpha$ with value c which passes O, where $f\mid\Omega^\alpha$ is the restriction of f to Ω^α, and $ds_{c, \alpha}^2$ the Poincaré metric of S_c^α. In this section, we prove that the movement of $ds_{c, \alpha}^2$ is logarithmically plurisubharmonic in U.

Set $O_c = O \cap S_c^\alpha$. Because of the subharmonicity of the restriction $g \mid S_c$ of g to S_c, we get the following lemma due to T. Nishino [2].
Lemma 2.2. Let S_c denote the prime surface of f with value c which contains S_c^α. Let γ be a closed continuous curve on S_c^α beginning and ending at O_c. If γ is not null-homotopic on S_c^α with base point O_c, then γ is not null-homotopic on S_c with base point O_c.

Set $a = f(p_0)$. Let \tilde{S} be a domain in the prime surface S_a such that $S_a^\alpha \subset \subset \tilde{S} \subset \subset S_a$. We also get the following

Lemma 2.3. There exists a tubular neighborhood V of \tilde{S} in Ω and a holomorphic mapping φ of V onto \tilde{S} such that the mapping $\Phi: p \mapsto (\varphi(p), f(p))$ $(p \in V)$ maps V onto the direct product $\tilde{S} \times \Gamma$ biholomorphically where $\Gamma = \{c \in \mathbb{C} | \|c - a\| < \delta\}$ for some positive number δ and such that $S_c^\alpha \subset \subset (S_c \cap V) \subset \subset S_c$ for each $c \in \Gamma$.

Proof. We prove this lemma using Nishino’s trick. Each point of Ω has a holomorphically convex neighborhood W with a holomorphic vector field X_W such that $(X_W)_p f = 1$ for each point p in W. Since Ω is Stein, we can construct a global holomorphic vector field X on Ω which satisfies $X_p f = 1$ for each point p in Ω. The system of local solutions of the partial differential equation $X_p g = 0$ defines a transversal holomorphic foliation on Ω with the holomorphic foliation defined by the prime surfaces of f. It proves the lemma.

Let \tilde{V} denote the universal covering of the tubular neighborhood V of \tilde{S} in Lemma 2.3 whose canonical projection we denote by $\varpi: \tilde{V} \rightarrow V$. The analytic surface $\varpi^{-1}(S_c \cap V)$ is the universal covering surface of $S_c \cap V$ and the manifold \tilde{V} is biholomorphically equivalent to the direct product $\mathbb{D} \times \Gamma$. So we identify \tilde{V} with $\mathbb{D} \times \Gamma$ hereafter. Fix a connected component U^* of $\varpi^{-1}(U \cap V)$. Set $\mathcal{D}^\alpha = \bigcup \{ \tilde{S}_c^\alpha \}$. Then \mathcal{D}^α is a subdomain of $V \cap \Omega^\alpha$ (cf. Nishino [1]). Let \tilde{S}_c^α denote a connected component of $\varpi^{-1}(S_c^\alpha)$ which passes U^*. Because of Lemma 2.2, each \tilde{S}_c^α is a simply connected subdomain of $\mathbb{D} \times \{c\}$. Hence \tilde{S}_c^α is the universal covering surface of S_c^α with the projection $\varpi | \tilde{S}_c^\alpha$. Set $\tilde{\mathcal{D}} = \bigcup \{ \tilde{S}_c^\alpha \}$, which is a subdomain of \tilde{V}. The manifold $\tilde{\mathcal{D}}$ is an unramified covering of \mathcal{D}^α and the section of $\tilde{\mathcal{D}}$ by the complex line $w = c$ is \tilde{S}_c^α.

Let ξ be a standard holomorphic coordinate system of \mathbb{D}. In the following, we treat the manifold $\tilde{V} = \mathbb{D} \times \Gamma$ as a domain of the direct product $P \times \Gamma$ where P is the Riemann sphere equipped with the inhomogeneous coordinate system ξ. The subdomain $\tilde{\mathcal{D}}$ of $\mathbb{D} \times \Gamma$ is pseudoconvex in $P \times \Gamma$ since the frontier points of $\tilde{\mathcal{D}}$ in $\mathbb{D} \times \Gamma$ are strongly pseudoconvex. Let ds_c^2 denote the Poincaré metric of \tilde{S}_c^α which has the expression $d\tilde{s}_w = A(\xi, w) |d(\xi) | S_c^\alpha |_w|$ with respect to the coordinate system (ξ, w) of $\tilde{\mathcal{D}}$. It suffices for us to prove that $\log A(\xi, w)$ is plurisubharmonic in U^*.

