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Abstract. We consider a distance dL on the Teichmüller space T (S0) of a hyperbolic
Riemann surface S0 . The distance is defined by the length spectrum of Riemann surfaces in
T (S0) and we call it the length spectrum metric on T (S0) . It is known that the distance dL
determines the same topology as that of the Teichmüller metric if S0 is a topologically finite
Riemann surface.

In this paper we show that there exists a Riemann surface S0 of infinite type such that
the length spectrum distance dL on T (S0) does not define the same topology as that of the
Teichmüller distance. Also, we give a sufficient condition for these distances to have the same
topology on T (S0) .

1. Introduction and results

On the Teichmüller space T (S0) of a hyperbolic Riemann surface S0 , we
have the Teichmüller distance dT ( · , · ) , which is a complete distance on T (S0) .
In this paper, we study another distance dL( · , · ) which is defined by the length
spectrum on Riemann surfaces in T (S0) . Li [4] discussed the distance dL( · , · ) on
the Teichmüller space of a compact Riemann surface of genus g ≥ 2 and showed
that the distance dL defines the same topology as that of the Teichmüller distance.
Recently, Liu [5] showed that the same statement is true even if S0 is a Riemann
surface of topologically finite type, and he asked whether the statement holds for
Riemann surface of infinite type. Our first result gives a negative answer to this
question.

Theorem 1.1. There exist a Riemann surface S0 of infinite type and a
sequence {pn}∞n=0 in T (S0) such that

dL(pn, p0)→ 0, n→∞,

while
dT (pn, p0)→∞, n→∞.

From the proof of this theorem, we show the incompleteness of the length
spectrum distance.
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Corollary 1.1. There exists a Riemann surface of infinite type such that the
length spectrum distance dL is incomplete in the Teichmüller space.

Next, we give a sufficient condition for the length distance to define the same
topology as that of the Teichmüller distance as follows.

Theorem 1.2. Let S0 be a Riemann surface. Assume that there exists a
pants decomposition S0 =

⋃∞
k=1 Pk of S0 satisfying the following conditions.

(1) Each connected component of ∂Pk is either a puncture or a simple closed
geodesic of S0 , k = 1, 2, . . . .

(2) There exists a constant M > 0 such that if α is a boundary curve of some
Pk then

0 < M−1 < lS0(α) < M

holds.

Then dL defines the same topology as that of dT on the Teichmüller space T (S0)
of S0 .

2. Preliminaries

Let S0 be a hyperbolic Riemann surface. We consider a pair (S, f) of a
Riemann surface S and a quasiconformal homeomorphism f of S0 onto S . Two
such pairs (Sj , fj) , j = 1, 2, are called equivalent if there exists a conformal
mapping h: S1 → S2 which is homotopic to f2◦f−1

1 , and we denote the equivalence
class of (S, f) by [S, f ] . The set of all equivalence classes [S, f ] is called the
Teichmüller space of S0 : we denote it by T (S0) .

The Teichmüller space T (S0) has a complete distance dT called the Teich-
müller distance which is defined by

dT ([S1, f1], [S2, f2]) = inf
f

logK[f ],

where the infimum is taken over all quasiconformal mappings f : S1 → S2 homo-
topic to f2 ◦ f−1

1 and K[f ] is the maximal dilatation of f .
We define another distance on T (S0) by length spectrum of Riemann surfaces.

Let Σ(S) be the set of closed geodesics on a hyperbolic Riemann surface S . For
any two points [Sj , fj ] , j = 1, 2, in T (S0) , we set

%([S1, f1], [S2, f2]) = sup
c∈Σ(S1)

max

{
lS1(c)

lS2

(
f2 ◦ f−1

1 (c)
) , lS2

(
f2 ◦ f−1

1 (c)
)

lS1(c)

}
,

where lS(α) is the hyperbolic length of a closed geodesic on S freely homotopic to
a closed curve α . For two points [Sj , fj ] ∈ T (S0) , j = 1, 2, we define a distance
dL called the length spectrum distance by

dL([S1, f1], [S2, f2]) = log %
(
[S1, f1], [S2, f2]

)
.

Wolpert ([7]) shows that lS2

(
f(c)

)
≤ K[f ]lS1(c) holds for every quasiconformal

mapping f : S1 → S2 and for every c ∈ Σ(S1) . Thus, we have immediately:
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Lemma 2.1. An inequality

dL(p, q) ≤ dT (p, q)

holds for every p, q ∈ T (S0) .

