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QUASICONFORMAL IMAGES OF HÖLDER DOMAINS
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Abstract. We introduce and study the k-cap condition and use it to prove that the quasicon-
formal image of a Hölder domain is itself Hölder if and only if it supports a Trudinger inequality.
We compare and contrast the k-cap condition with related slice-type conditions.

0. Introduction

Smith and Stegenga [SS2] showed that every Hölder domain is a Trudinger
domain, i.e., if G is a Euclidean domain on which quasihyperbolic distance to
some fixed x0 ∈ G grows like the logarithm of distance to the boundary, then
G supports a Trudinger imbedding. Subject to some rather mild restrictions,
the converse is also true; see [BK2, Theorem 4.1] and [BO, Theorem 5.3]. We
note that some restriction is essential for the converse direction to rule out easy
counterexamples based on removability or extendability.

In particular, it follows from the results in [BK2] that the quasiconformal im-
age of a uniform domain satisfies a slice condition, and hence that it is a Trudinger
domain if and only if it is a Hölder domain. Here we generalize this result by show-
ing that a quasiconformal image of a Hölder domain is a Trudinger domain if and
only if it is a Hölder domain; the resulting proof is also simpler than the proofs
based on slice conditions.

A key step in the earlier papers is the use of a global conformal capacity es-
timate (the so-called Loewner estimate) to prove that all quasiconformal images
of a uniform domain satisfy slice conditions. Uniform domains satisfy such an
estimate, but the typical Hölder domain does not. Indeed we shall see that, al-
though Hölder domains satisfy weak slice conditions, their quasiconformal images
may fail to do so. Instead, we introduce and use the k-cap condition, which relates
conformal capacity and quasihyperbolic distance. This condition is implied by all
previously defined (weak) slice conditions, but implies none of them. Crucially, it
is conformally invariant but still strong enough to weed out all Trudinger domains
that are not Hölder.

After some preliminaries in Section 1, we define the k-cap condition and prove
the Trudinger–Hölder result in Section 2. We then discuss the relationship between
the k-cap and various slice-type conditions in Section 3.
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1. Preliminaries

First let us introduce some general notation. Throughout, we look at domains
in Rn , n > 1. Suppose the Lebesgue measure |D| of D ⊂ Rn is positive and
finite. Given a function u: D → R , we denote by uD the Lebesgue average of u
on D . We define the Orlicz norm for functions f : D → R with respect to the
Orlicz function φ and normalized Lebesgue measure by the equation

‖f‖φ(L)(D) = inf

{
t > 0 :

1

|D|

∫

D

φ(|f(x)|/t) dx ≤ 1

}
.

As a special case, ‖ · ‖Lp(D) denotes the usual Lp norm on D with respect
to normalized Lebesgue measure. Various concepts that we introduce involve
one or more parameters which we include only when needed; for instance we
define (ε, C; x0)-Hölder domains, but refer to such domains generically as Hölder
domains. For any two numbers a , b , a ∨ b and a ∧ b denote their maximum and
minimum, respectively. For any set S , χS is its characteristic function. If S is
either an open or closed ball, tS denotes its concentric dilate by a factor t . We
state quantitative dependence in the usual manner: C = C(Q1, Q2, . . .) means
that C depends only on the quantities Q1, Q2, . . . .

Assume that G ( Rn is a domain. We write δG(x) for the boundary distance
dist(x, ∂G), x ∈ G , and call r(G) = supx∈G δG(x) the inradius of G . When it
is clear from the context what domain G we have in mind, we use Bx and Bx ,
respectively, to denote the open and closed balls around x of radius δG(x). Let
ΓG(x, y) be the class of rectifiable paths λ: [0, t] → G for which λ(0) = x and
λ(t) = y . Writing ds for arclength measure, we define the quasihyperbolic length

of a rectifiable path γ in G , and the quasihyperbolic distance between x, y ∈ G
by the equations

lenk;G(γ) =

∫

γ

ds(z)

δG(z)
,

kG(x, y) = inf
γ∈ΓG(x,y)

lenk;G(γ), x, y ∈ G.

Given x, y ∈ G , there always exists a quasihyperbolic geodesic, i.e., a path γ ∈
ΓG(x, y) with lenk;G(γ) = kG(x, y); see [GO]. We write B(x, r) for the open
Euclidean ball of radius r about x , and Bk(x, r) for the quasihyperbolic ball of
radius r about x (when the domain G is understood). We denote by len(S) and
lenk;G(S) the one-dimensional Hausdorff measures of a set S ⊂ G with respect to
the Euclidean and quasihyperbolic metrics, respectively; the sets S that interest
us are all countable unions of image sets of paths, so len(S) and lenk;G(S) are
just sums of the corresponding path-lengths. Whenever λ is a path, λ∗ denotes
its image set. We denote by lG(x, y) the inner Euclidean distance from x to y in
G , i.e. the infimum of len(γ∗) over all γ ∈ ΓG(x, y).
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For 1 ≤ p < ∞ , L1,p(G) is the space of functions f : G → R with distribu-
tional gradients in Lp(G), and W 1,p(G) = Lp(G) ∩ L1,p(G) is the corresponding
Sobolev space. We write ‖u‖W 1,p(G) = ‖u‖Lp(G) + ‖∇u‖Lp(G) .

The conformal capacity, cap(E, F ; G), of the disjoint compact subsets E, F ⊂
G relative to G , is the infimum of

∫
G
|∇u|n , as u ranges over all functions which

are locally Lipschitz continuous in G , equal 1 on E , and 0 on F . We write
cap(E, F ) = cap(E, F ;Rn). Trivially, cap(E, F ; G) ≤ cap(E ′, F ′; G′) whenever
E ⊂ E′ , F ⊂ F ′ , G ⊂ G′ , and cap(E, F ; G) = cap(∂E, ∂F ; G).

It is sometimes useful to use conformal modulus instead of capacity. The con-

formal modulus, cap(E, F ; G), of the disjoint compact subsets E, F ⊂ G relative
to G , is the infimum of

∫
G

%n , where % ranges over all admissable weights, mean-
ing non-negative Borel measurable functions such that the line integral

∫
γ

% ds is
always at least 1, for every locally rectifiable path γ that begins in E , ends in
F , and remains inside G . The principle that modulus equals capacity has a long
history going back to Ziemer [Z1] but, with our definition of capacity, the fact
that cap(E, F ; G) = mod(E, F ; G) is due to Kallunki and Shanmugalingam [KS],
where the reader can also find many references to other results of this type.

We shall need a few capacity estimates, which we now state. Defining the
relative distance

∆(E, F ) ≡ dist(E, F )

dia(E) ∧ dia(F )
,

it is well known (and is proven after Proposition 3.5) that there exists a dimensional
constant Cn such that

(1.1) ∆(E, F ) ≥ 2 =⇒ cap(E, F ; G) ≤ Cn

(
log ∆(E, F )

)−n+1
.

In the case G = Rn , there exists another dimensional constant cn such that

(1.2) ∆(E, F ) ≥ 2 =⇒ cap(E, F ) ≥ cn

(
log ∆(E, F )

)−n+1
.

