EXACT COEFFICIENT ESTIMATES FOR UNIVALENT FUNCTIONS WITH QUASICONFORMAL EXTENSION

Samuel L. Krushkal
Bar-Ilan University, Research Institute for Mathematical Sciences
Department of Mathematics, 52900 Ramat-Gan, Israel; krushkal@bimacs.cs.biu.ac.il

Abstract. We give here a complete solution of the coefficient problem for normalized univalent functions on the unit disk, with k-quasiconformal extension for a small k, and derive an explicit bound for k.

1. Introduction

While the coefficient problem is completely solved in the class of all normalized univalent functions on the disk $\{|z|<1\}$, the question remains open for functions with quasiconformal extension.

The strongest result here is established for the functions with k-quasiconformal extension where k is small; see [Kr2].

Let S be the class of functions $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ univalent in the unit disk $\Delta = \{|z|<1\}$. The class $S(k)$ consists of $f \in S$ admitting k-quasiconformal extension onto the whole Riemann sphere $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, with additional normalization $f(\infty) = \infty$. Let

$$f_1(z) = \frac{z}{(1-ktz)^2}, \quad |z| < 1, \ |t| = 1,$$

$$f_{n-1} \{ f_1(z^{n-1}) \}^{1/(n-1)} = z + \frac{2kt}{n-1} z^n + \cdots, \quad n = 3, 4, \ldots.$$

Consider on S a functional F of the form

$$F(f) = a_n + H(a_{m_1}, a_{m_2}, \ldots, a_{m_s}),$$

where $a_j = a_j(f) \ ; \ n, m_j \geq 2$ and H is a holomorphic function of s variables in an appropriate domain of \mathbb{C}^s. We assume that this domain contains the origin $\mathbf{0}$ and that $H, \partial H$ vanish at $\mathbf{0}$.

The mentioned result of [Kr2] is:

1991 Mathematics Subject Classification: Primary 30C50, 30C75.
Theorem 1. For any functional of the above form there exists a $k(F) > 0$ such that, for $k \leq k(F)$,

$$\max_{S(k)} |F(f)| = |F(f_{n-1})|$$

for some $|t| = 1$.

As a corollary, one immediately gets for $f \in S(k)$ the sharp estimate

$$|a_n| \leq \frac{2k}{n-1}$$

for $k \leq k_n$, with equality only for the function f_{n-1}. This solves the well-known problem of Kühnau and Niske; see [KuN]. The estimate (2) is interesting only for $n \geq 3$, because for $n = 2$ there is the well-known bound $|a_2| \leq 2k$ for all $k \in [0, 1]$ with equality for the function f_1.

The purpose of this paper is to improve on Theorem 1, supplementing it with an explicit estimate for the quantity $k(F)$.

2. Statement of results

The main result of the paper is:

Theorem 2. Let $\sup_{S} |F(f)| = M_n$. Then the equality (1) holds for all

$$k \leq \frac{1}{2 + (n-1)(M_n + 1)} =: k_0(F).$$

The bound (3) is not sharp and can be improved.

Corollary. The estimate (2) is valid for all

$$k \leq \frac{1}{n^2 + 1}.$$

Proof. Take $F(f) = a_n$. Since $M_n = n$, by de Branges's theorem [dB], one immediately deduces from (3) that in this case

$$k_0(F) = \frac{1}{n^2 + 1}.$$

For simplicity, we consider here the functionals F with holomorphic H depending on a finite number of coefficients a_m. The latter condition is not essential; one can take H depending on infinitely many a_m (provided the series expansion of H converges in some complex Banach space). The result shows that the main contribution here is given by the linear term a_m. The estimate (3) determines for which k this is true.
3. Proof of Theorem 2

We shall show that for \(k \) satisfying (3) all arguments employed in the proof of Theorem 1 in [Kr2] remain valid after some modification. Actually, we only need to modify the proof of Lemma 1.

On \(\Delta^* = \{ z \in \mathbb{C} : |z| > 1 \} \) we have the Beltrami coefficients \(\mu_f = \partial \bar{z}f / \partial z f \) of the extensions \(f^\mu \) of functions \(f \in S(k) \); these coefficients range over the ball

\[
B(\Delta^*) = \{ \mu \in L_{\infty}(\mathbb{C}) : \mu \mid \Delta = 0, \| \mu \|_\infty < 1 \}.
\]

Let \(B(\Delta^*)_k = \{ \mu \in B(\Delta^*) : \| \mu \| \leq k \} \).

Note that the Beltrami coefficient for \(f_{n-1} \) can be taken to be \(kt\mu_n \), where \(|t| = 1 \) and

\[
\mu_n(z) = \frac{|z|^{n+1}}{z^{n+1}}.
\]

We shall also use the following notations. For a functional \(L : S \to \mathbb{C} \) define

\[
\hat{L}(\mu) = L(f^\mu), \quad \mu \in B(\Delta^*)
\]

If \(L \) is complex Gateaux differentiable, \(\hat{L} \) is a holomorphic functional on \(B(\Delta^*) \).

