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Abstract. We discuss a geometric method, which we refer to as Coning, for generating new
Poincaré type inequalities from old ones. In particular, we derive weighted Poincaré inequalities
for star-shaped domains and variant Trudinger inequalities for another class of domains.

By a Poincaré type inequality, in the widest sense, we mean a norm inequality
in which the variation of a function from its “average” value on a domain is in
some way controlled by its gradient (or higher gradients) on that domain. Thus
the classical Poincaré and Sobolev–Poincaré inequalities, as well as the Trudinger
inequality fall into this category. Such inequalities have been the focus of much
study, in particular since the work of Sobolev [So1], [So2]; for accounts of many such
results, we refer the reader to the excellent books by Maz’ya [M] and Ziemer [Z].

In this paper, we discuss a geometric method, which we refer to as Coning,
for generating new Poincaré type inequalities from old ones. This method takes
as input a Poincaré type inequality known to be true for a class of domains with a
certain invariance property and generates from it a sequence of related inequalities
for the same class of domains. We apply this method to a Poincaré inequality for
star-shaped domains and to the Trudinger inequality for the class of QHBC do-
mains (defined later). Rather than being a method for proving all possible Poincaré
type inequalities, Coning is a rather unusual and specialized method that produces
some new inequalities of Poincaré type that are clearly special cases of more gen-
eral inequalities which one should try to prove by more conventional methods (in
fact, already Buckley and O’Shea have proved new weighted Trudinger inequalities
that are motivated by, and generalize, the new Trudinger type inequalities below).
Coning can also be used to geometrically link some inequalities already known to
be true.

To illustrate the method, we begin by stating an unweighted Poincaré inequal-
ity for star-shaped domains which was proved by Levi [L] in the planar case, and by
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Hurri [H1] and Smith and Stegenga [SS1] in higher dimensions; see also [M, Chap-
ter 2]. We then state a weighted version that follows from it by Coning. Through-
out this paper, Ω is a proper subdomain of Rn and δ(x) = dist(x, ∂Ω). Also,
we denote by W the class of monotonic increasing functions w: (0,∞) → (0,∞)
which satisfy the weak concavity property w(sr) ≥ sw(r) for all r > 0, 0 < s < 1.
We denote by uS,v the mean value of a function u on a set S with respect to the
measure v(x) dx ; if v is omitted, it is assumed that v ≡ 1.

Theorem A. Suppose that Ω is bounded and star-shaped, and that 1 ≤ p <
∞ . Then there exists a constant C = C(Ω, p)

(1)

∫

Ω

|u− uΩ|
p dx ≤ C

∫

Ω

|∇u|p dx for all u ∈ C1(Ω).

Theorem 1. Suppose that Ω is bounded and star-shaped, w ∈ W , 1 ≤ p <
∞ , and k is a positive integer. Then there exists a constant C = C(Ω, p, k) such

that

(2)

∫

Ω

|u− uΩ,wk◦δ|
pw

(

δ(x)
)k
dx ≤ C

∫

Ω

|∇u|pw
(

δ(x)
)k
dx for all u ∈ C1(Ω).

We use the term “Coning” because of the shape of an auxiliary domain Ωkw
that we shall construct (especially when k = 1, w(r) = r , and Ω is a ball). Noting
that the function w(r) = rt is in W precisely when 0 ≤ t ≤ 1, we get the following
corollary.

Corollary 2. Suppose that Ω is bounded and star-shaped, t ≥ 0 , and

1 ≤ p <∞ . Then there exists a constant C = C(Ω, p, t) such that

∫

Ω

|u− uΩ,δt |pδt(x) dx ≤ C

∫

Ω

|∇u|pδt(x) dx for all u ∈ C1(Ω).

Note that the above inequalities, as well as all later Poincaré and Trudinger
inequalities, implicitly include the statement that, if the right-hand side is finite,
then the average value of u over Ω appearing on the left-hand side exists, and the
left-hand side is finite.

In preparation for the proof of Theorem 1, we prove the following key lemma.

Lemma 3. Suppose that Ω is star-shaped with respect to a point x0 , that

k is a fixed positive integer, that w ∈ W , and that

Ωkw =
{

(x, y) ∈ Rn × Rk : x ∈ Ω, |y| ≤ w
(

δ(x)
)}

.

Then Ωkw is star-shaped with respect to the point (x0, 0) .
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Proof. Let us fix a point (x, y) ∈ Ωkw and a number 0 < s < 1, and write
xs = (1 − s)x0 + sx . We choose us ∈ ∂ Ω such that δ(xs) = |xs − us| and define
u1 = u1(s) by the equation us = (1 − s)x0 + su1 . Since Ω is star-shaped with
respect to x0 , u1 cannot lie in Ω, and so sδ(x) ≤ s|x− u1| = δ(xs) . Thus

w
(

δ(xs)
)

≥ w
(

sδ(x)
)

≥ sw
(

δ(x)
)

≥ s|y|.