3. Proofs of Theorem 1.1 and Corollary 1.1

3.1. Proof of Theorem 1.1. First, we take monotone divergent sequences
{an}∞n=1 and {bn}∞n=1 of positive numbers so that an+1 = bn and bn/an > n ,
n = 1, 2, . . . . For each n , we take a right-angled hexagon Hn so that the lengths
of three edges are an, bn, bn as Figure 1.

an

bn bn

tn

Figure 1.

We take bn so large that

(1) tn > nan

holds, where tn is the height of Hn , the distance from the bottom edge of length
an to the top edge. Gluing two copies of Hn , we obtain a pair of pants Pn as in
Figure 2.

The hyperbolic lengths of the three boundary curves of Pn are 2an, 2bn, 2bn .
Note that the lengths of boundaries of Pn are long but the distances between any
two boundaries are short. From these pairs of pants {Pn}∞n=1 , we construct a
Riemann surface S0 as follows.

Step 1. For each k ∈ N , glue two copies of Pk along the boundaries of length 2ak .
Then we obtain a Riemann surface of type (0, 4), say Sk,1 . Let γk denote
the “core” curve in Sk,1 with length 2ak (see Figure 3).
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2an

2bn 2bn

Pn

Figure 2.

Sk,1

2bk

2bk

2bk

2bk

k
γ

Figure 3.

Step 2. Make four copies of Pk+1 and glue each copy with Sk,1 along their boundary
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curves of length 2bk = 2ak+1 . The resulting Riemann surface Sk,2 is of
type (0, 8).

Step 3. Continue the above construction inductively. Namely, make 2n+1 copies of
Pk+n and glue each copy with Sk,n−1 along their boundary curves of length
2bk+n−1 = 2ak+n . Then we obtain a Riemann surface Sk,n of type (0, 2n+1) .

Step 4. Take n(k) ∈ N so large that the distance between γk and ∂Sk,n(k) is greater

than kak . Put S(k) = Sk,n(k) .

From the construction, we see the following:

Observation. For any points p, q ∈ γk , let γ be a geodesic arc from p to q .
Then the hyperbolic length lS0(γ) of γ satisfies

(2) lS0(γ) > kak,

if γ 6⊂ γk .
Step 5. Make another copy S(−k) of S(k) for each k ∈ N and construct a Riemann

surface S0 of infinite type from {S(k)}−1
k=−∞ ∪ {S(k)}∞k=1 and another pair of

pants with geodesic boundaries such that each S(k) is isometrically embedded
in S0 .

Let fn be the positive Dehn twist for γn , n ∈ N . Here, the “positive” Dehn
twist means the Dehn twist with left turning. Set pn = [S0, fn] and p0 = [S0, id] .
The following lemma shows that dT (pn, p0)→∞ .

Lemma 3.1. Let Kn be the maximal dilatation of the extremal quasicon-
formal mapping which is homotopic to fn . Then, limn→∞Kn = ∞ . Thus,
limn→∞ dT (pn, p0) =∞ as n→∞ .

Proof. We consider a neighbourhood Un of γn which is defined by

Un = {z ∈ S0 | dS0(z, γn) < ε}

for some ε > 0, where dS0( · , · ) is the hyperbolic distance on S0 . We take ε > 0
small enough that Un is conformally equivalent to an annulus. We define the Dehn
twist fn such that fn | Un is the standard Dehn twist on the annulus and the
identity on S0 \ Un . That is, fn | Un is defined in terms of the polar coordinates
in the annulus by

r exp (iθ) 7→ r exp

{
i

(
θ + 2π

r − 1

R− 1

)}
,

if Un is equivalent to {1 < |z| < R} .
Let αn be a simple closed geodesic in Sn,1 ⊂ S0 perpendicular to γn . We

consider connected components of π−1(Un) , π−1(γn) and π−1(αn) on H , where
π: H → S0 is a universal covering map. We may assume that the connected
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component of π−1(γn) is the imaginary axis and that of π−1(αn) is δ := {|z| = 1}
∩H , the unit circle in H . Let Ũn denote the connected component of π−1(Un)
containing the imaginary axis.