This follows, for instance, as a special case of [HnK, Theorem 3.6]. Our final
capacity estimate is a transfer estimate given by [HrK, Lemma 3.2]. If E is a
closed ball, with σE ⊂ G ⊂ Rn for some σ > 1, then for all compact subsets F
of G \ σE , and all constants 0 < c < 1, there is a constant C = C(c, σ, n) such
that

(1.3) cap(cE, F ; G) ≤ cap(E, F ; G) ≤ C cap(cE, F ; G).

Given C ≥ 1, we say that a domain G ⊂ Rn is a C -Trudinger domain if
|G| < ∞ and it supports the Trudinger imbedding

‖u − uG‖φ(L)(G) ≤ Cr(G)‖∇u‖Ln(G) for all u ∈ W 1,n(G) ,
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where φ(x) = exp(xn/(n−1)) − 1. The use of normalized Lebesgue measure and
the presence of the inradius on the right-hand side ensures that the Trudinger
imbedding is dilation invariant. More generally, given a non-empty open set A ⊂
G , we say that G is a (C; A)-Trudinger domain if

‖u − uA‖φ(L)(G) ≤ Cr(G)‖∇u‖Ln(G) for all u ∈ W 1,n(G).

As is well known, if A′ ⊂ G is also non-empty and open, then every (C; A)-
Trudinger domain is a (C ′; A′)-Trudinger domain with C ′ = C ′(n, |A′|/|G|).

Let C ≥ 1, x, y ∈ G ( Rn , and let γ ∈ ΓG(x, y) be a path of length l which
is parametrized by arclength. We say that γ is a C -uniform path for x, y ∈ G if
l ≤ C|x− y| and t ∧ (l − t) ≤ CδG

(
γ(t)

)
. We say that G is a C -uniform domain

if there is a C -uniform path for every pair x, y ∈ G . If there is a C -uniform path
for the points x, y ∈ G , then

(1.4) kG(x, y) ≤ 2C log

(
1 +

|x − y|
δG(x) ∧ δG(y)

)
+ C ′,

where C ′ = 2(C + C log C + 1). This result is due to Gehring and Osgood [GO],
where they also show that (1.4) holds with a uniform constant C for all x, y ∈ G
if and only if G is uniform.

One can form one-sided versions of uniformity and (1.4), by assuming the
defining conditions uniformly for all x ∈ G , but only for a fixed y = x0 ∈ G . This
yields the classes of John and Hölder domains, respectively, which are no longer
equivalent. We shall, however, use a somewhat different defining inequality for
Hölder domains to reflect the asymmetry between the roles of x and x0 .

Given ε ∈ (0, 1], C ≥ 0, and a pair of points x, x0 in a domain G ( Rn ,
we say that the path γ ∈ ΓG(x, x0) is an (ε, C)-Hölder path for the pair x, x0 if
lenk;G(γ) ≤ C + ε−1 log

(
δG(x0)/δG(x)

)
. We say that G is an (ε, C; x0)-Hölder

domain if there is an (ε, C)-Hölder path for all pairs x, x0 , x ∈ G . The concept of
a Hölder domain and the parameter ε , but not the parameter C , are independent
of x0 ∈ G . We note that the concept of a Hölder domain, and the associated
numerical parameters, are dilation invariant.

All uniform domains are John domains, and all John domains are Hölder
domains, but these classes are distinct. Uniform domains include all bounded Lip-
schitz and certain fractal domains (e.g. the region inside the von Koch snowflake).
The domains in the proof of Proposition 2.11 below are Hölder domains, but are
not John. For more on Hölder domains, see [SS1] and [K]; for more on uniform
domains, see [V2] and [V3].

We close this section by stating a useful lemma for Hölder domains, which is
implied by Corollary 1 of [SS1].

Lemma 1.5. If G ⊂ Rn is an (ε, C; x0) -Hölder domain, then dia(G) ≤
C ′δG(x0) for some C ′ = C ′(ε, C) .
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2. Trudinger, Hölder, and the k-cap condition

In this section we introduce the k-cap condition and use it to show that
quasiconformal images of Hölder domains are themselves Hölder domains if they
are Trudinger domains. We also show that the class of quasiconformal images
of Hölder domains is strictly larger than the class of quasiconformal images of
uniform domains, and so this result improves on [BK2] where the same conclusion
is reached for the latter class of domains.

Theorem 2.1. Suppose f is a quasiconformal mapping from one domain

G ⊂ Rn onto another one, G′ . If G is a Hölder domain and G′ is a Trudinger

domain, then G′ is also a Hölder domain.

Before we proceed, let us discuss the parameter dependence in this theorem.
Suppose G is an (ε, C; y)-Hölder domain, G′ is a C1 -Trudinger domain, f is a
K -quasiconformal mapping, and y′ = f(y). In that case, we shall see that G′ is
an (ε′, C ′; y′)-Hölder domain, where ε′, C ′ depend only on ε , C , n , C1 , K , and
the ratio |G′|/|By′ | . Dependence on the last parameter might seem unpleasant,
so let us discuss it further. First, a careful reading of the proof indicates that it
is needed only to determine C ′ , not the more important parameter ε′ . Secondly,
even this dependence can be removed by a reworking of the assumptions. Since
G′ is a Trudinger domain, it is also a

(
C2;

1
2By′

)
-Trudinger domain, for some C2

dependent only on C1 and |G′|/|By′| . We can then choose ε′, C ′ to depend only
on ε , C , n , C2 , and K . Finally, by taking f to be a Möbius self-map of the unit
disk which takes the origin to a point close to the unit circle, one sees that with
the original assumptions, dependence on |G′|/|By′ | is essential.

The main tool in our proof of Theorem 2.1 is the notion of a k-cap condition.
First note that if G is a bounded subdomain of Rn , x0 ∈ G , and 0 < c ≤ 1

2
,

then there is a constant C > 0 such that

(2.2) kG(x, y) ≥ 2 =⇒ kG(x, y)n−1 cap(cBx, cBy; G) ≥ C for all x ∈ G.

This fact is implicit, for instance, in the proof of [HrK, Theorem 6.1]. The k-cap
condition, which is our main tool in the proof of Theorem 2.1, simply reverses this
inequality. Specifically, for a given point y ∈ G and constants C > 0, 0 < c ≤ 1

2 ,
we say that G satisfies the (C, c; y)-k-cap condition if

(KC) kG(x, y) ≥ 2 =⇒ kG(x, y)n−1 cap(cBx, cBy; G) ≤ C for all x ∈ G .

If the parameter c is omitted, it is assumed that c = 1
2 . We call any (C; y)-k-cap

condition a one-sided k-cap condition if we do not wish to specify the parameters.
The adjective “one-sided” is added to distinguish this condition from a two-sided

C -k-cap condition, which means that G satisfies a (C; y)-k-cap condition for each
y ∈ G . We say that the C -k-cap inequality holds for x, y ∈ G , kG(x, y) ≥ 2, if
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the main inequality in (KC) holds for this pair; formally the data here is a triple
(x, y, G), but usually G is implicit.

By a simple estimate, the quasihyperbolic ball of radius r > 0 around a
point z ∈ G contains

(
1 − exp(−r)

)
Bz . It follows that if kG(x, y) ≥ 2, then

%Bx and %By are disjoint, where % = 1 − 1/e . Since % > 1
2 , it follows from the

transfer estimate (1.3) that every (C, c; y)-k-cap condition implies a (C1C, c′; y)-
k-cap condition, for some C1 = C1(c, c

′, n). Additionally, using (1.1), we see that
there exists a dimensional constant Cn such that

k(x, y) ≥ 2 =⇒ cap
(

1
2Bx, 1

2By; G
)
≤ cap

(
Rn \ %By,

1
2By;R

n
)
≤ Cn.