We conclude that (xs, sy) ∈ Ωkw , and so Ωkw is star-shaped with respect to (x0, 0).

Below, |S| is the Lebesgue measure of a set S , and w(S) =
∫

S
w . We write

A.B (or B&A) if A ≤ CB for some constant C that depends only on allowed
parameters (in Theorem 1, this means that C = C(Ω, p, k)), and we write A ≈ B
if A.B.A .

Proof of Theorem 1. We fix a point x0 about which Ω is star-shaped and
define δ0 = 1

4δ(x0) , w0 = 1
4w

(

δ(x0)
)

. We also fix a positive integer k . It is easy
to show that Poincaré inequalities such as (1) or (2) are equivalent to the same
types of inequalities with the constant uΩ,wk◦δ replaced by certain other constants
such as the average of u with respect to a “central” Whitney cube or ball (the
bounding constant C in such variations of (2) will then also depend on the choice
of cube or ball); see [HK] for more details. In the case of inequality (2), it is
convenient for us to do so with the constant uB , where B = B(x0, δ0) .

We define the new domain Ωkw ⊂ Rn×Rk as in Lemma 3, and a new function
U : Ωkw → R by the equation U(x, y) = u(x) . By Theorem A and (1) we deduce
that

∫

Ωk
w

|U − US |
p ≤ C

∫

Ωk
w

|∇U |p,

where S ⊂⊂ Ωkw is the cylinder Q0 × P , and P is the k -fold product of intervals
[−w0, w0] . Note that US = uB and that |∇U(x, y)| = |∇u(x)| whenever (x, y) ∈
Ωkw . Thus integration in the y -variable yields

∫

Ω

|u− uB |
pw(δ)k ≤ C

∫

Ω

|∇u|pw(δ)k

as required. We refer to the above type of argument as Coning.

There is a general principle at work in the above argument. Suppose that
for a specific weight w ∈ W , we have Ωkw ∈ S whenever Ω ∈ S =

⋃∞
n=1 Sn , and

Sn is some class of proper subdomains of Rn . Suppose also that all domains in
S support some sort of Poincaré inequality (perhaps with parameters depending
on the dimension). Then Coning gives a sequence of related Poincaré inequalities
which are valid on S .
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As another illustration of this method, let us look at Trudinger type inequal-
ities. We say that a domain Ω supports a Trudinger inequality (with Trudinger
constant C ) if

‖u− uΩ‖φ(L)(Ω) ≤ C

(
∫

Ω

|∇u|n
)1/n

for all u ∈ C1(Ω),

where φ(x) = exp
(

xn/(n−1)
)

− 1 and ‖ · ‖φ(L)(Ω) is the corresponding Orlicz norm
on Ω defined by

‖f‖φ(L)(Ω) = inf

{

C > 0 |

∫

Ω

φ(|f(x)|/C) dx ≤ 1

}

.

This inequality is a sharp substitute for the Sobolev–Poincaré inequality in the
case p = n ; Trudinger [Tr] proved it for domains satisfying a uniform interior cone
condition. Later, Smith and Stegenga [SS2] proved that QHBC domains (defined
below) support a Trudinger inequality; furthermore the Trudinger constant of Ω
is bounded by a constant dependent only upon n and the QHBC constant of Ω. It
was recently shown in [BK] that any domain with a “slice property” (for instance,
any finitely-connected plane domain) that supports a Trudinger inequality must be
a QHBC domain. Thus QHBC domains are the natural class of domains associated
with this inequality.

A (bounded) domain Ω satisfies a quasihyperbolic boundary condition (more
briefly, Ω is QHBC ) with respect to x0 ∈ Ω if it satisfies the following condition:

There exists a constant C ≥ 1 such that for all x ∈ Ω we can find a path
γ = γx: [0, l] → Ω such that γ(0) = x , γ(l) = x0 , and

∫

γ

|dz|

δ(z)
< C log

(

C

δ(x)

)

.

We call such a path the QHBC path for x , and we call the smallest such C the
QHBC constant for Ω (with respect to x0 ). QHBC domains include the more
well-known class of John domains (which in turn include all bounded Lipschitz
domains). For an account of many of the results involving QHBC domains, we
refer the reader to [K].