Let Fn: H → H be a lift of an extremal quasiconformal mapping which is
homotopic to fn . We may take Fn so that Fn(0) = 0, Fn(i) = i and Fn(∞) =∞ .
It is well known that Fn can be extended to a homeomorphism of H and the
boundary mapping Fn | R depends only on the homotopy class of fn up to
Aut(H) .

Let z1, z2 , Re z1 < 0 < Re z2 , be the points of δ∩∂Ũn . Since fn is the positive
Dehn twist, we see that Fn(z1) = z1 and Fn(z2) = e2anz2 . Hence, Fn(δ ∩ Ũn)

is an arc connecting z1 and e2anz2 in Ũn . Applying the similar argument to a
subarc of δ in each component of π−1(Un) , we see that

−1 < Fn(−1) < e2an < Fn(1).

In particular, limn→∞ Fn(1) =∞ . Therefore, for the cross ratio

[a, b, c, d] = (a− b)(c− d)(a− d)−1(c− b)−1

we have
[−1, 0, 1,∞] = −1

and

λn = [Fn(−1), Fn(0), Fn(1), Fn(∞)] = [Fn(−1), 0, Fn(1),∞] =
Fn(−1)

Fn(1)
.

Thus, we have limn→∞ λn = 0. Therefore, the conformal modulus of a quadri-
lateral H with vertices Fn(−1), Fn(0), Fn(1) and Fn(∞) degenerates as n →
∞ . Since the quasiconformal mapping Fn maps a quadrilateral H with vertices
−1, 0, 1 and ∞ onto the quadrilateral H with vertices Fn(−1), Fn(0), Fn(1) and
Fn(∞) , we have Kn = K(Fn)→ +∞ .

Next, we shall show that dL(pn, p0)→ 0.
Let α be a closed geodesic on S0 . If α ∩ γn = ∅ , then it is obvious that

lS0(α) = lS0

(
fn(α)

)
.

Suppose that #(α ∩ γn) = m > 0. Since each point of α ∩ γn makes a Dehn
twist, we have

(3) lS0

(
fn(α)

)
≤ lS0(α) +mlS0(γn) = lS0(α) + 2man.

On the other hand, from (2) we have

(4) lS0(α) > mnan.
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Combining (3) and (4), we have

lS0

(
fn(α)

)

lS0(α)
< 1 +

1

2n
→ 0,

as n→∞ . Since f−1
n is also a Dehn twist, from the same argument as above, we

have
lS0(α)

lS0

(
fn(α)

) < 1 +
1

2n
.

Therefore, we note that limn→∞ dL(pn, p0) = 0 and complete the proof of Theo-
rem 1.1.

3.2. Proof of Corollary 1.1. We use the same Riemann surface S0 and
the same quasiconformal mappings fn as in the proof of Theorem 1.1. Set Fn =
f1 ◦ f2 ◦ · · · ◦ fn and qn = [S0, Fn] . Then, we see that limm,n→∞ dL(qm, qn) = 0
and {qn}n∈N is a Cauchy sequence in T (S0) with respect to the length spectrum
distance dL . However, it does not converge to any point in T (S0) because F∞ =∏∞
n=1 fn is not homotopic to a quasiconformal mapping. Indeed, by using the

same argument as in the proof of Lemma 3.1, we see that the maximal dilatation
of any homeomorphism homotopic to F∞ is not finite. Hence, the distance dL is
not complete in T (S0) .

4. Proof of Theorem 1.2

It follows from Lemma 2.1 that dL(pn, p0)→ 0 when dT (pn, p0)→ 0. Thus,
it suffices to show that dT (pn, p0)→ 0 as dL(pn, p0)→ 0.

By using Lemma 2.1 again, we see that the condition of Theorem 1.2 is quasi-
conformal invariant, that is, any Riemann surface which is quasiconformally equiv-
alent to S0 satisfies the condition of Theorem 1.2 for some constant. Hence we
may assume that p0 = [S0, id] .

Put pn = [Sn, fn] ∈ T (S0) and assume that limn→∞ dL(pn, p0) = 0. Let
CP be the set of closed geodesics which are boundaries of some Pk in S0 . For
each α ∈ CP , there exist a closed geodesic in Sn homotopic to fn(α) . We denote
the closed geodesic by [fn(α)] . The set {[fn(α)]}α∈CP together with punctures

of Sn gives a pants decomposition of Sn . Let P
(n)
k denote a pair of pants in

the pants decomposition of Sn such that each boundary component is a closed
geodesic homotopic to a component of fn(Pk) or a puncture of ∂fn(Pk) .