Thus if we want to prove that a domain satisfies a k-cap condition, but we do not
care about the precise values of the parameters, it suffices to prove the estimate
in (KC) only for large quasihyperbolic distance.

The following proposition is the first step in our proof of Theorem 2.1.

Proposition 2.3. Let G ⊂ Rn be a
(
C1;

1
2By

)
-Trudinger domain that

satisfies the (C2; y) -k-cap condition for some y ∈ G . Then G is an (ε, C; y) -
Hölder domain for some ε , C dependent only on C1 , C2 , and n .

Proof. By the dilation invariance of the assumptions and the conclusion,
we may assume that |G| = 1, and so r(G) < 1. Let x ∈ G be arbitrary but
fixed. The Hölder estimate is trivially true if kG(x, y) < 2, so we may assume
that kG(x, y) ≥ 2. Let u: G → R be any locally Lipschitz function such that
u|(1/2)Bx

≡ 1 and u|(1/2)By
≡ 0. The Trudinger imbedding implies that

‖χ(1/2)Bx
‖φ(L)(G) ≤ ‖u − u(1/2)By

‖φ(L)(G) ≤ C1‖∇u‖Ln(G)

and so φ(1/C1‖∇u‖Ln(G))
∣∣ 1
2
Bx

∣∣ ≤ 1. Unravelling this and taking an infimum
over all such functions u , we get

cap
(

1
2Bx, 1

2By; G
)
≥ C−n

1

[
log

(
1 +

∣∣ 1
2Bx

∣∣−1)]1−n
.

Combining this inequality with (KC), we deduce that

kG(x, y) . log
(
1/

∣∣ 1
2
Bx

∣∣).

This last inequality readily implies that G is an (ε, C; y)-Hölder domain, but
with the parameter C depending on δG(y) as well as the allowed parameters. To
deduce the desired Hölder condition, we find a positive lower bound for δG(y)
which depends only on C1 and n . Let E ≡ 1

4By , define the test function u(x) =
dist(x, E), x ∈ G , and let Nu ≡ ‖u‖φ(L)(G) . Then

|G \ tE|φ
(

(t − 1)δG(y)

4Nu

)
≤

∫

G\tE

φ

(
u

Nu

)
≤ 1, t > 1.
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Choosing t0 so that |G \ t0E| = 1
2 , and defining r0 = 1

4 t0δG(y), it follows that
t0 > 2 and r0 < 2Nuφ−1(2) . Nu . Moreover, u is a Lipschitz function with u ≡ 0
on E and ‖∇u‖Ln(G) ≤ ‖∇u‖L∞(G) = 1, and so Trudinger’s inequality implies
that Nu . 1. Thus r0 . 1.

We now define another test function v: G → [0,∞), by the equation

v(x) =





0, x ∈ E,
(log t0)

−1/n log(4|x − y|/δG(y)), x ∈ t0E \ E,
(log t0)

1−1/n, x ∈ G \ t0E.

Then v is Lipschitz and ‖∇v‖n
Ln(G) . 1. By Trudinger’s inequality, we have

Nv ≡ ‖v‖φ(L)(G) . 1. It follows as before that |G \ t0E|φ(log(t0)
1−1/n/Nv) ≤ 1.

Since |G \ t0E| = 1
2 , we deduce that t0 is bounded. Since |G ∩ t0E| = 1

2 , a lower
bound for δG(y) follows immediately.

By establishing a lower bound for δG(y) in the last proof, we implicitly proved
the following Trudinger version of Lemma 1.5.

Proposition 2.4. If G ⊂ Rn is an (C; B) -Trudinger domain, then dia(G) ≤
C ′r(B) for some C ′ = C ′(C, n) .

We next claim that there is a dimensional constant Cn such that for all
0 < c ≤ 1

2
,

(2.5) kG(x, y) ≥ 2 =⇒ cap(cBx, cBy; G) ≤ Cn

[
log

( |x − y|
δG(x) ∧ δG(y)

)]−n+1

.

To see this, let E = 1
6Bx and F = 1

6By and note that if kG(x, y) ≥ 2, then
∆(E, F ) ≥ 2 and ∆(E, F ) is comparable with |x − y|/

(
δG(x) ∧ δG(y)

)
. We

therefore deduce (2.5) from (1.1) in the case c = 1
6 (and hence also if 0 < c ≤ 1

6 ).
Using (1.3), our claim follows in all cases.

Using (2.5) we see that the k-cap inequality holds for any pair x, y satisfying
(1.4), and so in particular whenever there is a uniform path for x, y . The following
lemma now follows easily.

Lemma 2.6. Every C -uniform domain G ( Rn satisfies a two-sided C ′ -k-

cap condition for some C ′ = C ′(C, n) . Every (ε, C; y) -Hölder domain G ( Rn

satisfies a (C ′; y) -k-cap condition for some C ′ = C ′(ε, C, n) .

The proof of Theorem 2.1 is now almost clear. Proposition 2.3 reduces the
task to showing that G′ satisfies a k-cap condition. By Lemma 2.6, G satisfies
the k-cap condition, so it only remains to show that the k-cap condition is a
quasiconformal quasi-invariant.

We pause to record some properties of K -quasiconformal mappings f from
G onto G′ , where G, G′ ( Rn , and the dilatation K is at least 1. Suppose also
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that x, y ∈ G , with x′ = f(x), y′ = f(y). First, f quasipreserves conformal
capacity, i.e. it distorts it by at most a positive factor C = C(K, n). In many
modern accounts, this is a special case of the definition of quasiconformality, but
the original proof from an analytic definition was found by Gehring [G]; for related
results in more general contexts, see [T] and Theorems 4.9 and 8.5 of [HnK]. Also,
K -quasiconformal mappings quasipreserve large quasihyperbolic distance; in fact,
according to [GO, Theorem 3], there are constants C = C(K, n) and α = K1/(1−n)

such that
kG′(x′, y′) ≤ C

(
kG(x, y) ∨ kG(x, y)α

)
.

Lastly, if B = B(x, r) ⊂ G , with dist(B, ∂G) = Cr , then cBx′ ⊂ f(B), for
some c = c(C, K, n) > 0; this follows, for instance, by applying [V1, 18.1] to the
(quasiconformal) inverse of f .

From the quasi-invariance properties listed above, we see that if G satisfies
the (C; y)-k-cap condition and f : G → G′ is K -quasiconformal, then

kG

(
f(x), f(y)

)n−1
cap

(
f
(

1
2Bx

)
, f

(
1
2By); G′

)
≤ C ′ for all x ∈ G.

Since, for some c′ = c′(K, n), we have

c′Bf(z) ⊂ f
(

1
2
Bz

)
, z = x, y,

the (C ′, c′; y′)-k-cap condition follows. As mentioned previously, this implies a
(C ′′; y′)-k-cap condition, quantitatively. Thus (KC) is quasiconformally quasi-
invariant and the proof of Theorem 2.1 is complete.