Unlike star-shaped domains, the class of QHBC domains is not invariant under
operations of the form Ω 7→ Ωkw , w ∈ W . For instance let us consider Ω to be the
unit cube with a sequence of disjoint “mushrooms” attached. Each mushroom is
a scaled-down version of the following set:

M =
{

x : |xi| < 1} ∪ {x : 1 ≤ x1 <
3
2
, |xi| <

1
2

for all i > 1
}

.

We glue a face of each mushroom (the one corresponding to the face ∂M∩{x1 = 3
2}

of M ) to one face of the unit cube. The scaling of the mushrooms is irrelevant as
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long as they decrease in size fast enough for all of them to fit; to be precise though,
let us choose their diameters to be 3−k . It is easy to verify that Ω is a QHBC
domain (in fact it is a John domain). However if w(r) ≡ rs for any 0 < s < 1,
then Ωkw is not a QHBC domain. To justify this latter statement, pick a point
(x, y) ∈ Ωkw where x is the center point of the larger cube of a mushroom and
y >

(

3δ(x)/4
)s

= (31−k/4)s . Then any curve from (x, y) to the origin is forced to
stay within a distance 3−k of the boundary for an initial path segment of length
comparable with 3−ks . Letting k tend to infinity forces the QHBC constant to
be arbitrarily large.

Functions like w(r) = rs for s > 1 are just as bad: even when Ω is a ball, Ωkw
has a “flying saucer” type cusp (and QHBC domains cannot have external cusps).
However, w(r) ≡ r leaves the QHBC class invariant, as we shall now see.

Lemma 4. Suppose that Ω is a QHBC domain with respect to a point x0

and that

Ωk =
{

(x, y) ∈ Rn × Rk : x ∈ Ω, |y| ≤ δ(x)
}

.

Then Ωk is a QHBC domain with respect to the point (x0, 0) , and its QHBC

constant C1 is dependent only on that of Ω .

Proof. Suppose that γ: [0, l] → Ω is a QHBC path for the fixed but arbitrary
point x ∈ Ω. Without loss of generality, we assume that γ is parametrized by
arclength. We wish to define a QHBC path for a general point (x, y) ∈ Ωk . We
claim that the following path will suffice:

γ1(t) =

{
(

x, (|y| − t)y/|y|
)

, 0 ≤ t ≤ |y|,
(

γ(t− |y|), 0
)

, |y| ≤ t ≤ |y| + l.

We denote the distance from X = (x, y) to ∂ Ωk by δ′(X) .

We claim that δ′
(

γ1(t)
)

= 2−1/2
(

(δ(x)+t−|y|)
)

if 0 ≤ t ≤ |y| . Note first that
if we write Ωs = {x ∈ Ω : δ(x) > s} , then elementary geometric considerations
imply that the largest ball centered at x fitting inside Ωs is B(x, δ(x)− s) . Our
claim then follows from the elementary calculus fact that, for fixed z > 0, the
minimum value of

√

(z − u)2 + u2 , 0 ≤ u ≤ z , is 2−1/2z . Similarly δ′(x, 0) =
2−1/2δ(x) , and so δ′

(

γ1(t)
)

= 2−1/2δ
(

γ(t − |y|)
)

for all t ≥ |y| . Writing γ1
1 =

γ1|[0,|y|] and γ2
1 = γ1|[|y|,|y|+l] , we simply combine the inequalities

2−1/2

∫

γ1

1

|dz|

δ′(z)
=

∫ |y|

0

dt

δ(x) + t− |y|
= log

(

δ(x)

δ(x) − |y|

)

,

2−1/2

∫

γ2

1

|dz|

δ′(z)
=

∫

γ

|dz|

δ(z)
< C

(

1 + log

(

1

δ(x)

))

.

The lemma now follows easily since δ′
(

(x, y)
)

= 2−1/2
(

δ(x) − |y|
)

.
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If we replace “QHBC” by “John” throughout the statement of Lemma 4, we
get another true statement which can be proved in a similar manner to the above.
Weighted versions of Bojarski’s Sobolev–Poincaré inequality for John domains [B]
can then be deduced easily; however such weighted inequalities can also be derived
by standard methods (cf. [H2]), so we shall not pursue this point.

We now apply Coning to the Trudinger result of Smith and Stegenga. First,
if v is a weight on Ω, and φ is any Young’s function, we write

‖f‖φ(L)(Ω;v) = inf

{

C > 0 |

∫

Ω

φ
(

|f(x)|/C
)

v(x) dx ≤ 1

}

.

If φ , ψ are two Young’s functions, we say that ψ is asymptotically larger than φ
if ψ(cx)/φ(x) → ∞ (x → ∞) for all c > 0. Note that if ψ(cx)/φ(x) is bounded
for some c > 0, then c‖ · ‖ψ(L)(Ω;v) ≤ ‖ · ‖φ(L)(Ω;v) .