From the definition of dL , we have

(
dL(pn, p0)

)−1
lS0(α) ≤ lSn

(
[fn(α)]

)
≤ dL(pn, p0)lS0(α)

for any α ∈ CP . As M−1 ≤ lS0(α) ≤M for α ∈ CP , we see that
{
lSn
(
[fn(α)]

)}∞
n=1

converges to lS0(α) uniformly on CP , that is, for any ε > 0, there exists n0 ∈ N
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such that if n ≥ n0 , then

(5)
∣∣lSn

(
[fn(α)]

)
− lS0(α)

∣∣ < ε

holds for any α ∈ CP .
It is known that the lengths of boundaries determine the moduli of the pair

of pants. Hence, if n is sufficiently large, then from (5) we verify that there exists

a quasiconformal mapping gk,n of Pk onto P
(n)
k with small dilatation. However,

we need to find quasiconformal mappings gn on the whole surface S0 such that
limn→∞K[gn] = 1. To obtain such mappings, we consider the “Fenchel–Nielsen
coordinates” of the infinite-dimensional Teichmüller space T (S0) . The classical
Fenchel–Nielsen coordinates are defined in the Teichmüller space of Riemann sur-
faces of finite type. We define the coordinates in T (S0) by using an exhaustion
of S0 .

We take a subregion S
(m)
0 , m = 1, 2, . . . , of S0 satisfying the following con-

ditions (after rearrangement of the numbers of {Pk}∞k=1 ).

(1) S
(m)
0 = Int

(⋃k(m)
k=1 P k

)
for some k(m) ∈ N ,

(2) S
(1)
0 ⊂ S(2)

0 ⊂ · · · ⊂ S(m)
0 ⊂ S(m+1)

0 ⊂ · · · , and

(3) S0 =
⋃∞
m=1 S

(m)
0 .

Similarly, we take an exhaustion {S(m)
n }∞m=1 of Sn from {P (n)

k }∞k=1 .

Let Ŝ
(m)
0 , respectively Ŝ

(m)
n be the Nielsen extension of S

(m)
0 , respectively

S
(m)
n . Since

(
fn)∗(π1(S

(m)
0 )

)
= π1(S

(m)
n ) , we see that there exists a quasiconfor-

mal mapping fn,m: Ŝ
(m)
0 → Ŝ

(m)
n such that

(fn,m)∗ ◦ (ι
(m)
0 )∗ = (ι(m)

n )∗ ◦ (fn)∗ | π1(S
(m)
0 )

on π1(S
(m)
0 ) , where ι

(m)
0 and ι

(m)
n are the natural inclusion maps from S

(m)
0 to

Ŝ
(m)
0 and from S

(m)
n to Ŝ

(m)
n , respectively. A pair (Ŝ

(m)
n , fn,m) gives a point in

T (Ŝ
(m)
0 ) . Obviously, if m′ > m , then

(6) (fn,m′)∗ | π1(S
(m)
0 ) = (fn,m)∗.

Now, we consider the Fenchel–Nielsen coordinates (cf. [3]) on T (Ŝ
(m)
0 ) with

respect to the pants decomposition given by {Pk}k(m)
k=1 . The Fenchel–Nielsen coor-

dinates consist of length coordinates and twist coordinates. The length coordinates
are the collection of lengths of boundaries of the pants decomposition and the twist
coordinates are the collection of twist angles along the boundaries of the pants de-

composition. From (6) or the construction of Ŝ
(m)
n , we see that if α ∈ S(m)

0 and
m′ > m , then

l
Ŝ

(m)
n

(
[fn,m(α)]

)
= l

Ŝ
(m′)
n

(
[fn,m′(α)]

)
= lSn

(
[fn(α)]

)
.
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Thus, it follows from (5) that the length coordinates of p̂
(m)
n = [Ŝ

(m)
n , fn,m] con-

verge to those of p̂
(m)
0 = [Ŝ

(m)
0 , id] as n→∞ .