Quasiextremal distance domains, or QED domains, were introduced by Geh-
ring and Martio [GM]. Later Herron and Koskela [HrK] introduced the weaker
variation that they called QED1

b . Given a domain G ⊂ Rn , and a closed ball
F ⊂ G , we say that G is a (C; F )-QED1

b domain if

(2.7) C cap(E, F ; G) ≥ cap(E, F ),

whenever E ⊂ G \ F is a closed ball.
QED1

b domains and Trudinger domains are closely related. It is shown in
[HrK, Theorem 6.1] that every Hölder domain is a QED 1

b domain, and we already
know that every Hölder domain is a Trudinger domain. It follows from [HrK,
Proposition 3.6] that the QED1

b condition is equivalent to the a priori weaker
condition where (2.7) is assumed only in the case where E = cBx , 0 < c < 1 is
fixed, and E ⊂ G \ F . In fact, the capacity estimate is easily verified when x, y
are quasihyperbolically close, so it suffices to take F = 1

2
By for some fixed y ∈ G ,

E = 1
2Bx , where x ∈ G is an arbitrary point for which kG(x, y) ≥ 2. With these

choices, and capacity estimates (1.1) and (1.2), the QED 1
b condition for a bounded
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domain G reduces to the statement that there exist positive constants C , ε such
that for all x ∈ G ,

kG(x, y) ≥ 2 =⇒ cap
(

1
2Bx, 1

2By; G
)
≥

[
C + ε−1 log

(
δG(y)

δG(x)

)]1−n

.

Putting this estimate together with (KC), it immediately follows that G is a
(C ′, ε; y)-Hölder domain. In fact using the quasi-invariance of the k-cap condition,
we get the following result, which was proved by other methods in Section 6
of [HrK].

Theorem 2.8. If G ⊂ Rn is a bounded QED1
b domain that satisfies a k-cap

condition, then G is a Hölder domain. Consequently, the quasiconformal image

of a Hölder domain is bounded and QED1
b if and only if it is a Hölder domain.

Our next aim is to give an example for each dimension n ≥ 2 of (a quasi-
conformal image of) a Hölder domain that is not the quasiconformal image of a
uniform domain. We first state a lemma, which is essentially Lemma 3.3 of [BK1];
we have added an indication of parameter dependence that is implicit in the proof.

Lemma 2.9. If G ⊂ Rn is a C -uniform domain, and f is a K -quasicon-

formal mapping from G onto G′ , then there exists a constant C0 = C0(C, K, n)
such that G′ satisfies the following separation property : if x, y, w ∈ G′ and if w
lies on a quasihyperbolic geodesic from x to y , then

(2.10) λ∗ ∩ B(w, C0δG′(w)) 6= ∅ for all λ ∈ ΓG′(x, y) .

Proposition 2.11. For each n ≥ 2 , there exists a Hölder domain G ⊂ Rn

which is not the quasiconformal image of any uniform domain.

Proof. We first give an example G1 that works for each n ≥ 3. We treat the
final coordinate direction as the “vertical” direction, and let π∗ : Rn → Rn−1 and
πn: Rn → R be projection onto the first n − 1 coordinates and final coordinates
respectively.

Letting aj = 2−j , lj = 3−j , and εj = 4−j for each j ∈ N , we define the
domain G1 = Q0∪

(⋃∞
j=1(Qj ∪Nj)

)
, which consists of a central cube Q0 = (0, 1)n

to which are attached the peripheral cubes

Qj = (aj, aj + lj)
n−1 × (−lj − εj ,−εj), j ∈ N,

via the necks

Nj = (aj, aj + lj)
n−2 × (aj, aj + εj) × [−εj , 0], j ∈ N.

Let us show, in every dimension n ≥ 2, that G1 is a Hölder domain with
respect to z0 , the center of Q0 . Writing zj for the center of Qj , any quasihyper-
bolic geodesic γj from zj to z0 has to pass through the bottleneck Nj but this
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does not invalidate the Hölder condition because the inradius of Nj is compara-
ble to a fixed power of the diameter of Qj , and the length of this bottleneck is
comparable with its inradius. In fact, by using a path consisting of three straight
line segments as a test path, it is easy to see that

(2.12)

lenk;G1
(γj) = lenk;G1

(γ∗
j ∩ Qj) + lenk;G1

(γ∗
j ∩ Nj) + lenk;G1

(γ∗
j ∩ Q0)

.

∫ 3−j

4−j

dt

t
+ 1 +

∫ 1

4−j

dt

t

≈ j ≈ log
(
1/δG1

(zj)
)
.

Additionally, it is easily verified that Qj is itself a
(
1/

√
n , 0; zj

)
-Hölder domain

for each j (with all Hölder paths being straight lines). Putting together this fact,
(2.12), the inequality kG(u, z0) ≤ kG(u, zj) + kG(zj , z0), and the fact that kG|Qj

is a smaller metric that kQj
, we get a Hölder estimate (with respect to z0 ) for

all points u ∈ Qj which is uniform in j . As for Q0 , the Hölder estimate there
follows almost immediately from the fact that Q0 itself is a Hölder domain.

Finally, suppose u is a point in a neck Nj . Let Rj ⊂ Rn be the (n − 2)-
dimensional rectangle given by

Rj =
{
z = (z′, zn−1, zn) : z′ ∈ [aj + εj , aj + lj − εj ]

n−2, zn−1 = aj + 1
2εj , zn = 0

}
,

let u′ be the point in Rj closest to u , let u′′ be the point with π∗(u
′′) = π∗(u

′)
and πn(u′′) = πn(u). We leave it to the reader to verify that the path which
consists of three line segments from u to u′′ to u′ to z0 is a Hölder path, with
constants uniform over all such u and j .

If n ≥ 3, G1 does not satisfy the separation property (2.10) uniformly for all
choices of data x, y, w ; to see this, take x = z0 , y = zj , and let w = wj be a point
on the connecting quasihyperbolic geodesic whose final coordinate is − 1

2εj . The
elongated shape of cross-sections of Nj requires us to take C0 ≥ lj/εj in order
for (2.10) to be valid. Thus (2.10) fails for any fixed C0 when we let j tend to
infinity, and so G1 cannot be the quasiconformal image of a uniform domain.

Note that the above example G1 cannot work in the plane because it is simply-
connected and so the (quasi-)conformal image of a uniform domain (namely, the
unit disk). The domain G in Theorem 3.6 below would suffice (since the quasi-
conformal image of a uniform domain would have to satisfy a wslice condition),
but let us instead give a simpler example, namely

G2 = (0, 1)2 ∪
(

∞⋃
j=1

Qj ∪ N1
j ∪ N2

j

)
,

where
Qj = (aj , aj + lj) × (−lj − εj ,−εj),

N1
j = (aj , aj + εj) × [−εj , 0],

N2
j = (aj + lj − εj , aj + lj) × [−εj , 0],
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and aj , lj , and εj are as in the earlier example. As before, we see that G2 is
Hölder. It does not satisfy (2.10) uniformly because Nj and N ′

j are much further
apart than their inradius. Thus G2 is not the quasiconformal image of a uniform
domain.

3. Weak slice versus k-cap

The original slice condition was defined in [BK2], where it was used to connect
Sobolev imbeddings with the geometry of a domain. Weak slice conditions 1 were
then introduced in [BO] and [BS1], and used to prove various refinements of these
results. The fact that every quasiconformal image of a uniform domain satisfies
a slice (and hence weak slice) condition, is exploited in [BS2] to classify the qua-
siconformal images of uniform domains which are Cartesian products of domains
in lower dimensions. In [BB], it is shown that all such slice conditions hold on do-
mains where the quasihyperbolic metric is Gromov hyperbolic, and conversely that
a variant of the two-sided slice condition is equivalent to Gromov hyperbolicity.