Theorem 5. Suppose Ω ⊂ Rn is a QHBC domain, k is a positive integer,

and φk(x) = exp
(

x(n+k)/(n+k−1)
)

− 1 . Then there exists a constant C = C(Ω, k)
such that

(3) ‖u− uΩ,δk‖φk(L)(Ω;δk) ≤ C

(
∫

Ω

|∇u|n+kδk(x) dx

)1/(n+k)

for all u ∈ C1(Ω).

Both the Young’s function and one of the δ exponents are sharp: (3) becomes

false if we replace φk by any asymptotically larger ψ , or if we decrease the power

of δ on the right-hand side.

Note. Unlike the right-hand side power of δ , the left-hand side power of δ
is not sharp—the exponent can always be replaced by any value t ∈ R whenever
∫

Ω
δt <∞ for some s < t (in particular, t = 0 is always possible), as is shown using

different methods in a forthcoming paper by the first author and O’Shea [BO]. [BO]
also give versions of Theorem 5 for much more general weights (including the case
where the exponent k is allowed to be any non-negative real number).

Proof of Theorem 5. The inequality itself follows as usual from Lemma 4 (as
before, the choice of constant u−uΩ,δk is not very important; it could be replaced
by, say, the Lebesgue average of u over a central Whitney cube). We now show
that φk and the right-hand side δk are sharp. Without loss of generality we
assume that δ(x0) = 1. We first consider the sharpness of φk . It suffices to
consider only points x which are very close to ∂ Ω; in particular, we assume that
r ≡ δ(x) < 1

6 . We define the annular slices Aj = B(x, 2jr)\B(x, 2j−1r) , for every
positive integer j ≤ N , where N is the smallest integer i for which B(x, 2i+2r)
contains x0 . It is easily seen that N ≥ 2 and that

log2

(

δ(x)−1 − 1
)

− 2 < N ≤ log2

(

diam(Ω)/δ(x)
)

− 1,
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and so log2

(

1/δ(x)
)

/N is bounded above and below. We may assume that 1
2 <

log2

(

1/δ(x)
)

/N < 2 by choosing δ(x) to be small enough.
The idea now is that we create a function which changes a little on each of

the annular slices leading to a much different value on B(x, r) (because N is
large) than on the central ball B0 = B(x0,

1
2 ) which is disjoint from the slices

Aj , j ≤ N . We can do this in such a way that the integral of the gradient is
bounded independent of N but that the weighted Orlicz norm of |u− uB0

| with
respect to ψ is unbounded as N tends to infinity. The function we create is merely
Lipschitz continuous, but this is not a problem since smooth functions are dense
in the weighted Sobolev space W 1,n(Ω, δk) (see [HK, Theorem 3]), and so any
imbedding of the type we are considering extends to this space.

Specifically we shall choose u(y) = g(|y − x|) , where g(t) is a decreasing
(Lipschitz) continuous function which is zero when t > 2Nr , constant when t < r ,
and linear on each of the intervals [2j−1r, 2jr] , 1 ≤ j ≤ N . To define u precisely,
we let g(2j−1r) − g(2jr) = CN ≡ N−1/(n+k) . It follows that g′(t) = 2−jr−1CN
when t ∈ (2j−1r, 2jr) and so
∫

Aj

|∇u(y)|n+kδk(y) dy ≤ C
[

2jnrn][2−j(n+k)r−n−kCn+k
N

][(

(2j+2)r
)k]

≤ C′Cn+k
N

where C , C′ are dimensional constants and the three bracketed factors are, from
left to right, bounds for the volume of Aj , the power of |∇u| , and the power of δ .
It follows that

∫

Ω

|∇u(y)|n+kδk(y) dy ≤ C′
N

∑

j=1

1/N = C′.

Now, u(x) = 0 on B0 , while u(x) = N1−1/(n+k) = N (n+k−1)/(n+k) on
B(x, r) , and so

∫

Ω

ψ(|u− uB0
|/K) δk ≥

∫

B(x,r)

ψ(|u− uB0
|/K) δk

&δn+k(x)ψ(N (n+k−1)/(n+k)/K)

&2−2N(n+k)ψ(N (n+k−1)/(n+k)/K).