All our functionals have this property.

For \(\mu \in L_{\infty}(\Delta^*), \varphi \in L_1(\Delta^*) \) we define

\[
\langle \mu, \varphi \rangle = -\frac{1}{\pi} \iint_{\Delta^*} \mu \varphi \, dx \, dy \quad (z = x + iy).
\]

For small \(k \), the functions \(f^\mu \in S(k) \) can be represented by

\[
f^\mu(\zeta) = \zeta - \frac{\zeta^2}{\pi} \iint_{\Delta^*} \frac{\mu(z) \, dx \, dy}{z^2(z - \zeta)} + O(\| \mu \|^2),
\]

where the estimate of the remainder term is uniform on compact subsets of \(\mathbb{C} \) (see e.g. [Kr1, Ch. 2]); this easily implies

\[
\hat{F}(\mu) = \langle \mu, \frac{1}{z^{n+1}} \rangle + O_n(\| \mu \|^2)
\]

and hence

\[
\| \hat{F}'(0) \| = \sup \left\{ \left| \langle \mu, \frac{1}{z^{n+1}} \rangle \right| : \| \mu \| \leq 1 \right\} = \frac{1}{\pi} \iint_{\Delta^*} \frac{dx \, dy}{|z|^{n+1}} = \frac{2}{n - 1}.
\]
Now, applying the Schwarz lemma to the function

\[h_\mu(t) = \hat{F}(t\mu) - \hat{F}'(0)t\mu: \Delta \to \mathbb{C}, \]

where \(\mu \in B(\Delta^*) \) is fixed, we get

\[|\hat{F}(\mu) - \hat{F}'(0)\mu| \leq (M_n + \|\hat{F}'(0)\|)\|\mu\|^2 = \left(M_n + \frac{2}{n-1} \right)\|\mu\|^2. \]

Consider the auxiliary functional

\[\hat{F}_p(\mu) = \hat{F}(\mu) + (p - 1)\xi\left\langle \mu, \frac{1}{z_p+1} \right\rangle, \]

where \(p \neq n \) is fixed and \(|\xi| < \frac{1}{2} \). Then

\[\sup_{B(\Delta^*)} |\hat{F}_p(\mu)| < M_n + 1 \]

and, similarly to (7),

\[\left| \hat{F}_p(\mu) - \hat{F}'(0)\mu - (p - 1)\xi\left\langle \mu, \frac{1}{z_p+1} \right\rangle \right| \leq \left(M_n + 1 + \frac{2}{n-1} \right)\|\mu\|^2. \]

We shall require that

\[\left(M_n + 1 + \frac{2}{n-1} \right)\|\mu\|^2 < \frac{1}{n-1}\|\mu\| \]

or, equivalently,

\[\|\mu\| \leq \frac{1}{2 + (n-1)(M_n + 1)} = k_0(F). \]

Consider now any function \(f_0 \) in \(S(k) \) maximizing \(|F| \) over \(S(k) \) (the existence of such functions follows from compactness). Let \(\mu_0 \) be an extremal dilatation of \(f_0 \), i.e.

\[\|\mu_0\|_\infty = \inf\{\|\mu\|_\infty \leq k : f^\mu | \Delta = f_0 | \Delta\}. \]

Note that \(\|\mu_0\|_\infty = k \) by the maximum modulus principle. Suppose that \(\mu_0 \neq kt\mu_n \), where \(|t| = 1 \), and \(\mu_n \) is defined by (5). We show that this leads to contradiction for \(k \) satisfying (3). First of all, we may establish the following important property of extremal maps:
Lemma 1. If \(k \) satisfy (3), then for all \(2 \leq p \neq n \),

\[
\langle \mu_0, \frac{1}{z^{p+1}} \rangle = 0.
\]

Proof. Note that, from (6),

\[
\langle \mu_0, \frac{1}{z^{p+1}} \rangle = \lim_{\tau \to \infty} \frac{a_p(f^\tau \mu_0)}{\tau}.
\]

Consider the classes \(S(\tau k_0) \) where \(k_0 = k_0(F) \) is defined in (3) and \(0 < \tau < 1 \).

It follows from (6) that, as \(\tau \to 0 \),

(12) \(\max \{ |\hat{F}(\mu)| : \|\mu\| \leq \tau k_0 \} = \frac{\tau k_0}{\pi} \int \int_{\Delta^*} \frac{dx \, dy}{|z|^{n+1}} + O_n(\tau^2) = |\hat{F}(\tau \mu_0)| + O_n(\tau^2). \)

A similar calculation for functional (8) implies

(13) \(\max_{B(\Delta^*)} |\hat{F}_p(\mu)| = \frac{\tau k_0}{\pi} \int \int_{\Delta^*} \frac{1}{|z|^{n+1}} + \frac{(p-1)\xi}{z^{p+1}} \frac{dx \, dy}{|z|^{n+1}} + O_n(\tau^2), \)

where the remainder term estimate follows from (10) and depends (as in (12)) only on \(M_n \) and \(k_0 \).