In this section, we show that the k-cap condition is implied by almost all the
slice-type conditions in the literature (and by a few new ones), but that there are no
such results in the converse direction (with the possible exception of a capacitary
weak slice condition that we introduce below). We also show that, unlike the k-cap
condition, the weak slice condition is not quasiconformally quasi-invariant.

Let C ≥ 1 and x, y ∈ G ( Rn . A set of C -wslices for x, y is a finite
collection F of pairwise disjoint open subsets of G such that for each S ∈ F we
have for all λ ∈ ΓG(x, y):

len(λ∗ ∩ S) ≥ dia(S)/C;(W-1)

(C−1Bx ∪ C−1By) ∩ S = ∅.(W-2)

Next let

dw(x, y; G; C) = sup
{
card(F ) | F is a set of C-wslices for x, y

}
.

A priori, dw(x, y; G; C) could be any non-negative integer or even infinity but in
reality it is bounded. In fact, there exists a constant C ′ = C ′(C) such that

(3.1) dw(x, y; G; C) ≤ C ′[1 + kG(x, y)].

This follows from Lemma 2.3 of [BS1], or from (3.3) below.
We define wslice conditions essentially by reversing (3.1) for large kG(x, y).

More precisely, we say that x, y satisfy the C -wslice inequality on G if

(W-3) kG(x, y) ≤ C(dw(x, y; G; C) + 1).

1 so-called because they are weaker than the slice condition in [BK2].
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If (W-3) holds for all x ∈ G , and fixed y ∈ G , we say that G is a one-sided

(C; y)-wslice domain, while if (W-3) holds for all x, y ∈ G , we say that G is
a two-sided C -wslice domain. This weak slice condition was introduced in [BO,
Section 5], and is essentially the α = 0 case of the Euclidean wslice conditions
of [BS1] and [BS2]. It is clear that the concept of a one-sided wslice domain is
independent of base point y (but different choices of y might necessitate different
choices of C ).

On a general domain G ( Rn , we have the estimate

(3.2) C ≥ 4 =⇒ dw(x, y; G; C) ≥ m0 ≡ 0 ∨
⌊
log2

( |x − y|
δG(x) ∧ δG(y)

)⌋
.

By swapping x and y if necessary, it suffices to prove this estimate under the
assumption that δG(x) ≤ δG(y). We then pick as a set of wslices the concentric
annuli Ai = B

(
x, 2i−2δG(x)

)
\ B

(
x, 2i−3δG(x)

)
for 1 ≤ i ≤ m0 .

Inequality (3.2) gives us the first of an important string of inequalities that
hold on all bounded domains G , for all points x, y , kG(x, y) ≥ 2:

log

(
1 +

|x − y|
δG(x) ∧ δG(y)

)
. dw(x, y; G, C)

. cap−1/(n−1)
(
C−1Bx, C−1By; G

)
. kG(x, y).

The second inequality here follows from (3.4) below, and the third inequality
follows from (2.2). Note that reversing the last inequality uniformly for all x
gives a one-sided k-cap condition, similarly reversing the last two inequalities gives
a wslice condition, and similarly reversing all three inequalities gives a Hölder
domain. If the reversed inequalities hold uniformly for all x and y , we get two-
sided k-cap and wslice conditions, and uniform domains. In particular, a Hölder
domain always satisfies a one-sided wslice condition, and if (1.4) holds for a pair
of points x, y ∈ G (as it does if there exists a uniform path from x to y ), then a
wslice inequality holds for x, y ∈ G .

We now derive a simple but useful slice estimate. Given a subset E of G ,
a finite subset F of 2G , and a number t > 0, let L (F , E, t) be the collection
of those S ∈ F such that len(E ∩ S) ≥ t dia(S), and let N(F , E, t) be the
cardinality of L (F , E, t). Suppose the given family F is a set of C -wslices for
x, y ∈ G , and so δG(w) < 1

2 (C + 1) dia(S) for all w ∈ S ∈ F according to [BS1,
Lemma 2.2]. Consequently,

lenk;G(A) >
2 len(A)

(C + 1) dia(S)
, A ⊂ S ∈ F ,
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and so if E ⊂ G and if F is a set of C -wslices for x, y ∈ G , then

lenk;G(E) ≥
∑

S∈L (F ,E,t)

lenk;G(E ∩ S) ≥
∑

S∈L (F ,E,t)

2 len(E ∩ S)

(C + 1) dia(S)

≥ 2tN(F , E, t)

C + 1

which we rewrite as the desired estimate

(3.3) N(F , E, t) ≤ (C + 1) lenk;G(E)

2t
.

Note that if we take t = 1/C and E = γ∗ , where γ is a quasihyperbolic geodesic
from x to y , then (3.3) gives (3.1).

A wslice inequality always implies a k-cap inequality. The key to proving this
is a construction that associates a capacity test function uF with any set F of
wslices, although it suits us to define this in the more general context of a family
F = {Si}m

i=1 of open subsets of G (and a pair of points x, y ∈ G). We define

ui(z) =

[
inf

λ∈ΓG(z,x)
len(λ∗ ∩ Si)

]
, z ∈ G, 1 ≤ i ≤ m,

and, assuming ui(y) > 0 for all 1 ≤ i ≤ m , we also define the function uF

associated with F by the equation

u(z) = m−1
m∑

i=1

ui(z)

ui(y)
, z ∈ G.

Note that if x ∈ E , y ∈ F , where E, F are compact subsets of G and the sets
in F ∪ {E, F} are pairwise disjoint, then any such function uF is a capacity test
function for the triple (E, F ; G) in the sense that it is Lipschitz, is constantly zero
on E , and is constantly 1 on F .

In particular, if F = {Si}m
i=1 satisfies (W-1), and the family F ∪ {E, F} is

pairwise disjoint, where E and F are compact subsets of G containing x and y
respectively, then ‖∇ui( · )/ui(y)‖L∞(G) ≤ C/ dia(Si), and thus

(3.4) cap(E, F ; G) ≤
m∑

i=1

∫

Si

|∇uF |n ≤
m∑

i=1

Cn|Si|
mn dia(Si)n

≤ m1−nCn.

Taking E = C−1Bx , F = C−1By , we readily deduce the following result.

Proposition 3.5. Every one-sided (C; y) -wslice domain in Rn satisfies a

(C ′; y) -k-cap condition, where C ′ = C ′(C) .
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Inequality (3.4) has many other uses. Together with (3.2), it implies the
special case E = C−1Bx , F = C−1B of (1.1). More generally, the concentric
annuli used to prove (3.2) also give the full-strength version of (1.1). To see this,
suppose E and F are compact subsets of G with ∆(E, F ) ≥ 2. By symmetry, we
may suppose that dia(E) ≤ dia(F ). Then (1.1) follows by taking F = {Si}m

i=1 ,
where

Si =
{
z ∈ G : 2i−1 dia(E) < |z − x| < 2i dia(E)

}
, 1 ≤ i ≤ m,

and m + 1 is the least integer i for which B
(
x0, 2

i dia(E)
)

intersects F .
We next wish to give a domain G ⊂ R2 which shows that one-sided wslice

conditions are not conformally invariant (and so the reverse of the implication in
Proposition 3.5 is false), but we first pause for some preliminary definitions. First,
let us define one particular type of wslice sets that are needed repeatedly. By
the annular slices around x with maximum radius r , r ≥ δG(x), we mean the
collection of open sets

Si =
{
z ∈ G : 2i−1δG(x) < |z − x| < 2iδG(x)

}
, 0 ≤ i ≤ m,

where m is the largest non-negative integer i satisfying 2iδG(x) ≤ r . The inner

annular slices around x with maximum radius r , r ≥ δG(x), are the analogous
collection of inner Euclidean annuli, i.e. we simply replace |z − x| by lG(z, x) in
the previous definition.

