
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 22, 1997, 205–226

A STRONG LIOUVILLE THEOREM FOR

p-HARMONIC FUNCTIONS ON GRAPHS

Ilkka Holopainen and Paolo M. Soardi

University of Helsinki, Department of Mathematics

P.O. Box 4, FIN-00014 Helsinki, Finland; ih@geom.helsinki.fi
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Abstract. We prove a global Harnack inequality for positive p -harmonic functions on a
graph Γ provided a weak Poincaré inequality holds on Γ and the counting measure of Γ is
doubling. Consequently, every positive p -harmonic function on such a graph must be constant.

1. Introduction

Harmonic functions on graphs and on other discrete structures are interesting
not only for their own sake but also because they are closely related to harmonic
functions on noncompact Riemannian manifolds. For instance, if the local ge-
ometry of M is controlled, then the parabolicity of M , i.e. the nonexistence of
Green’s function on M , is characterized by the parabolicity of certain discrete
structures, called ε-nets, of M . Furthermore, M has nonconstant harmonic func-
tions of finite energy if and only if any ε-net of M does so. Analogous statements
hold also in the case of p-harmonic functions. Recall that an ε-net of M is a
graph whose vertex set X is a maximal ε-separated subset of M , with a fixed
constant ε > 0, and whose edge set consists of all (unoriented) pairs x, y ∈ X
such that 0 < d(x, y) ≤ 3ε , where d stands for the Riemannian distance. Above
x and y are also said to be neighbors. Furthermore, a real-valued function on X
is harmonic if and only if its value at each point x ∈ X is the average of its values
at the neighbors of x . We refer to [V1], [K2], [H2], and [HS] for the proofs and
precise formulations of the above statements. In [LS] Lyons and Sullivan consid-
ered a slightly different discretization of a manifold M . We mention here just one
result among the many in [LS]. It states that, for certain discrete sets X ⊂ M
and for all y ∈ M , there are positive probability measures νy on X such that
every bounded harmonic function h on M satisfies h(y) =

∑

x∈X νy(x)h(x) at
every y ∈ M . In particular, the formula holds for every y ∈ X , and so h | X
is harmonic with respect to the discrete time Markov process with νy(x) as the
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transition probability that a particle at y ∈ X jumps next to x ∈ X . The condi-
tion for X is, roughly speaking, that each x ∈ X has neighborhoods V (x) ⋐ M
and U(x) ⋐ V (x) such that

⋃

x∈X U(x) “almost” covers M and that a Harnack
inequality supU(x) h ≤ C infU(x) h holds for every x ∈ X with a uniform con-
stant C whenever h is a positive harmonic function in V (x) . In the case where
M =

⋃

x∈X U(x) , a similar description holds for all positive harmonic functions
on M . See [LS, Theorems 5 and 6] for more details. We do not know whether
the above results of Lyons and Sullivan have counterparts in the nonlinear case
of p-harmonic functions. It is worth pointing out that the notion of harmonicity
with respect to the discrete process slightly differs from that on graphs.

In this paper we study the existence of positive nonconstant harmonic and,
in general, p-harmonic functions on graphs. Adapting the common terminology
we say that a graph Γ is strong Liouville (respectively p-strong Liouville) if every
positive harmonic (respectively p-harmonic) function on Γ is constant. A simple
example of strong Liouville graphs is the n -dimensional grid Zn . The purpose
of this paper is to show that a graph Γ is p-strong Liouville under very weak
conditions, more precisely, provided the counting measure of Γ is doubling and a
weak Poincaré-type inequality holds on Γ. The result is obtained by proving a
global Harnack inequality for positive p-harmonic functions on such a graph. It
is worth noting that probabilistic methods which are naturally present in the case
of harmonic functions are no longer available in the case p 6= 2. The assumptions
on Γ are in a sense sharp. Indeed, we show by examples that neither the doubling
condition nor the Poincaré inequality alone implies the strong Liouville.

Throughout the paper we assume that Γ = (V, E) is an infinite connected
graph, with V as the vertex set and E as the edge set. Vertices x and y are
called neighbors, denoted by x ∼ y , if there is an edge between them. The degree
of x , deg(x) , is the number of all neighbors of x . For x, y ∈ V , the distance
δ(x, y) will be the minimum number of edges which are needed to connect x and
y by a chain x ∼ x1 ∼ · · · ∼ y . The cardinality of U ⊂ V will be denoted by |U | .
The boundary of U , denoted by ∂U , is the set of all vertices in V \U which have
at least one neighbor in U , in brief ∂U = {x ∈ V : δ(x, U) = 1} . The set of all
edges with at least one endpoint in U will be denoted by E(U) .

Let u be a real-valued function in U ∪ ∂U . For each 1 < p < ∞ , we set

∆pu(x) =
∑

y∼x

sign
(

u(y)−u(x)
)

|u(y)−u(x)|p−1 =
∑

y∼x

|u(y)−u(x)|p−2
(

u(y)−u(x)
)

,

where we make a convention that |u(y)−u(x)|p−2
(

u(y)−u(x)
)

= 0 if u(y) = u(x)

also in case 1 < p < 2. We also set |∇pu(x)| =
(
∑

y∼x |u(y)−u(x)|p
)1/p

for p ≥ 1.

1.1. Definition. A function u of U ∪∂U is called p-harmonic (p-superhar-

monic) in U if ∆pu(x) = 0 (respectively ∆pu(x) ≤ 0) at every point x ∈ U .
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Equivalently, u is p-harmonic (or p-superharmonic) in U if and only if

(1.2)
∑

x∈U

∑

y∼x

|u(y) − u(x)|p−2
(

u(y) − u(x)
)(

w(y) − w(x)
)

= 0 (or ≥ 0)

for every finitely supported test function w in U ∪∂U , with w = 0 in ∂U and, in
addition, w ≥ 0 in the case of p-superharmonic functions; see [HS]. In the special
case p = 2, we obtain harmonic (respectively superharmonic) functions.

If B = B(y, r) = {x ∈ V : δ(x, y) ≤ r} is a ball and t > 0, we write
tB = B(y, tr) . Observe that given a ball B , its center and radius need not be
unique. When we write B and tB , we assume that a radius and a center of B
are fixed or clear from the context. Most of the time we assume that Γ satisfies
the following two conditions.