Using the known properties of the norm

\[
h_p(\xi) = \int \int_{\Delta^*} |z^{-n-1} + (p-1)\xi z^{-p-1}| \, dx \, dy
\]

following from the Royden [Ro] and Earle–Kra [EK] lemmas, we deduce from (12), (13) that for small \(\xi \) there should be

(14) \(\max_{B(\Delta^*)} |\hat{F}_p(\mu)| = \max_{B(\Delta^*)} |\hat{F}(\mu)| + \tau a_p(\xi) + O_p(\tau^2 \xi) + O_n(\tau^2). \)

On the other hand, we have as \(\xi \to 0, \tau \to 0 \), from (8)

\[
|\hat{F}_p(\tau \mu_0)| = |\hat{F}(\tau \mu_0)| + \text{Re} \frac{\hat{F}(\tau \mu_0)}{|\hat{F}(\tau \mu_0)|} (p-1)\xi \langle \mu_0, \frac{1}{z^{p+1}} \rangle + O(\tau^2 \xi^2)
\]

\[
= |\hat{F}(\tau \mu_0)| + \tau (p-1)|\xi| \left| \langle \mu_0, \frac{1}{z^{p+1}} \rangle \right| + O(\tau^2 \xi^2)
\]

with suitable choices of \(\xi \to 0 \). Comparing this with (14), (10), (11), we conclude that \(\langle \mu_0, z^{-p-1} \rangle = 0 \). The proof of Lemma is completed.
This lemma is one of the central points in the proof of the Theorems 1 and 2. The crucial point in the proof of Lemma 1 is that we now have to check here that simultaneously an infinite (countable) number of orthogonality conditions remain valid for all \(k \) satisfying (3).

The next part of the proof is similar to [Kr2]. We briefly check that the arguments remain valid for all \(k \).

Consider the Grunsky coefficients of the function \(\sqrt{f(z^2)} \) which are defined from the series expansion

\[
\log \left(\frac{(f(z^2))^{1/2} - (f(\zeta^2))^{1/2}}{z - \zeta} \right) = -\sum_{m,n=1}^{\infty} \omega_{mn} z^m \zeta^n,
\]

taking the branch of logarithm which vanishes at 1. The diagonal coefficients \(\omega_{n-1,n-1}(f) \) are related to the Taylor coefficients of \(f \) by

\[
\omega_{n-1,n-1} = \frac{1}{2} a_n + P(a_2, \ldots, a_{n-1})
\]

where \(P \) is a polynomial without constant or linear terms (see [Hu]). Moreover, for \(f \in S(k) \) there is the well-known bound

\[
|\omega_{n-1,n-1}| \leq \frac{k}{n-1}
\]

with equality only for the functions \(f_{n-1} \).

Therefore, the map \(\Lambda_{n-1}: B(\Delta^*) \to B(\Delta^*) \) defined by

\[
\Lambda_{n-1}(\mu) = \{(n-1)\omega_{n-1,n-1}(\mu)\} \mu_n
\]

is holomorphic and fixes the disk \(\{t \mu_n : |t| < 1\} \). The differential of \(\Lambda_{n-1} \) at \(\mu = 0 \) can be easily computed from (6), (15). It is an operator \(P_n: L_\infty(\Delta^*) \to L_\infty(\Delta^*) \) given by

\[
P_n(\mu) = \beta_n \langle \varphi_n, \mu \rangle \mu_n, \quad \varphi_n = \frac{1}{z^{n+1}}.
\]

Let us define \(P_n(\mu) = \alpha(k) \mu_n \). Since, by assumption, \(f_0 \) is not equivalent to \(f_{n-1} \), we have

\[
\left\{ \Lambda_{n-1} \left(\frac{t}{k} \mu_0 \right) : |t| < 1 \right\} \not\subseteq \left\{ |t| < 1 \right\}.
\]

Thus, by the Schwarz lemma,

\[
|\alpha(k)| < k.
\]

Now consider the function

\[
\nu_0 = \mu_0 - \alpha(k) \mu_n
\]
and show that ν_0 eliminates integrable holomorphic functions on Δ^*.