For this paragraph, let d denote either the inner Euclidean or Euclidean
metric, according to whether or not each sentence is read with the word “inner”
included. For a collection of (inner) annular slices to be a set of wslices for x, y ,
we need that the maximal radius r is at most d(x, y) − 1

2δG(y), but typically we
use only enough annular slices to cover a part of the path from x to y , so r may
be much smaller than this bound. We use (inner) annular slices only when there
is an (inner) uniform path from x to a point z with d(x, z) approximately equal
to r , which guarantees that m + 1 is comparable with 1 + kG(x, z).

We are now ready to give the example of a domain satisfying a one-sided wslice
condition which is quasiconformally equivalent to a domain that does not satisfy
a wslice condition. Let aj = 2−j , lj = 3−j , εj = 3−2j/2, and let gj: [−lj , 0] → R

be the function which linearly interpolates between the following values:

gj(0) = gj(−lj) = aj + 2εj , gj

(
− 1

2 lj
)

= aj + lj .

Now let

G = Q0 ∪
(

∞⋃
j=1

Qj ∪ N1
j ∪ N2

j

)
,

G′ = Q0 ∪
(

∞⋃
j=1

Qj ∪ N1
j ∪ N3

j

)
,
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where Q0 = (0, 1)2 and, for each j ∈ N ,

Qj = (aj, aj + 2εj) × (−lj − 2εj ,−lj),

N1
j = (aj, aj + εj) × [−lj , 0],

N2
j = (aj + εj , aj + 2εj) × [−lj , 0],

N3
j =

{
(x, y) ∈ R2 : −lj ≤ y ≤ 0, gj(y) − εj < x < gj(y)

}
.

Theorem 3.6. Both of the domains G and G′ defined above satisfy a two-

sided k-cap condition, and there is a quasiconformal mapping from G onto G′ .

However, G satisfies a one-sided wslice condition, while G′ does not. Furthermore

G is quasiconformally equivalent to a Hölder domain.

Proof. Let us first make some definitions. Let zj be the center of Qj , let
Nj = N1

j ∪N2
j , and let Uj = Nj ∪Qj . Let πk: R2 → R be projection on the k th

coordinate, k = 1, 2, and define

Q̃0 = Q0 ∪
(

∞⋃
i=1

{
x ∈ Nj : π2(x) > −εi

})
,

Q̃j = Qj ∪
{
x ∈ Nj : π2(x) < −lj + εj

}
,

for each j ∈ N . Note that each Q̃j , j ≥ 0, consists of a main square with (either

two or infinitely many) smaller squares attached, and that every Q̃j , j ≥ 0, is a
uniform domain (with uniformity constant bounded independent of j ). We say
that two positive numbers A and B are roughly comparable if A ≤ C(1 + B)
and B ≤ C(1 + A), for some universal constant C . We use [u, v] to denote any
quasihyperbolic geodesic segment between u and v , and we write [v1, . . . , vm] for
the path between v1 and vm formed by concatenating the geodesics segments
[vi, vi+1] , 1 ≤ i < m .

As well as the previously defined (inner) annular slices, there is one other type
of wslices that we shall need. Suppose u = (a, b) and v = (a, c) are points in Nj ,
with a equal to either aj + 1

2
εj or aj + 3

2
εj , and b − c ≥ 2εj . We define the box

slices for u, v to be the collection of open sets

Si =
{
z = (z1, z2) ∈ Nj : (i−1)εj < z2−c− 1

2εj < iεj

}
, 1 ≤ i ≤ (b−c−εj)/εj .

Note that kG(u, v) = 2(b − c)/εj is roughly comparable with the number of box
slices.

We first show simultaneously that G satisfies a two-sided k-cap condition and
a one-sided wslice condition for G (with basepoint z0 ). Let x, y ∈ G be arbitrary.
We assume, as we may, that δG(x) ≤ δG(y), and that kG(x, y) ≥ 2. If there is
a uniform path for the points x, y , then (1.4) and (2.5) together imply a k-cap
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inequality for x, y , and similarly (1.4) and (3.2) imply a wslice inequality. Clearly

there is such a path (with uniformly bounded C ) if x, y lie in Q̃j for the same
value of j ≥ 0.

In most other cases, we shall define a concatenated path γ = [x, w1, . . . , wm, y]
connecting x and y , and we shall associate sets of wslices for x, y with each
of the component segments. The cardinality of each wslice set will be roughly
comparable with the quasihyperbolic length of the associated segment, and there
will only be a bounded number of segments, so we deduce (W-3) by taking the
wslice set associated with the quasihyperbolically longest of these segments. The
k-cap inequality for these pair of points then follows by (3.4).

Suppose one of x, y lies in Q0 and the other lies in Qj for some fixed j ∈ N ;
without loss of generality x ∈ Q0 and y ∈ Qj . We define points uj =

(
aj + 1

2
εj , 0

)

and vj =
(
aj + 1

2εj ,−lj
)

and then let γ = [x, uj, vj , y] . We associate with [x, uj]
the annular slices about x with maximum radius |x − uj | , with [uj , vj] the box
slices for uj , vj , and with [vj , y] the annular slices about y with maximum radius
|y − vj | . It is easy to verify that each of these sets of slices satisfy the wslice
condition for the points x, y , and that each has cardinality roughly comparable
with the quasihyperbolic length of the associated segment. The k-cap inequality
therefore follows for x, y in this case.

The case where x ∈ Q0 and y ∈ N1
j \ Q̃0 is formally identical except for one

change: vj is replaced by the point
(
aj + 1

2εj , π2(y)
)
. Note that the only difficulty

in verifying that the various sets of slices form wslice sets is to verify that the
annular slices satisfy (W-2), and this follows from the estimate dist(y, Q0) ≥ εj ,

which in turn holds because y /∈ Q̃0 . Note also that the case x ∈ Q0 , y ∈ Q̃0 has
already been covered.

The case where x ∈ Q0 , y ∈ N2
j \Q̃0 is similar: uj is replaced by

(
aj+

3
2εj , 0

)
,

and vj by
(
aj + 3

2
εj , π2(y)

)
. The cases where x ∈ Qj and y lies in either N1

j \ Q̃j

or N2
j \ Q̃j are also similar and left to the reader.

By symmetry considerations, there remain only two cases to consider: the
case x ∈ Ui , y ∈ Uj , with j > i > 0, and the case x, y ∈ Nj , j > 0. The former
case actually splits into several subcases but all are handled like the earlier cases.
For instance if x ∈ Qi , y ∈ Qj , we consider the path [x, vi, ui, uj, vj , y] . The sets
of wslices associated with the component segments are as before, except for the
segment [ui, uj] , with which we associate wslices given by the intersection with
Q0 of the annular slices about uj with maximum radius |ui − uj | ; intersecting
with Q0 ensures that (W-2) is satisfied.