1. The (counting) measure | · | is doubling, i.e., there exists a (doubling) constant
Cd such that

(D) |B(y, 2r)| ≤ Cd|B(y, r)|

for every ball B(y, r) ⊂ V .
2. A weak (1, p)-Poincaré inequality holds, i.e., there are constants c and t ≥ 1

such that, for every ball B = B(y, r) ,

(Pp )
1

|B|

∑

x∈B

|u(x) − uB| ≤ cr

(

1

|tB|

∑

x∈tB

|∇pu(x)|p
)1/p

whenever u is a function in tB ∪ ∂(tB) .
Here and from now on uB = |B|−1

∑

x∈B u(x) is the average of u in B . An
immediate consequence of (D) is that Γ is of bounded degree, i.e.,

(1.3) d = sup{deg(x) : x ∈ V } < ∞.

The constant d will be called the maximum degree of Γ. Indeed, applying (D) with
r = 1

2 yields d ≤ Cd − 1. In [HK] Haj lasz and Koskela proved in a very general
setting of metric spaces that the doubling condition and a Poincaré inequality
imply a Sobolev–Poincaré inequality; see also [SC1]. In particular, their results
apply to graphs and so we have the following lemma.

1.4. Lemma. Suppose that Γ satisfies assumptions (D) and (Pp ). Then
there are constants λ > 1 and c such that, for every ball B = B(y, r) ⊂ V ,

(1.5)

(

1

|B|

∑

x∈B

|u(x) − uB |λp

)1/(λp)

≤ cr

(

1

|B|

∑

x∈B

|∇pu(x)|p
)1/p

whenever u is a function in B ∪ ∂B .
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As a consequence of (1.5) we have

(1.6)

(

1

|B|

∑

x∈B

|v(x)|λp

)1/(λp)

≤ cr

(

1

|B|

∑

x∈B

|∇pv(x)|p
)1/p

for every v vanishing in ∂B , and

(1.7)

(

1

|B|

∑

x∈B

|u(x) − uB|
p

)1/p

≤ cr

(

1

|B|

∑

x∈B

|∇pu(x)|p
)1/p

whenever u is a function in B ∪ ∂B .
Throughout the paper we say that u is positive and p-harmonic in U if it is

positive in U ∪ ∂U and p-harmonic in U . The main results of the paper are the
following.

1.8. Theorem. Suppose that Γ satisfies (D) and (Pp ). Then there is a
constant C1 such that

(1.9) max
x∈B

u(x) ≤ C1 min
x∈B

u(x)

whenever u is a positive p-harmonic function in 6B ⊂ V and B = B(o, 2N) .

1.10. Corollary. Suppose that Γ satisfies assumptions (D) and (Pp ). Then
Γ is p-strong Liouville.

Corollary 1.10 follows easily from Harnack’s inequality. Indeed, suppose that
u is a positive nonconstant p-harmonic function on V . We may assume that
infV u = 0. By the Harnack inequality (1.9)

max
B(o,2N )

u ≤ C1 min
B(o,2N )

u,

where the right hand side tends to zero as N → ∞ . Hence u is constant, which
leads to a contradiction.

1.11. Corollary. Suppose that Γ satisfies (D) and (P1 ), i.e. a weak (1, 1) -
Poincaré inequality. Then Γ is p-strong Liouville for every p > 1 .

Corollary 1.11 holds since a (1, q)-Poincaré inequality implies a (1, p)-Poin-
caré inequality for every p ≥ q by Hölder’s inequality. On the other hand, given
p > q ≥ 1 it is possible to construct graphs which admit the (1, p)-Poincaré
inequality but not the (1, q)-Poincaré inequality. These constructions can be done
by using ideas from [HeK]; we thank J. Heinonen for pointing out this to us.

We prove Theorem 1.11 by using a Moser-type iteration. Inequalities (1.6)
and (1.7) are crucial in the iteration process. In addition to these we need a
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Caccioppoli-type inequality (Theorem 2.1) and a version of the John–Nirenberg
lemma (Lemma 3.8). The Moser iteration may be a too complicated method in
the discrete setting. It would be interesting to find a simpler proof for the Harnack
inequality by scrutinizing directly the equation ∆pu(x) = 0. On the other hand,
our assumptions on the graph are quite minimal.

Throughout the paper Cd will refer to the doubling constant, c will be a pos-
itive constant whose value may change even within a line, and c(a, b, . . .) denotes
a constant depending on a, b, . . ..

In addition to the references given at the beginning of the introduction, we
refer to [A], [B], [BS], [L], [MMT], [RSV], [S1], and [S2] for further studies on
discrete potential theory and, in particular, for Liouville-type results on graphs.
For the nonlinear potential theory in Rn and on Riemannian manifolds we refer
to [HKM] and [H1]. After the paper was completed T. Coulhon informed us
about the manuscript [De] where a global Harnack inequality is proved for positive
harmonic functions on graphs assuming the graph satisfies the doubling condition
and a Poincaré inequality. We also received a manuscript [SC3], where Saloff-Coste
studied Harnack inequalities for p-harmonic functions on networks. He obtained
a global Harnack inequality if the network has at most quadratic volume growth
and only one end in a very strong sense.

Acknowledgement. We wish to thank J. Kinnunen for discussions concerning
the John–Nirenberg lemma.

2. Caccioppoli-type inequality

This section is devoted to a Caccioppoli-type inequality for p-harmonic func-
tions. Here the assumptions (D) and (Pp ) are not needed. Instead we assume
that Γ is of bounded degree. Occasionally we fix an orientation in the edge set
and write ~xy for an oriented edge from x to y . In particular, for a given function
u in V , we sometimes choose the orientation such that either

u(x) ≥ u(y) for every ~xy,(O1)

or

u(y) ≥ u(x) for every ~xy.(O2)

Recall from the introduction that E(U) stands for the set of all edges with at least
one endpoint in U ⊂ V . The Caccioppoli inequality (2.2) and its consequence
(2.13) are discrete counterparts of the corresponding inequalities for positive p-
harmonic functions in Rn ; see e.g. [HKM] and [H1].