From Lemma 1 and the mutual orthogonality of the powers z^m, $m \in \mathbb{Z}$,

$$\langle \nu_0, \frac{1}{z^{p+1}} \rangle = 0$$

for $p = 2, 3, \ldots, p \neq n$. To establish that

$$\langle \nu_0, \frac{1}{z^{n+1}} \rangle = 0,$$

consider the conjugate operator

$$P_n^*(\varphi) = \beta_n \langle \mu_n, \varphi \rangle \varphi_n, \quad \varphi_n = \frac{1}{z^{n+1}},$$

which maps $L_1(\Delta^*)$ onto $L_1(\Delta^*)$ and fixes the subspace $\{\lambda \varphi_n : \lambda \in \mathbb{C}\}$. The definition of ν_0 implies $P_n(\nu_0) = 0$. Thus, for some λ,

$$\langle \nu_0, \varphi_n \rangle = \lambda \langle \nu_0, P_n^* \varphi_n \rangle = \lambda \langle P_n \nu_0, \varphi_n \rangle = 0.$$

Now consider in $L_1(\Delta^*)$ the subspace $A_1(\Delta^*)$ of functions φ which are holomorphic on Δ^* and satisfy the condition $\varphi(z) = O(|z|^{-3})$ as $|z| \to \infty$. Let

$$A_1(\Delta^*)^\perp = \{\mu \in L_\infty(\Delta^*) : \langle \mu, \varphi \rangle = 0 \text{ for all } \varphi \in A_1(\Delta^*)\}.$$

Since the functions $\varphi_n = 1/z^{n+1}$, $n = 2, 3, \ldots$, form a complete set in $A_1(\Delta^*)$, we have proved that $\nu_0 \in A_1(\Delta^*)^\perp$.

Now we use the well-known properties of extremal quasiconformal maps (see e.g. [Ga], [Kr1], [RS]). First of all, since μ_0 is extremal for f_0,

$$\|\mu_0\|_\infty = \inf \{|\langle \mu_0, \varphi \rangle| : \varphi \in A_1(\Delta^*), \|\varphi\| = 1\};$$

moreover, such an equality is necessary and sufficient for $\mu \in B(\Delta^*)$ to be extremal for f^μ. Hence, for any $\nu \in A_1(\Delta^*)^\perp$,

$$\|\mu_0\|_\infty = \inf \{|\langle \mu_0 + \nu \rangle| : \varphi \in A_1(\Delta^*), \|\varphi\| = 1\} \leq \|\mu_0 + \nu\|_\infty.$$

Thus we have

Lemma 2. If f_0 is extremal,

$$\|\mu_0\|_\infty = k \leq \|\mu_0 - \nu_0\|_\infty. \tag{17}$$

We may now complete the proof of Theorem 2. By (17)

$$k \leq \|\mu_0 - \nu_0\|_\infty = \|\alpha(k) \mu_n\|_\infty = |\alpha(k)|,$$

which contradicts (16). Hence f_0 is equivalent to f_{n-1} and we can take $\mu_0 = kt \mu_n$ for some $|t| = 1$.

4. Complementary remarks and open questions

1) The estimates (1)–(3) also hold in the class \(S_k(1) \) of functions \(f \in S \) with \(k \)-quasiconformal extensions \(\tilde{f} \) normalized by \(\tilde{f}(1) = 1 \).

The proof is similar, only (6) should be replaced with the corresponding representation formula for \(f \in S_k(1) \) [Kr1, Ch. 5]:

\[
f^\mu(\zeta) = \zeta - \frac{\zeta^2(\zeta - 1)}{\pi} \iint_{\Delta^*} \frac{\mu(z) \, dx \, dy}{z^2(z - 1)(z - \zeta)} + O(\|\mu\|), \quad \text{as } \|\mu\| \to 0.
\]

2) Similar results are valid for the class \(\Sigma(k) \) of functions \(g(z) = z + \sum_{n=0}^{\infty} b_n z^{-n} \), \(z \in \Delta^* \), with \(k \)-quasiconformal extensions to \(\hat{C} \) which fix the origin.

The next two problems still remain open:

1) Does there exist an estimate of coefficients \(a_n \) \((n \geq 3)\) for \(f \in S(k) \) which holds for \(k \leq k_0 \) with a single \(k_0 > 0 \)?

2) Can we find exact estimates of coefficients \(a_n \) for univalent functions on the disk with quasiconformal extension in the general case when the dilatation \(k < 1 \) is arbitrary?

For \(f \in S(k) \), one gets from (7) the estimate

\[
|a_n| \leq \frac{2k}{n-1} + \left(n + \frac{2}{n-1}\right)k^2
\]

for any \(k \), \(0 \leq k < 1 \), (cf. [KrKu, Part 1, Ch. 2]). Note also that Grinshpan [Gr] established the exact growth order, with respect to \(n \), of the coefficients \(a_n \) of \(f \in S \) with \(k \)-quasiconformal extension, without any additional normalization: \(|a_n| \leq cn^k \).

References

Exact coefficient estimates

Received 17 March 1994