Finally, let us tackle the case x, y ∈ Nj , j > 0. We may assume that
lG(x, y) > 2εj , since otherwise x and y can be connected by a uniform path.
If x and y both lie in either N1

j or N2
j , a wslice inequality (and so also a k-

cap inequality) follows by considering annular and box slices as before. Suppose
therefore that x ∈ N1

j , y ∈ N2
j . Writing x = (x1, x2) and y = (y1, y2), we
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consider the path [x, w1, . . . , w4, y] , where w1 =
(
aj + 1

2εj , x2

)
, w2 =

(
aj+

1
2εj , p

)
,

w3 =
(
aj + 3

2
εj , p

)
, and w4 =

(
aj + 3

2
εj , y2

)
, where p is either 0 or −lj , depending

on which of the two choices minimizes the sum |w1 − w2| + |w3 − w4| (and hence
also the sum kG(w1, w2) + kG(w3, w4)).

The path [w2, w3] is harmless as it has uniformly bounded quasihyperbolic
length. As for the (straight line) segments [x, w1] and [w4, y] , we associate with
them inner annular slices about x and y , respectively, with maximum radius 1

2
εj

in both cases. Because lG(x, y) ≥ εj , these sets of inner annular slices are sets of
wslices for x, y , and their cardinalities are roughly comparable to the quasihyper-
bolic lengths of the associated segments. A wslice condition for x, y (and hence
the associated k-cap condition) therefore follows if K1 ≡ lenk;G(γ) is roughly
comparable to K2 ≡ lenk;G[x, w1] + lenk;G[w4, y] . This rough comparability fails
precisely when either or both of K3 ≡ lenk;G[w1, w2] and K4 ≡ lenk;G[w3, w4] is
much larger than K2 + 1. It is only because of this case that the two-sided wslice
condition for G fails (we leave this failure as an exercise to the reader since it is
irrelevant to our theorem).

It remains to prove a k-cap condition in the case where the two-sided wslice
condition fails, i.e. when K3 ∨K4 is much larger than K2 + 1, and so comparable
with K1 . By symmetry it suffices to consider the case where |w1−w2| > |w3−w4| ,
and so K4 . K3 ≈ L/εj ≈ K1 , where L =

(
1
2
lj

)
∧ |w1 − w2| . Let u: G → [0, 1]

be the function which is constantly 1 on G \ N 1
j , and satisfies u(z) = f

(
|π2(z) −

π2(x)|
)

for all z ∈ N1
j , where f is the piecewise linear interpolating function

for the values f(0) = f
(

1
2εj

)
= 0, f

(
L − 1

2εj

)
= f(∞) = 1. A straightforward

calculation shows that
∫

G
|∇u|2 is roughly comparable with εj/L , and so with

1/K1 . Thus we have proved a k-cap condition in all cases, together with a one-
sided wslice condition.

It is easy to see that G′ = f(G) for some quasiconformal map f . For instance,
we first define hj : N2

j → N3
j by the equation hj(x, y) =

(
x + gj(y)− aj − 2εj , y

)
,

so that each hj is bilipschitz, with bilipschitz constant less than
√

5 . We then
define f to be the map which satisfies f |N2

j
= hj for each j ∈ N , and which is the

identity map off the sets N2
j . Then f is locally bilipschitz and so quasiconformal.

The k-cap condition for G′ follows by quasiconformal quasi-invariance from that
for G .

On the other hand, we now show that for fixed C ∈ [1,∞) and sufficiently
large j , the pair (z0, zj) fails to satisfy the C -wslice condition for G′ . For a
given number j ∈ N , we suppose that F is a collection of wslices large enough to
verify the C -wslice condition for the pair z0, zj ∈ G′ . We define a pair of injective
polygonal (i.e. piecewise straight) paths γ1 and γ3 that go through the points
u1 =

(
aj + 1

2
εj , 0

)
, v1 =

(
aj + 1

2
εj ,−lj

)
, u3 =

(
aj + 3

2
εj , 0), v3 =

(
aj + 3

2
εj ,−lj

)
,

and w3 =
(
gj

(
− 1

2 lj
)
− 1

2εj ,− 1
2 lj

)
. Specifically, γ1 is a polygonal path from z0

to u1 to v1 to zj , and γ3 is a polygonal path from z0 to u3 to w3 to v3 to zj ;
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the parametrizations are irrelevant. Note that L1
j ≡ (γ1)∗ ∩ N1

j is the midline

of N1
j , and L3

j ≡ (γ3)∗ ∩ N3
j is the “bent midline” of N3

j . Let E consist of the

union of the two segments of (γ1)∗ from z0 to u1 , and from v1 to zj , and the
two segments of (γ3)∗ from z0 to u3 , and from v3 to zj . Clearly lenk;G(E) ≈ j ,
and so by (3.3), we have

(3.7) N(F , E, 1/2C) ≤ (C2 + C) lenk;G(E) . j.

However the quasihyperbolic distance from the top of N 1
j (or N3

j ) to the bottom

is approximately 3j , and so kG(z0, zj) ≈ 3j . Combining (W-3) and (3.7), we
deduce that the cardinality of F ′ ≡ F \ L (F , E, 1/2C) is comparable to 3j ,
when j is sufficiently large (which we henceforth assume).

Next, subdivide L1
j into pieces

Pi =
{
z ∈ L1

j : 2i−1εj ≤ dist
(
z, L3

j ) < 2iεj

)}
, i ∈ Z.

It follows from the construction that Pi is empty for i < 0 and for i > 1+j log2 3,

and that len(P̃i) . 2iεj , where

P̃i =
{
z ∈ L1

j : dist(z, L3
j) < 2iεj

}
, i ∈ Z.

Applying (W-1) to γ1 and γ3 , we deduce that

(3.8)
len(L1

j ∩ S) ≥ dia(S)/2C,

len(L3
j ∩ S) ≥ dia(S)/2C,

}
S ∈ F

′.

We partition the elements of F ′ into subsets F ′
i by the rule S ∈ F ′

i if S intersects
Pi but not Pi′ for any i′ > i . It follows that dia(S) & 2iεj for each S ∈ F ′

i ,

and hence from (3.8) and the length of P̃i that each F ′
i has bounded cardinality.

Thus the cardinality of F ′ is at most comparable with j . This contradicts the
earlier cardinality estimate for F ′ whenever j is sufficiently large. Consequently,
the pair (z0, zj) fails to satisfy a C -wslice condition.

It remains to prove that G is quasiconformally equivalent to a Hölder do-
main H . To see this we define a quasiconformal mapping f : G → H = f(G)
which is the identity map on Q0 , and such that for all z = (aj +h, y) ∈ Uj , j ∈ N ,
we have f(z) = (u, v), where u = aj + exp(ε−1

j y)h and v = εj

(
exp(ε−1

j y) − 1
)
.

Note that f transforms the elongated attachments {Uj}∞j=1 into a sequence of
truncated triangular regions. It is easily verified that H is a Hölder domain.