2.1. Theorem. Let u be positive and p-harmonic in U , and let q ∈ R \
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{p − 1} . Then there exists a constant c = c(p, d) such that

(2.2)

∑

~xy∈E(U)

|u(y) − u(x)|p
(

uq−p(y) + uq−p(x)
)(

ηp(x) + ηp(y)
)

≤ c max{|q − p + 1|−p, 1}
∑

~xy∈E(U)

(

uq(x) + uq(y)
)

|η(y) − η(x)|p

for any nonnegative finitely supported function η in U ∪ ∂U , with η(x) = 0 if
δ(x, ∂U) ≤ 1 .

The constant c above depends on the maximum degree since we shall apply
the following local Harnack inequality from [HS] during the proof.

2.3. Lemma. Let u be nonnegative in U ∪ ∂U and p-superharmonic in U .
Then, for each x ∈ U , we have

(2.4) max
y∼x

u(y) ≤ cu(x), with c = deg(x)1/(p−1) + 1.

In particular, (2.4) holds with a constant C0 = d1/(p−1) + 1, where d is the
maximum degree.

Proof of 2.1. Let η be as in the claim. Set ϕ = uκηp , where κ = q − p + 1
and q ∈ R \ {p − 1} . Then

ϕ(y) − ϕ(x) = ηp(x)
(

uκ(y) − uκ(x)
)

+ uκ(y)
(

ηp(y) − ηp(x)
)

.

Using ϕ as a test function in (1.2) we obtain

(2.5)

∑

x∈U

∑

y∼x

|u(y) − u(x)|p−2
(

u(y) − u(x)
)

ηp(x)
(

uκ(x) − uκ(y)
)

=
∑

x∈U

∑

y∼x

|u(y) − u(x)|p−2
(

u(y) − u(x)
)

uκ(y)
(

ηp(y) − ηp(x)
)

.

Choose either the orientation (O1) or (O2). Then (2.5) reads as

∑

~xy∈E(U)

|u(y) − u(x)|p−1
(

ηp(x) + ηp(y)
)(

uκ(x) − uκ(y)
)

=
∑

~xy∈E(U)

|u(y) − u(x)|p−1
(

uκ(y) + uκ(x)
)(

ηp(y) − ηp(x)
)

.

On the other hand,

ηp(y) − ηp(x) = p

∫ η(y)

η(x)

tp−1 dt ≤ p
(

ηp−1(y) + ηp−1(x)
)

|η(y) − η(x)|.
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Hence

(2.6)

∑

~xy∈E(U)

|u(y) − u(x)|p−1
(

ηp(x) + ηp(y)
)(

uκ(x) − uκ(y)
)

≤ p
∑

~xy∈E(U)

|u(y) − u(x)|p−1
(

uκ(y) + uκ(x)
)

×

×
(

ηp−1(y) + ηp−1(x)
)

|η(y) − η(x)|.

To estimate the left hand side of (2.6) from below we write

uκ(x) − uκ(y) =
(

uκ−1(y) + uκ−1(x)
)(

u(x) − u(y)
)

+ uκ−1(x)u(y) − uκ−1(y)u(x)

=
(

uq−p(y) + uq−p(x)
)(

u(x) − u(y)
)

+ u(x)u(y)
(

uκ−2(x) − uκ−2(y)
)

.

Observe that it suffices to take the sums on both sides of (2.6) over the edges ~xy
with both endpoints in U since otherwise η(x) = η(y) = 0. Therefore we assume
to the end of the proof that x, y ∈ U and x ∼ y . Suppose first that κ ≥ 2 and
choose the orientation (O1), i.e. u(x) ≥ u(y) for all ~xy . Then

(2.7) uκ(x) − uκ(y) ≥
(

uq−p(y) + uq−p(x)
)(

u(x) − u(y)
)

.

Let then 1 ≤ κ < 2 and choose again the orientation (O1). We want an estimate

(

uκ−1(y)+uκ−1(x)
)(

u(x) − u(y)
)

+ u(x)u(y)
(

uκ−2(x) − uκ−2(y)
)

≥ c
(

uκ−1(y) + uκ−1(x)
)(

u(x) − u(y)
)

,

or equivalently

(2.8) uκ−2(y) − uκ−2(x) ≤
(

1 − c)
)(

uκ−1(y) + uκ−1(x)
)(

u−1(y) − u−1(x)
)

,

where c is some positive constant. Set β = u−1(y) and α = u−1(x) . Then (2.8)
reads as

β2−κ − α2−κ ≤
(

1 − c)
)(

β1−κ + α1−κ
)(

β − α
)

.

This estimate holds with c = 1
2 since

β2−κ − α2−κ = (2 − κ)

∫ β

α

t1−κ dt

≤ (2 − κ)
[

β1−κ(β − α) + 1
2 (α1−κ − β1−κ)(β − α)

]

≤ 1
2 (α1−κ + β1−κ)(β − α).

The estimate above holds since the curve (t, t1−κ) , with α ≤ t ≤ β , lies below the
line segment between points (α, α1−κ) and (β, β1−κ) . Hence, for 1 ≤ κ < 2,

(2.9) uκ(x) − uκ(y) ≥ 1
2

(

uq−p(y) + uq−p(x)
)(

u(x) − u(y)
)

.
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Suppose next that 0 < κ < 1 and choose again the orientation (O1). If u(x) ≥
u(y) , then uκ(x) ≥ uκ(y) , u(x) ≤ C0u(y) by (2.4), and so

uκ−1(x) =
uκ(x)

u(x)
≥

uκ(y)

C0u(y)
=

1

C0
uκ−1(y).

Hence

(2.10)
uκ(x) − uκ(y) = κ

∫ u(x)

u(y)

tκ−1 dt ≥ κuκ−1(x)
(

u(x) − u(y)
)

≥
κ

2C0

(

uq−p(x) + uq−p(y)
)(

u(x) − u(y)
)

.

Finally, suppose that κ < 0 and choose the orientation (O2). Now the local
Harnack inequality (2.4) and the estimates (2.7), (2.9), and (2.10) imply that

uκ(x) − uκ(y) = uκ(x)uκ(y)u
(

u−κ(y) − u−κ(x)
)

≥ uκ(x)uκ(y)c(κ)
(

u−κ−1(y) + u−κ−1(x)
)(

u(y) − u(x)
)

= c(κ)
(u(x)

u(y)
uκ−1(x) +

u(y)

u(x)
uκ−1(y)

)

(

u(y) − u(x)
)

≥
c(κ)

C0

(

uq−p(x) + uq−p(y)
)(

u(y) − u(x)
)

since u(x)/u(y) ≥ 1/C0 and u(y)/u(x) ≥ 1/C0 . Above

c(κ) =

{

1
2

if κ ≤ −1;
−κ/(2C0) if −1 < κ < 0.