As is seen in the beginning of Section 1, $\log A(\xi, c)$ is a subharmonic function in $U^* \cap \tilde{S}_c^\alpha$ for each constant $c \in \Gamma$. So, for a subdomain Γ' of Γ, we prove that $\log A(\psi(w), w)$ is a subharmonic function on the variable w for an arbitrary
holomorphic function ψ in Γ' satisfying $(\psi(w), w) \in U^*$ for each $w \in \Gamma'$. Let $\lambda_{\xi_j}^{\omega}$ denote the Robin constant for $(\tilde{S}_w^\alpha, (\psi(w), w))$ with respect to the local coordinate system $\xi_j^\alpha(\tilde{S}_w^\alpha)$ where ξ' is the meromorphic function $\xi - \psi(w)$ defined on $P \times \Gamma'$. Since $A(\xi, w)|d(\xi|\tilde{S}_w^\alpha)| = A(\xi + \psi(w), w)|d(\xi|\tilde{S}_w^\alpha)|$, it follows from Section 1 that $\lambda_{\xi_j}^{\omega} = -\log A(\psi(w), w)$. Set $\sigma = \{(\xi, w) \in P \times \Gamma' \mid \xi = \psi(w)\}$. Consider the mapping Ψ of $(P \times \Gamma') - \sigma$ onto $\Gamma' \times C$ defined by $x = w(p)$, $y = 1/\xi(p)$ ($p \in (P \times \Gamma') - \sigma$). The complement K of the image $\Psi(\tilde{\Gamma}' - \sigma)$ in $\Gamma' \times C$ is a pseudoconcave subset of $\Gamma' \times C$. Let K_t denote the section $K \cap L_t$ of K by the complex line $L_t = \{(x, y) \in \Gamma' \times C \mid x = t\}$. As H. Yamaguchi proved in 1971 by a function-theoretic deduction, the transfinite diameter $d_{\infty,t}$ of K_t is a logarithmically subharmonic function on the variable t (cf. Yamaguchi [5]). Thanks to G. Szegö [3], we know that $\lambda_{\xi_j}^{t} = -\log d_{\infty,t}$. Hence we have proved that $\log A(\psi(w), w)$ is a subharmonic function on the variable w.

3. Conclusions

Since $d_{s_c,\beta} \leq d_{s_c,\alpha}$ for real numbers α and β satisfying $\alpha < \beta$, it is sufficient for the proof of the assertion in Introduction to prove that $d_{s_c,\alpha} \rightarrow d_{s_c} (\alpha \rightarrow \infty)$. Let \hat{S}_c denote the universal covering surface of S_c with the canonical projection $\pi: \hat{S}_c \rightarrow S_c$. Fix a point \hat{p} of $\pi^{-1}(p_0)$. Let D_c^α denote the connected component of $\pi^{-1}(S_c^\alpha)$ which contains \hat{p}. Because of Lemma 2.2, D_c^α is a simply connected domain of \hat{S}_c and $D_c^\alpha \subset D_c^\beta$ for real numbers α and β satisfying $\alpha < \beta$. Suppose that S_c is not of exceptional type. Since $\hat{S}_c = \bigcup_\alpha D_c^\alpha$, we get by Lemma 1.1 that $d_{s_c,\alpha} \rightarrow d_{s_c} (\alpha \rightarrow \infty)$. When S_c is of exceptional type, we can prove easily that $d_{s_c,\alpha} \rightarrow 0 (\alpha \rightarrow \infty)$. Using a tubular neighborhood of S_c^α, we can prove by this fact that $A(z, w)$ in Introduction is upper semi-continuous. Hence $A(z, w)$ must be logarithmically plurisubharmonic by the result of the previous section. Therefore we get the following

Theorem. Let f be a holomorphic function on a two-dimensional Stein manifold Ω such that $df \neq 0$ at each point of Ω. Then the movement of the Poincaré metrics of prime surfaces of f is logarithmically plurisubharmonic in Ω.

Corollary (T. Nishino [2]). Let f be a holomorphic function on a two-dimensional Stein manifold. Set $e = \{c \in C \mid \text{at least one prime surface of } f \text{ with value } c \text{ is of exceptional type}\}$. If the logarithmic capacity of e is not zero, then every prime surface of f is smooth and of exceptional type.

In the case where $df \neq 0$ at each point, the proof of the above corollary is straightforward. For the general case, we must prove the fundamental lemma of T. Nishino [2] in a modified form to fit our situation. But the above theorem makes the proof of the modified fundamental lemma fairly easy.
References

Received 14 February 1994