Certain slice-type conditions that are strictly weaker than wslice conditions
also imply a k-cap condition. In particular, it is clear that the required estimates
for the construction in the paragraphs prior to Proposition 3.5 work also if, in place
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of a collection of wslices, we have a similar number of functions {ui}m
i=1 ⊂ W 1,n(G)

each of which equals 0 on B
(
x, δG(x)/C

)
and 1 on B

(
y, δG(y)/C

)
, and whose

gradients have pairwise disjoint supports (modulo sets of measure zero) and satisfy
‖∇u‖Ln(G) ≤ C . Such a capacitary-wslice condition seems very similar to the
k-cap condition. In particular, it is quasiconformally quasi-invariant for similar
reasons, and so it would suffice as a tool in the proof of Theorem 2.1 in place of
the k-cap condition. It implies the k-cap condition, but we do not know if they
are equivalent.

Another slice-type condition is obtained when we replace the assumption
(W-1) in the definition of a wslice condition by the weaker property

(W-1a) len(λ∗ ∩ S) ≥ |S |1/n/C for all λ ∈ ΓG(x, y).

The resulting class of one-sided area-wslice domains strictly contains the usual
class of one-sided wslice domains. It fact, it is straightforward to modify part of
the proof of Theorem 3.6 to prove that G, G′ are one-sided area-wslice domains.

It is clear that any area-wslice condition implies a capacitary-wslice condition.
However, unlike the capacitary version, the one-sided area-wslice condition is not
quasiconformally quasi-invariant. To see this, we begin with the domain G in
Theorem 3.6. We then apply a quasiconformal mapping f to G′ which is the
identity map on each Qj , j ≥ 0, and N3

j , j ≥ 1, but which sends each N1
j onto a

“pinched rectangle” consisting of an irregular hexagon v1v3v4v5v6v2 with vertices

v1 = (aj, 0),

v2 = (aj + εj , 0),

v3 = (aj,−lj),

v4 = (aj + εj ,−lj),

v5 =
(
gj

(
− 1

2 lj
)
− εj ,− 1

2 lj
)
,

v6 =
(
aj + εj exp(−lj/εj),−εj

)
.

We leave it to the reader to construct such a quasiconformal map f , and to verify
that any C -area-wslice condition fails for points f(z0), f(zj), if j is sufficiently
large. The proof of this last fact is similar to the proof that G′ fails to satisfy
a wslice condition; intuitively the reason is that if we compare the hyperbolically
shortest path from f(z0) to f(zj) that passes through f(N1

j ) with the corre-

sponding path passing through f(N 3
j ), then the former is mostly contained in the

strip −2εj < x < 0 (when measured by hyperbolic length), while only a small
fraction of the latter is contained in that strip.

We now briefly discuss those types of wslice conditions in [BS1] and [BS2]
that have not yet been mentioned. First there are the wslice+ variants, and the
variants with respect to metrics that lie between the Euclidean metric and inner
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Euclidean metric. These variants give conditions stronger than the corresponding
Euclidean wslice conditions so it follows a fortiori that these conditions imply, but
are not implied by, the k-cap condition.

These earlier papers also allow an additional parameter α : our wslice condi-
tions correspond to the α = 0 case. However, unlike all the slice-type conditions
that we considered above, the wslice conditions in the case α > 0 do not imply
a k-cap condition. This is not surprising because, while all the slice conditions
we have considered up until now are associated with the quasihyperbolic metric
in some sense, the ones corresponding to α > 0 are instead associated with a
subhyperbolic metric which is rather different from kG .

For an explicit counterexample, consider the planar domain G which consists
of the planar triangle T = {(x, y) : 0 < x < 1, |y| < x} with 2j equally spaced
points are removed along each line x = 2−j−1 for each j ∈ N . It follows from
[BS1, Proposition 4.5] that G is a two-sided (α, C)-wslice domain for each α > 0.

On the other hand, we claim that G does not satisfy a one-sided k-cap condi-
tion. By Proposition 2.3, it suffices to show that G is a Trudinger domain but not
a Hölder domain. Defining zi ≡ (3 · 2−i−2, 0), i ≥ 0, it is straightforward to show
that k(zj , z0) ≈ j2 . Since log

(
1/δG(zj)

)
≈ j , it follows that G is not a Hölder

domain. Clearly T is a Hölder domain and so a Trudinger domain. Since T \ G
is countable, and countable sets are W 1,n -removable2 , it follows that G supports
a Trudinger inequality.

Let us finish with some open questions and a conjecture. Recall that quasi-
conformal images of Hölder domains satisfy a one-sided k-cap condition.

Question. Are there bounded domains G ( Rn , n ≥ 2 , that satisfy a

one-sided k-cap condition but are not quasiconformal images of Hölder domains?

We note that there are certainly unbounded domains that satisfy a (one-
sided or even two-sided) k-cap condition but are not the quasiconformal images
of Hölder domains. For instance, it is well known that Rn \ {0} is not the qua-
siconformal image of any bounded domain (and Hölder domains are bounded by
Lemma 1.5). Nevertheless Rn \ {0} satisfies a two-sided k-cap condition since it
is a uniform domain. This example hints at the fact that it would be better to
use the spherical metric σ instead of the Euclidean metric when considering this
and related questions for unbounded domains. Basic concepts such as diameter,
length, distance to the boundary, and derived concepts such as Hölder domains
and the k-cap condition, should all be redefined in terms of σ . Doing this, Rn\{0}
becomes a perfectly good σ -Hölder domain, so the analogue of the above question
is open for arbitrary proper subdomains of the Riemann sphere. More generally
the same question could be asked for any incomplete rectifiably connected metric
space (X, d), where we consider the metric completion X to be a superset of X

2 This fact follows trivially from the ACL characterization of W 1,n , as stated in [Z2, 2.1.4].
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and distance to the boundary means distance to X \X . For some related analysis
in this metric space context, we refer the reader to [BB], [BHK], and [BS3].

Other open questions concern p 6= n versions of Theorem 2.1. Using the
results in [BK1], [BK2], and other papers cited therein, we know that a quasi-
conformal image of a uniform domain lies in a certain class Cp if and only if it
satisfies a certain Sobolev-type imbedding Ip . Briefly, Cp is the class of John
domains if p < n , the class of Hölder domains if p = n , and a p -dependent class
of “weak cigar” (or “local Lipschitz”) domains if p > n . The imbedding Ip is a
Sobolev-Poincaré imbedding for p < n , Trudinger’s inequality for p = n , and a
certain Hölder continuity imbedding when p > n .

The class Cp in each case properly contains the class of uniform domains.
Suppose G′ is the quasiconformal image of a domain G ∈ Cp , p ≥ 1. One might
hope that G′ supports the imbedding Ip if and only if G′ ∈ Cp . By the results
listed in [BK1] and [BK2], the “only if” part is the only implication that requires
proof. Theorem 2.1 says that the answer is “yes” when p = n , but we do not know
the answer when p 6= n . As a special case, we think that the following result is
likely to be true.

Conjecture. The quasiconformal image G′ ( Rn of a John domain is a

John domain if and only if it supports a Sobolev–Poincaré imbedding W 1,p(G′) ↪→
Lp(G′) for any (and hence all) p ∈ (1, n) .
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Math. Soc. 319, 1991, 67–100.

[SS2] Smith, W., and D.A. Stegenga: Sobolev imbeddings and integrability of harmonic
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