We have proved

(2.11)

∑

~xy∈E(U)

|u(y) − u(x)|p
(

uq−p(y) + uq−p(x)
)(

ηp(x) + ηp(y)
)

≤ c1(κ)
∑

~xy∈E(U)

|u(y) − u(x)|p−1
(

ηp(x) + ηp(y)
)(

uκ(x) − uκ(y)
)

for all κ 6= 0, where the orientation is (O1) if κ > 0 and (O2) if κ < 0. Combining
this with (2.6) and using Hölder’s inequality we obtain

∑

~xy∈E(U)

|u(y) − u(x)|p
(

uq−p(y) + uq−p(x)
)(

ηp(x) + ηp(y)
)

≤ pc1(κ)

(

∑

~xy∈E(U)

(

uq(x) + uq(y)
)

|η(y) − η(x)|p
)1/p

×

×

(

∑

~xy∈E(U)

|u(y) − u(x)|p
(

uq−p(y) + uq−p(x)
)(

ηp(x) + ηp(y)
)

)(p−1)/p

.
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Hence
∑

~xy∈E(U)

|u(y) − u(x)|p
(

uq−p(y) + uq−p(x)
)(

ηp(x) + ηp(y)
)

≤
(

c2(κ)
)p

∑

~xy∈E(U)

(

uq(x) + uq(y)
)

|η(y) − η(x)|p,

where c2(κ) = c max{1/|κ|, 1} , with c = c(p, d) . Observe that the final inequality
is independent of the orientation. The theorem is proved.

Theorem 2.1 with q = 0 and an elementary fact

| log u(x) − log u(y)| ≤
(

u−1(x) + u−1(y)
)

|u(x) − u(y)|

imply the next Corollary.

2.12. Corollary. Let S ⊂ U be finite such that δ(∂S, ∂U) ≥ 2 . Suppose
that u is positive and p-harmonic in U . Then there exists a constant c = c(p, d)
such that

(2.13)
∑

x∈S

|∇p log u(x)|p ≤ c
∑

~xy∈E(U)

|η(y) − η(x)|p

whenever η is a nonnegative finitely supported function in U ∪ ∂U , with η = 1
in S ∪ ∂S and η(x) = 0 if δ(x, ∂U) ≤ 1 .

We call Γ p-parabolic if

inf
η

∑

x∈V

|∇pη(x)|p = 0,

where the infimum is taken over all finitely supported functions η , with η(o) = 1
for some fixed o ∈ V . Corollary 2.12 gives a proof for the following well-known
result. The details are left to the reader.

2.14. Corollary. If Γ is p-parabolic, then it is also p-strong Liouville.

3. Global Harnack’s inequality

We start with a John–Nirenberg lemma. A function v: U → R , where U ⊂ V ,
is said to be in BMO(U) , (bounded mean oscillation), if

‖v‖
∗

= sup
B

|B|−1
∑

x∈B

|v(x) − vB | < ∞,

where the supremum is taken over all balls B ⊂ U . It is known that in many
situations BMO is equivalent to “exponential BMO”; see e.g. [JN], [HKM, p. 336–
341], and [FS, p. 154]. Furthermore, in a footnote in [CW2, p. 594] it is stated
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that this equivalence holds in any metric space of homogeneous type, in particular
in our setting. Since we do not know any proof for this, we feel it appropriate
to study the problem more closely. Here we show the equivalence in the case
U = V on graphs (V, E) satisfying the doubling condition. For general U ⊂ V we
prove a local version which suffices for our purpose. Our proofs are adapted from
[HKM, p. 336–341] with some changes which are mainly caused by the absence
of the Besicovitch covering theorem. As a first step we observe that the doubling
condition implies the following version of the Calderón–Zygmund decomposition.

3.1. Lemma. Suppose that Γ satisfies (D). Let f be a nonnegative function
in a ball B = B(o, R) ⊂ V and let α ≥ |B|−1

∑

x∈B f(x) . Then there are disjoint
balls Bi = B(xi, ri) ⊂ B and a constant c0 = c0(Cd) ≥ 1 such that

f(x) ≤ α for x ∈ B \
⋃

i

5Bi,(3.2)

α < |Bi|
−1

∑

x∈Bi

f(x) ≤ c0α,(3.3)

and
∑

i

|5Bi| ≤
C3

d

α

∑

x∈B

f(x).(3.4)

If, in addition, α > C6
d |B|−1

∑

x∈B f(x) , then ri < R/20 for every i .

Proof. For all x ∈ B one first constructs a sequence of balls Bx
i ⊂ B ,

i = 0, 1, . . ., such that

B = Bx
0 ⊃ Bx

1 ⊃ Bx
2 ⊃ · · · ∋ x, Bx

i = {x} for i ≥ ix,

and that |Bx
i−1|/|B

x
i | ≤ c0 , with a constant c0 = c0(Cd) . Such a construction can

easily be done on graphs. Next we set

Eα = {x ∈ B : f(x) > α}.

For each x ∈ Eα , there is a unique k = kx ≥ 1 such that

|Bx
k |

−1
∑

y∈Bx
k

f(y) > α

but

|Bx
i |

−1
∑

y∈Bx
i

f(y) ≤ α for all i ≤ k − 1.
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The balls Bx
k , x ∈ Eα , cover Eα and by a Vitali type covering lemma (cf. e.g.

[CW1, Theorem (1.2)]) we may find a (finite) subfamily of mutually disjoint balls
Bi ∈ {Bx

k : x ∈ Eα} such that Eα ⊂
⋃

i 5Bi . For any ball Bi = Bx
k we then have

(3.5) α < |Bi|
−1

∑

y∈Bi

f(y) ≤
(

|Bx
k−1||B

x
k |

−1
)

|Bx
k−1|

−1
∑

y∈Bx
k−1

f(y) ≤ c0α.