But clearly φk
(

(CN)(n+k−1)/(n+k)
)

> BCN for some fixed B > 1. Choosing C

so large that BC > 22(n+k)+1 , we see that for any K <∞ , our assumption on ψ
implies that

∫

Ω
ψ(|u− uB0

|/K)δk > 2N , as long as N is large enough. Letting N

tend to ∞ , we get that the Lψ -norm of |u − uB0
| tends to infinity even though

∫

Ω
|∇u(y)|n+kδk remains bounded; it easily follows from (3) that the same remains

true of the Lψ norm of |u− uΩ| .
To prove that the right-hand side δk factor has a sharp exponent, it suffices

to show that if we replace the exponent k by some real number 0 < t < k , and we
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also replace φk by ψ , then (3) is false if ψ is any Young’s function asymptotically
larger than φt . This is proved almost exactly as above (the careful reader will
have noted that the the left-hand δk factor played no significant role in the above
argument).

For certain domains nicer than a general QHBC domain, we do not need the
requirement that k is an integer. For instance, it is easy to check that if w(r) ≡ rs

for any 0 < s ≤ 1, and Ω is a ball, then Ωkw (defined as in Lemma 3) is a QHBC
domain. This allows us to get the following version of Theorem 5.

Theorem 6. Suppose Ω ⊂ Rn is a ball, k is a positive real number, and

φk(x) = exp
(

x(n+k)/(n+k−1)
)

− 1 . Then there exists a constant C = C(Ω, k) such

that (3) is true. Also (3) becomes false if we replace φk by any asymptotically

larger ψ , or if we decrease the power of δ on the right-hand side.

Proof. We let k = s + m , where 0 < s < 1 and m is an integer. Letting
Ω′ = Ω1

w for w(r) ≡ rs , we see that Ω′ is a QHBC domain. We apply the proof
of Theorem 5 to derive (3), with Ω replaced by Ω′ , k replaced by the integer
m , and the constant uΩ′,δm replaced by the Lebesgue average of u over a central
Whitney cube.

Interpreting this inequality for functions defined on the ball Ω in the usual
fashion, we can deduce the desired inequality. There is just one difficulty with
making this last step: our inequality involves an integer power of distance to
the boundary in Ω′ on both sides, which we must replace by the same power of
distance to the boundary in Ω. This is easily done on the right-hand side since
distance to the boundary in Ω dominates distance to the boundary in Ω′ . As for
the left-hand side, we simply restrict our range of integration to the subdomain
Ω′′ of Ω′ defined by

Ω′′ =
{

(x, y) ∈ Ω′ : |y| ≤ 1
3δ(x)

}

.

It is easily verified that if (x, y) ∈ Ω′′ , then the distance from x to ∂ Ω is compa-
rable with the distance from (x, y) to ∂ Ω′ .

Finally, the required sharpness is proven as in Theorem 5, since the arguments
there did not depend on k being an integer.

Let us finish by briefly discussing Coning for some weights not of the form
w ◦ δ . We denote by W ′(Ω) the class of functions on Ω for which there exists a
constant c > 0 such that w(x) ≥ cδ(x) and |w(x) − w(x′)| ≤ |x − x′|/c for all
x, x′ ∈ Ω (for example, w(x) could be δ(x) or |x − z| , for some fixed z ∈ ∂ Ω).
If Ω is a QHBC domain with respect to x0 , and if w ∈ W

′(Ω), then Ωkw is also
a QHBC domain with respect to (x0, 0), where

Ωkw =
{

(x, y) ∈ Rn ×Rk : x ∈ Ω, |y| ≤ w(x)
}

.
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We omit the proof of this fact; suffice it to say that, as in Lemma 4, a QHBC path
in Ωkw consists of an initial “vertical” line segment followed by a “horizontal” path
whose first component is the QHBC path in Ω.

Coning now gives us the following Trudinger inequality generalizing Theo-
rem 5 for balls; its proof is essentially the same as before, so we shall omit it.

Theorem 7. Suppose Ω ⊂ Rn is a QHBC domain, w ∈ W ′(Ω) (with class

constant c), k is a positive integer and φ(x) = exp
(

x(n+k)/(n+k−1)
)

− 1 . Then

there exists a constant C = C(Ω, k, c) such that

(4) ‖u− uΩ,wk‖φk(L)(Ω;wk) ≤ C

(
∫

Ω

|∇u|n+kwk(x) dx

)1/(n+k)

for all u ∈ C1(Ω).

Furthermore, if there exists a constant C < ∞ and a fixed point z ∈ ∂ Ω such

that w(x) ≤ C|x − z| for all x ∈ Ω , then the Orlicz function φk is sharp. In

fact, if w is such a weight, (4) becomes false if we replace φk by any increasing

function ψ: [0,∞) → [0,∞] for which ψ(cx)/φk(x) → ∞ (x→ ∞) for all c > 0 .
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