Similarly, it is also seen that the twist parameter along [fm,n(α)] does not

depend on m if [fn(α)] ⊂ S(m)
n . Thus, we may denote the twist parameter along

[fn(α)] , α ∈ CP , by θn(α) .

Lemma 4.1. The sequence {θn(α)}n∈N converges to θ0(α) , the twist pa-
rameter along α of p0 ∈ T (S0) , uniformly on CP . Namely, for any ε > 0 there
exists n0 ∈ N such that if n ≥ n0 , then

|θn(α)− θ0(α)| < ε

holds for any α ∈ CP .

Proof. For any closed geodesic α ∈ CP , the following two cases occur (Fig-
ure 4):

(A) α is a non-dividing curve and is contained in a subregion T (α) of S0 of genus
one with one geodesic boundary curve in CP .

(B) α is a dividing curve and is contained in a planar subregion of S0 bounded
by four geodesic curves in CP .

α

α

(A): (B):

Figure 4.
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We shall show the statement of the lemma in Case (A) since the proof is
similar in Case (B).

Let α∗ be the shortest simple closed geodesic in all closed curves intersecting α
(Figure 5). From the second condition in Theorem 1.2 we verify that there exists
a constant C1 = C1(M) > 0 depending only on M such that

(7) 0 < C−1
1 < lS0(α∗) < C1.

Indeed, since lS0(α) < M , the collar theorem (cf. [2, Chapter 4]) guarantees
that the geodesic α ⊂ S0 has a collar with some width depending only on M .
Hence the existence of a positive lower bound of lS0(α∗) is obvious and the lower
bound depends only on M . On the other hand, since the hyperbolic length of any
boundary curve of any Pk is less than M , the hyperbolic distance between any
two boundary curves of Pk is less than some constant C1 depending only on M .
Therefore, it is easy to see lS0(α∗) < C1 .

Next, we show that there exists a constant Θ depending only on M such that

(8) |θn(α)| < Θ

holds for any α ∈ CP and for any n ∈ N .

α

α*

Figure 5.

Indeed, if such a constant does not exist, then there exist sequences {nt}t∈N

in N and {αnt}t∈N in CP such that

lim
t→∞

|θnt(αnt)| = +∞.

Considering that lSnt (αnt) > M−1 > 0, we have that

lim
t→∞

lSnt
(
fnt(α

∗
nt)
)

= +∞.
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Therefore, from (7) we see that

dL(pnt , p0) ≥ log
lSnt

(
fnt(α

∗
nt)
)

lS0(α∗nt)
→ +∞

as t→∞ , and we have a contradiction.

Now, we prove the lemma. Assume that {θn(α)}n∈N does not uniformly
converge to θ0(α) . Then, there exist a constant ε0 > 0, a sequence {nt}t∈N in
N and {αnt}t∈N in CP such that

(9) |θnt(αnt)− θ0(αnt)| ≥ ε0

holds for any nt . From this inequality and (8), we can find a simple closed geodesic
β in S0 such that ∣∣lSnt

(
fnt(β)

)
− lS0(β)

∣∣ > δ

hold for some δ > 0 and for all nt (cf. [8]). Hence, we have

∣∣∣∣
lSnt

(
fnt(β)

)

lS0(β)
− 1

∣∣∣∣ >
δ

lS0(β)
> 0.

It contradicts limt→∞ dL(pnt , p0) = 0 and thus we complete the proof of the
lemma.

Now, the proof of Theorem 1.2 is immediate. From the boundedness of the
length and the angle parameters and from the uniform convergence of them, we can

construct quasiconformal mappings from Ŝ
(m)
0 onto Ŝ

(m)
n with small dilatations.

More precisely, for any ε > 0 there exist n0 ∈ N and quasiconformal mappings

gn,m from Ŝ
(m)
0 onto Ŝ

(m)
n , m = 1, 2, . . . , such that

(1) gn,m is homotopic to fn,m .
(2) If n ≥ n0 , then the maximal dilatation K[gn,m] of gn,m is less than (1 + ε) .

By taking the limit of {gn,m}m∈N as m→∞ , we have a quasiconformal mapping
gn from S0 onto Sn with K[gn] ≤ 1 + ε . From the construction, [Sn, gn] =
[Sn, fn] = pn and we conclude that limn→∞ dT (pn, p0) = 0 as we desired.
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