Thus (3.3) is established. Since
⋃

i 5Bi covers Eα , the condition (3.2) holds.
Furthermore, the doubling condition, (3.5), and the disjointness of balls Bi imply
(3.4) since

∑

i

|5Bi| ≤ C3
d

∑

i

|Bi| ≤ C3
d

∑

i

α−1
∑

y∈Bi

f(y) ≤
C3

d

α

∑

y∈B

f(y).

To prove the last statement, fix α > C6
d |B|−1

∑

x∈B f(x) and suppose that ri ≥
R/20 for some i . Since Bi ⊂ B , we observe that B ⊂ 40Bi . We get a contradic-
tion, since

|B| ≤ C3
d |5Bi| ≤

C6
d

α

∑

x∈B

f(x) < |B|,

by the doubling condition and (3.4). The lemma is proved.

It is convenient for our later purpose to define

(3.6) ‖v‖
∗,loc = sup

3B⊂U
|B|−1

∑

x∈B

|v(x) − vB |

whenever v is a function in U . The reason why we use the factor 3 here becomes
apparent in Lemma 3.12. A consequence of the doubling condition is that

(3.7) |v5B − vB | ≤ C3
d ‖v‖

∗,loc

whenever v is a function in U and B is a ball, with 15B ⊂ U . The proof of (3.7)
is easy and will be omitted.

Using Lemma 3.1 and the estimate (3.7) one can now repeat the proof in
[HKM, p. 339–340] with minor changes and obtain the John–Nirenberg lemma in
the following form. We remark here that the balls 5Bi in Lemma 3.1 need not
belong entirely to B . Partly for this reason we find it appropriate to introduce
(3.6) and to repeat the proof of the “only if part” of Lemma 3.8.

3.8. Lemma. Suppose that Γ satisfies (D) and that U ⊂ V . Then, for
every function v: U → R , we have ‖v‖

∗,loc < ∞ if and only if

(3.9) |{x ∈ B : |v(x) − vB | > t}| ≤ c1e
−c2t|B|

whenever t > 0 and B is a ball with 3B ⊂ U . The constants c1 , c2 , and ‖v‖
∗,loc

depend only on each other and Cd .
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Proof. If (3.9) holds, then ‖v‖
∗,loc ≤ 2(c1 + 1)c−1

2 . The proof in [HKM,
p. 338] applies here verbatim. To prove the “only if” part, fix a ball B such that
3B ⊂ U . We may assume that vB = 0 and that ‖v‖

∗,loc ≤ C−6
d . We write

B(j1), B(j1, j2), . . . instead of Bj1 , Bj1j2 , . . .. Applying Lemma 3.1 to |v| in B
with α = 2 > C6

d |B|−1
∑

x∈B |v(x)| we obtain disjoint balls B(j1) ⊂ B such that

2 < |B(j1)|−1
∑

x∈B(j1)

|v(x)| ≤ 2c0,

|v(x)| ≤ 2 for x ∈ B \
⋃

j1

5B(j1),

∑

j1

|5B(j1)| ≤
C3

d

2

∑

x∈B

|v(x)| ≤
1

2C3
d

|B| ≤
1

2
|B|,

and that

15B(j1) ⊂
(

1 + 3/4
)

B ⊂ U.

For each j1 we apply Lemma 3.1 to |v − v5B(j1)| in 5B(j1) with α = 2. Observe
that

C6
d |5B(j1)|−1

∑

x∈5B(j1)

|v(x) − v5B(j1)| < 2

since 15B(j1) ⊂ U and ‖v‖
∗,loc ≤ C−6

d . Now we obtain balls B(j1, j2) ⊂ 5B(j1)
such that

2 < |B(j1, j2)|−1
∑

x∈B(j1,j2)

|v(x) − v5B(j1)| ≤ 2c0,

|v(x) − v5B(j1)| ≤ 2 for x ∈ 5B(j1) \
⋃

j2

5B(j1, j2),

∑

j1,j2

|5B(j1, j2)| ≤
∑

j1

1
2
|5B(j1)| ≤

(

1
2

)2
|B|,

and that

15B(j1, j2) ⊂
(

1 + 4−1 + 3/16
)

B ⊂ U.

The estimates above and (3.7) imply that

|v(x)| ≤ |v(x) − v5B(j1)| + |v5B(j1)| ≤ 2 + |vB(j1)| + C3
d ‖v‖

∗,loc

≤ 2 + 2c0 + C−3
d ≤ 2(3c0)

if x ∈ 5B(j1) \
⋃

j2
5B(j1, j2) . We continue in a similar way. At the (k + 1)st step

we apply Lemma 3.1 to |v − v5B(j1,j2,...,jk)| in 5B(j1, j2, . . . , jk) with α = 2 and
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obtain balls B(j1, . . . , jk, jk+1) ⊂ 5B(j1, j2, . . . , jk) such that |v(x)| ≤ (k + 1)3c0

if x ∈ 5B(j1, j2, . . . , jk) \
⋃

jk+1
5B(j1, . . . , jk, jk+1) , that

∑

j1,...,jk+1

|5B(j1, . . . , jk+1)| ≤
(

1
2

)k+1
|B|,

and that

15B(j1, . . . , jk+1) ⊂

( k
∑

i=0

4−i + 3/4k+1

)

B ⊂ U.

As in [HKM, p. 340] we now deduce that (3.9) holds with c1 = 2 and c2 =
(log 2)/(6c0) . For a general (nonconstant) function v , with ‖v‖

∗,loc < ∞ , we

obtain (3.9) with c1 = 2 and c2 = (log 2)/(6c0C
6
d ‖v‖∗,loc) .

3.10. Corollary. Suppose that Γ satisfies (D) and that U ⊂ V . Then, for
every function v: U → R , we have ‖v‖

∗,loc < ∞ if and only if there are constants
Q and C such that

(3.11) |B|−1
∑

x∈B

exp [Q|v(x) − vB |] ≤ C

for all balls B , with 3B ⊂ U . Furthermore, if (3.11) is true, then ‖v‖
∗,loc ≤

C/Q . Conversely, if ‖v‖
∗,loc < ∞ , then (3.11) holds with C = 3 and Q =

(log 2)/(12c0C
6
d ‖v‖∗) .

We shall next apply Corollary 3.10 to log u , where u is positive and p-
harmonic.

3.12. Lemma. Suppose that Γ satisfies (D) and (Pp ), and that U ⊂ V .
There exists a constant c depending only on p and on the constants in (D) and
in (Pp ) such that

‖log u‖
∗,loc ≤ c

whenever u is positive and p-harmonic in U .

Proof. Write v = log u and let B = B(o, k) ⊂ U be a ball such that 3B ⊂ U .
We must show that

1

|B|

∑

x∈B

|v(x) − vB | ≤ c.

If k < 1, there is nothing to prove since then B(o, k) = {o} . Suppose k ≥ 1.
First we observe that the doubling condition implies that card E(3B) ≤ c|B| ,
where E(3B) is, as before, the set of all edges with at least one end point in 3B .
Next we define η: U ∪ ∂U → R by

η(x) =











1 if δ(o, x) ≤ k + 1;
3k − δ(o, x)

2k − 1
if k + 1 < δ(o, x) < 3k;

0 if δ(o, x) ≥ 3k.
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Then |η(x) − η(y)| ≤ k−1 if x ∼ y . Now the Poincaré inequality (1.7) and
Corollary 2.12 imply that

1

|B|

∑

x∈B

|v(x) − vB | ≤

(

1

|B|

∑

x∈B

|v(x) − vB|
p

)1/p

≤ ck

(

1

|B|

∑

x∈B

|∇p log u(x)|p
)1/p

≤ ck|B|−1/p

(

∑

~xy∈E(3B)

|η(y) − η(x)|p
)1/p

≤ c|B|−1/p
(

card E(3B)
)1/p

≤ c.

This proves the lemma.

In particular, it follows from 3.10 and 3.12 that

(3.13)

(

1

|B|

∑

B

uQ

)1/Q

≤ 9

(

1

|B|

∑

B

u−Q

)−1/Q

if 3B ⊂ U and u is positive and p-harmonic in U ; see e.g. [HKM, p. 71]. Fur-
thermore, the constant Q depends only on p and on the constants in (D) and
in (Pp ).

It is worth pointing out that one can prove Corollary 2.12 and hence Lemma
3.12 directly for positive p-superharmonic functions, too.

We are now ready to prove the Harnack inequality.

Proof of 1.8. Suppose that B = B(o, 2N) is a ball and that u is a positive
p-harmonic function in 6B . We shall prove an inequality

(3.14) max
x∈B

u(x) ≤ C1 min
x∈B

u(x),

where the constant C1 is independent of u and B . If N ≤ 10, say, we obtain (3.14)
with a constant C′

1 = C′
1(p, d) by iterating the local Harnack inequality (2.4).

Suppose that N > 10. For each i = 0, 1, . . . , N − 2, set ri = 2N + 2N−i and
Bi = B(o, ri) . Furthermore, define ηi: V → R by

ηi(x) =











1 if δ(o, x) ≤ ri+1 + 1;
ri − δ(o, x)

ri − ri+1 − 1
if ri+1 + 1 < δ(o, x) < ri;

0 if δ(o, x) ≥ ri.
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Then |ηi(x)−ηi(y)| ≤ (ri−ri+1−1)−1 ≤ 2(ri−ri+1)−1 if x ∼ y . Let λ and Q be
the constants in the Sobolev inequality (1.6) and in Corollary 3.10, respectively.
First we observe that there is q0 ∈ [Q/λ, Q] such that

(3.15) |q0λ
i − p + 1| ≥

(p − 1)(λ − 1)

λ + 1

for every i . Later another choice for q0 will be q0 = −Q which, as well as any
negative number, satisfies (3.15) for all i . Set qi = q0λ

i and κi = qi − p + 1. By
the doubling condition (D) and the Sobolev inequality (1.6)

(

1

|Bi+1|

∑

Bi+1

uqiλ

)1/λ

≤ c

(

1

|Bi|

∑

Bi

|ηiu
qi/p|λp

)1/λ

≤
crp

i

|Bi|

∑

Bi

|∇p

(

ηiu
qi/p

)

|p.

To estimate the right hand side, we first observe that
∑

Bi

|∇p

(

ηiu
qi/p

)

|p = 2
∑

~xy∈E(Bi)

|ηi(y)uqi/p(y) − ηi(x)uqi/p(x)|p

= 2
∑

~xy∈E(Bi)

∣

∣ηi(x)
(

uqi/p(y) − uqi/p(x)
)

+ uqi/p(y)
(

ηi(y) − ηi(x)
)
∣

∣

p

≤ c
∑

~xy∈E(Bi)

(

ηp
i (x) + ηp

i (y)
)

|uqi/p(y) − uqi/p(x)|p

+ c
∑

~xy∈E(Bi)

(

uqi(y) + uqi(x)
)

|ηi(y) − ηi(x)|p.

Next we estimate

|uqi/p(y) − uqi/p(x)| ≤
|qi|

p

(

uqi/p−1(y) + uqi/p−1(x)
)

|u(y) − u(x)|.

Using this and the Caccioppoli inequality (2.2) we get
∑

~xy∈E(Bi)

(

ηp
i (x) + ηp

i (y)
)

|uqi/p(y) − uqi/p(x)|p

≤ c|qi|
p

∑

~xy∈E(Bi)

(

ηp
i (x) + ηp

i (y)
)(

uqi−p(y) + uqi−p(x)
)

|u(y) − u(x)|p

≤ c
(

|qi|c2(κi)
)p ∑

~xy∈E(Bi)

(

uqi(x) + uqi(y)
)

|ηi(y) − ηi(x)|p,

where c2(κi) = c max{1/|κi|, 1} . Hence
(

1

|Bi+1|

∑

Bi+1

uqiλ

)1/λ

≤
crp

i

{[

|qi|c2(κi)
]p

+ 1
}

|Bi|
×

×
∑

~xy∈E(Bi)

(

uqi(x) + uqi(y)
)

|ηi(y) − ηi(x)|p.
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For any x ∼ y , rp
i |ηi(y)− ηi(x)|p ≤ crp

i (ri − ri+1)−p ≤ c2ip and ηi(y) = ηi(x) = 0
if at least one of the points x or y belongs to ∂Bi . Therefore we get

(

1

|Bi+1|

∑

Bi+1

uqiλ

)1/λ

≤
c2ip

{[

|qi|c2(κi)
]p

+ 1
}

|Bi|

∑

Bi

uqi .

By iteration we obtain

(3.16)

(

1

|Bj|

∑

Bj

uq0λj

)1/λj

≤ cSj 2pS′

j

j−1
∏

i=0

{[

|q0λ
i|c2(κi)

]p
+ 1

}1/λi 1

|B0|

∑

B0

uq0 ,

where j = N − 2, Sj =
∑j

i=0 λ−i , and S′
j =

∑j
i=0 iλ−i . The crucial point is that

(3.17) cSj 2pS′

j

j−1
∏

i=0

{[

|q0λ
i|c2(κi)

]p
+ 1

}1/λi

≤ C2,

with C2 independent of N , since q0 ∈ [Q/λ, Q] satisfies (3.15) for every i . Thus
by (3.16), (3.17), and by Hölder’s inequality

(

1

|Bj|

∑

Bj

uQλj−1

)1/(Qλj−1)

≤ C
1/q0

2

(

1

|B0|

∑

B0

uQ

)1/Q

.

On the other hand, (3.15) and (3.17) hold also for q0 = −Q , and so

(

1

|Bj|

∑

Bj

u−Qλj

)−1/(Qλj)

≥ C
−1/Q
2

(

1

|B0|

∑

B0

u−Q

)−1/Q

.

Since 3B0 = 6B , we have

(

1

|B0|

∑

B0

uQ

)1/Q

≤ 9

(

1

|B0|

∑

B0

u−Q

)−1/Q

by (3.13). Putting the last three estimates together we obtain

(

1

|Bj |

∑

Bj

uQλj−1

)1/(Qλj−1)

≤ c

(

1

|Bj|

∑

Bj

u−Qλj

)−1/(Qλj)

.

Now
(

1

|Bj|

∑

Bj

uQλj−1

)1/(Qλj−1)

≥ |Bj|
−1/(Qλj−1) max

Bj

u
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and
(

1

|Bj|

∑

Bj

u−Qλj

)−1/(Qλj)

≤ |Bj|
1/(Qλj) min

Bj

u,

and so
max
Bj

u ≤ c|Bj|
(λ+1)/(Qλj) min

Bj

u.

Since j = N − 2, |Bj| ≤ |B(o, 2N+1)| ≤ cN . Therefore

|Bj|
(λ+1)/(Qλj) ≤ cN(λ+1)/(QλN−2) ≤ c,

with c independent of N . This proves the Harnack inequality for N > 10 since
now

max
B

u ≤ max
Bj

u ≤ C′′
1 min

Bj

u ≤ C′′
1 min

B
u.

To complete the proof, take C1 = max{C′
1, C

′′
1 } .

4. Examples and the sharpness of the assumptions

Examples. Here we give some examples of graphs that satisfy (D) and
(Pp ). Recall from [K1] that a map f : X → Y between metric spaces (X, d) and
(Y, d) is called a rough isometry if there are constants a, b, c ≥ 0 such that the
c-neighborhood of fX coincides with Y and that

a−1d(x, y) − b ≤ d
(

f(x), f(y)
)

≤ ad(x, y) + b

holds for all x, y ∈ X . In [CS2] Coulhon and Saloff-Coste obtained several useful
results concerning the invariance of Poincaré and Sobolev inequalities under rough
isometries. For instance, if a graph Γ1 of bounded degree is roughly isometric to
another graph Γ2 which satisfies the conditions (D) and (P1 ), then the same
conditions hold also on Γ1 . The above remains true if we replace Γ2 by a Rie-
mannian manifold of bounded geometry which satisfies the obvious versions of (D)
and (P1 ). For instance, any complete Riemannian manifold whose Ricci curvature
is nonnegative satisfies (D) and (P1 ) by the Bishop–Gromov comparison principle
and by Buser’s isoperimetric inequality; see [CGT], and [Bu], respectively. In par-
ticular, the n -dimensional grid Γn = (Zn, E) , and also every graph of bounded
degree that is roughly isometric to Rn , n ≥ 1, is p-strong Liouville for any p > 1.
Above E is the natural edge set, i.e., there is an edge between vertices x, y ∈ Zn

if and only if |x − y| = 1. Furthermore, Cayley graphs of discrete finitely gener-
ated groups of polynomial growth satisfy (D) and (P1 ), and so they are p-strong
Liouville for every p > 1. The fact that such Cayley graphs satisfy (P1 ) seems to
be well-known (see e.g. [CS1], [CS2] and [SC1]), the proof being the same as the
one for Lie groups of polynomial growth; see [V2] and [SC2].
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It is also possible to obtain Poincaré inequalities from isoperimetric inequal-
ities. Let Γ = (V, E) be a graph of bounded degree and let B ⊂ V be a ball.
Suppose that there exist constants n > 1 and c > 0 such that

(4.1) |D|(n−1)/n ≤ c|∂D ∩ B|

whenever B ⊂ V is a ball and D ⊂ B , with |D| ≤ |B|/2. We claim that the
isoperimetric inequality (4.1) is equivalent to a Poincaré-type inequality

(4.2) inf
a∈R

(

∑

x∈B

|u(x) − a|n/(n−1)

)(n−1)/n

≤ c
∑

x∈B

|∇1u(x)|,

where u is a function in B ∪ ∂B . To prove this claim, let u be a (nonconstant)
function in B ∪ ∂B . First we choose a value a = u(xν) , xν ∈ B , such that
the sets B+ = {x ∈ B : u(x) > a} and B

−
= {x ∈ B : u(x) < a} satisfy

|B±| ≤ |B|/2. Such a vertex xν can be found, for instance, by labeling all the
vertices of B by x1, x2, . . . , xk such that u(x1) ≤ u(x2) ≤ · · · ≤ u(xk) and then
setting ν = [k/2] + 1, where [k/2] is the integer part of k/2. If B+ 6= ∅ , we
let 0 = β0 < β1 < · · · < βN be all non-negative values that u − a takes in B .
Furthermore, let Ki = {x ∈ B : u(x) − a ≥ βi} . Then an argument similar to
that in [MMT, p. 14] (see also [CF, p. 483–484]) yields

∑

x∈B+

(

u(x) − a
)n/(n−1)

=

N
∑

i=1

(

β
n/(n−1)
i − β

n/(n−1)
i−1

)

|Ki|

≤

( N
∑

i=1

(βi − βi−1)|Ki|
(n−1)/n

)n/(n−1)

≤ c

( N
∑

i=1

(βi − βi−1)|∂Ki ∩ B|

)n/(n−1)

≤ c

(

∑

x∈B

|∇1u(x)|

)n/(n−1)

.

Similarly we obtain

∑

x∈B−

(

a − u(x)
)n/(n−1)

≤ c

(

∑

x∈B

|∇1u(x)|

)n/(n−1)

.

Hence (4.2) holds. Conversely, if (4.2) holds, the isoperimetric inequality (4.1)
follows by applying (4.2) to the characteristic function of D . For example, Γn

satisfies the Poincaré inequality (4.2) since (4.1) is inherited from the correspond-
ing isoperimetric inequality in Rn . So we reinvent the fact that Γn is p-strong
Liouville for every p > 1. Observe that in this case, the Sobolev–Poincaré inequal-
ity (1.5) follows directly from (4.2) without using Lemma 1.4.
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The sharpness of the assumptions. We finish the paper by discussing
what may happen if we omit one of the conditions (D) and (Pp ). More precisely,
we construct examples to show that, in general, both conditions (D) and (Pp ) for
Γ are needed to ensure that Γ is p-strong Liouville.

It is easy to see that the doubling condition alone is not sufficient to obtain
strong Liouville. Indeed, take two copies of Zn , n ≥ 2, and join them together by
an edge. Let o be an endpoint of the joining edge. Then the resulting graph Γ1

still satisfies the doubling condition (D) but every weak (1, p)-Poincaré inequality
fails to hold if p < n . The latter can be seen by assuming that a weak (1, p)-
Poincaré inequality exists on Γ1 and then applying it to a ball B(o, r) and to a
function which is identically 0 in one copy of Zn and identically 1 in the other
copy of Zn . What we then get is roughly an inequality 1 ≤ cr1−n/p which leads
to a contradiction if r → ∞ and p < n . On the other hand, using ideas from
[H3] it is possible to construct nonconstant positive (or even bounded) p-harmonic
functions on Γ for every 1 < p < n .

It is harder to construct a graph which satisfies a weak (1, p)-Poincarè inequal-
ity but which is not p-strong Liouville. Anyway, here is an example. Construct
a graph Γ2 whose vertex set X is a disjoint union of Z and Z2 . The edge set
consists of the (standard) edges in Z and in Z2 and of one edge joining the ver-
tices o1 := 0 ∈ Z and o2 := (0, 0) ∈ Z2 . Now the doubling condition fails which
we see by choosing, for every integer k > 0, a point y ∈ Z whose distance from
o1 is k . Then |B(y, k)| ≈ k but |B(y, 2k)| ≈ k2 . On the other hand, Γ2 has non-
constant positive p-harmonic functions for 1 < p < 2. These can be constructed
again by using the methods of [H3]. Finally, we show that the (1, 1)-Poincaré
inequality holds on Γ2 . To do this, let B = B(x, k) ⊂ X be an arbitrary ball.
If B lies entirely either in Z or in Z2 , there is nothing to prove since both Z

and Z2 have (1, 1)-Poincaré inequalities. So we are left with the case where B
is a disjoint union of balls B1 ⊂ Z and B2 ⊂ Z2 . For instance, if x ∈ Z2 , then
B2 = B2(x, k) ⊂ Z2 and B1 = B1

(

o1, k − δ(x, o2) − 1
)

⊂ Z . Let u be a function
in 2B ∪ ∂(2B) . Then

|B|
∑

y∈B

|u(y) − uB| = |B|
∑

y∈B

∣

∣

∣

∣

u(y) − |B|−1
∑

z∈B

u(z)

∣

∣

∣

∣

=
∑

y∈B

∣

∣

∣

∣

∑

z∈B

(

u(y) − u(z)
)

∣

∣

∣

∣

≤ S1 + S2 + S3.

The terms Si will be specified and estimated below. For i = 1, 2,

Si :=
∑

y∈Bi

∣

∣

∣

∣

∑

z∈Bi

(

u(y) − u(z)
)

∣

∣

∣

∣

= |Bi|
∑

y∈Bi

|u(y) − uBi |

≤ c|Bi|k
∑

y∈Bi

|∇1u(y)|,
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where in the last step we made use of the Poincaré inequalities in Z and in Z2 ,
respectively. To estimate S3 , we use some ideas from [DS] and [CS1]. More
precisely,

S3 :=
∑

y∈B1

∣

∣

∣

∣

∑

z∈B2

(

u(y) − u(z)
)

∣

∣

∣

∣

+
∑

y∈B2

∣

∣

∣

∣

∑

z∈B1

(

u(y) − u(z)
)

∣

∣

∣

∣

≤ 2
∑

(y,z)∈B1×B2

|u(y) − u(z)| ≤ 2
∑

(y,z)∈B1×B2

∑

e∈γy,z

|u(e+) − u(e
−

)|.

Here and from now on γy,z is a chain from y to z of (oriented) edges e , whose
endpoints e

−
and e+ belong to B . We want to estimate the right hand side of the

final inequality in terms of
∑

y∈B |∇1u(y)| . To do this effectively, we must be able

to choose, for every pair (y, z) ∈ B1 × B2 , a chain γy,z such that no edge e will
belong to too many γy,z ’s. Observe that each γy,z contains the edge ~o1o2 . On
the other hand, one can show by induction that it is possible to join o2 to z ∈ B2

by a chain such that after the joining is done for every z ∈ B2 , each edge e will
be traversed at most 4(diam B2)2 times. Hence we may choose the chains γy,z ,
(y, z) ∈ B1 × B2 , so that each edge e belongs to at most 8(diam B1)(diam B2)2

chains. We obtain

S3 ≤ c(diam B1)(diam B2)2
∑

y∈B

|∇1u(y)|,

with c independent of B . Finally, we observe that |B|−1(diam B1)(diam B2)2 ≤
ck . Putting the estimates for Si together we get that

∑

y∈B

|u(y) − uB| ≤ |B|−1(S1 + S2 + S3) ≤ ck
∑

y∈B

|∇1u(y)|,

where c is independent of k . Thus the (1, 1)-Poincaré inequality holds on Γ2 .
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