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SE-581 83 Linköping, Sweden; anbjo@mai.liu.se

Abstract. We study removable singularities for bounded p -harmonic functions in complete
doubling metric spaces supporting a Poincaré inequality. We show that a relatively closed set E of
an arbitrary open set Ω is removable if it has zero capacity. Moreover, the extensions are unique.

We give several general results showing nonremovability and giving us characterizations of
removable sets as sets of capacity zero in various situations.

We also provide examples of removable sets with positive capacity. Such examples can have
some unexpected behaviour: e.g., E may disconnect Ω; the extensions may not be unique; and
there exists a nonremovable union of two compact disjoint removable sets.

Similar results for superharmonic, quasiharmonic and quasisuperharmonic functions are also
given.

1. Introduction

(Relatively closed) sets of zero capacity are removable for bounded p -har-
monic and bounded superharmonic functions defined in an open subset of weighted
Rn , see Theorems 7.35 and 7.36 in Heinonen–Kilpeläinen–Martio [12]. They also
show, p. 143 in [12], that compact sets are removable if and only if they have
capacity zero. (See Serrin [28], [29] and Maz’ya [27] for earlier proofs of this fact
for unweighted Rn .)

In Björn–Björn–Shanmugalingam [10, Section 8], the study of removable sets
for bounded p -harmonic and superharmonic functions was extended to bounded
domains Ω (with complement of positive capacity) in metric spaces. Removability
was shown for sets of capacity zero.

The sharpness of the removability results in [10] was illustrated by showing
nonremovability for a large class of sets with positive capacity. However, they were
not able to show nonremovability for all sets with positive capacity, as pointed out
on p. 419 in [10]. The reason for this turns out to be quite natural since we here
present a simple counterexample, see Section 9.
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Let Ω be an open set in our metric space and E ⊂ Ω be relatively closed
with zero capacity. In addition to showing that E is removable for bounded p -
harmonic functions and superharmonic functions bounded from below, we also
show that E is removable for p -harmonic and superharmonic functions belonging
to the Newtonian–Sobolev space N 1,p(Ω \ E). We also obtain the corresponding
results for quasi(super)harmonic functions. (See Section 3 for the definition of
quasi(super)harmonic functions and Section 6 for the precise statements of the
removability results.)

It should be mentioned that for unweighted Rn Tolksdorf [33, Theorem 1.5],
proved that compact sets of capacity zero are removable for bounded quasisuper-
minimizers (which is equivalent to removability for bounded quasisuperharmonic
functions, by Proposition 6.6 below).

In Section 7 we extend the nonremovability results of [10] to quasi(super)-
harmonic functions, as well as providing some more nonremovability results. This
leads to characterizations of removable sets as those of capacity zero in several
cases, see Section 8.

In Section 9 we give examples of sets with positive capacity that are removable
for bounded p -harmonic and bounded Q -quasiharmonic functions. When a set
of capacity zero is removed the extensions are unique. However, when a set of
positive capacity is removable it is possible that a given p -harmonic function
has several extensions. We provide two examples of such nonunique removability
in Section 10. (A necessary requirement for nonunique removability is of course
nonunique continuation of p -harmonic functions; see Martio [26] and Björn–Björn–
Shanmugalingam [10, pp. 426–427].) We also give examples of removable sets E
which disconnect Ω.

In Section 11 we point out that removable singularities with positive capacity
have some unexpected behaviour, e.g. it is possible to have a nonremovable union
of two compact disjoint removable singularities.

For more on quasiminimizers and their importance see the introductions in
Kinnunen–Martio [23] and A. Björn [4]. An application of the removability results
for quasiharmonic functions will be given in the forthcoming paper A. Björn [7].

For examples of complete metric spaces equipped with a doubling measure
supporting a Poincaré inequality, see, e.g., A. Björn [3], [5].

Acknowledgement. The author is supported by the Swedish Research Council
and Gustaf Sigurd Magnuson’s fund of the Royal Swedish Academy of Sciences.
This research started while the author was visiting the Department of Mathemat-
ical Analysis at the Charles University in Prague during the autumn 2003.

2. Notation and preliminaries

We assume throughout the paper that X = (X, d, µ) is a complete metric
space endowed with a metric d and a doubling measure µ , i.e. there exists a
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constant C > 0 such that for all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r}
in X (we make the convention that balls are nonempty and open),

0 < µ(2B) ≤ Cµ(B) <∞,

where λB = B(x0, λr). We emphasize that the σ -algebra on which µ is defined is
obtained by completion of the Borel σ -algebra. We also assume that 1 < p < ∞
and that Ω ⊂ X is a nonempty open set. (At the end of this section we make
some further assumptions assumed in the rest of the paper.)

Note that some authors assume that X is proper (i.e. closed bounded sets
are compact) rather than complete, but, since µ is doubling, X is proper if and
only if it is complete.

A curve is a continuous mapping from an interval. We will in addition,
throughout the paper, assume that every curve is nonconstant, compact and rec-
tifiable. A curve can thus be parameterized by its arc length ds .

Definition 2.1. A nonnegative Borel function g on X is an upper gradient

of an extended real-valued function f on X if for all curves γ: [0, lγ] → X ,

(2.1)
∣

∣f
(

γ(0)
)

− f
(

γ(lγ)
)
∣

∣ ≤
∫

γ

g ds

whenever both f
(

γ(0)
)

and f
(

γ(lγ)
)

are finite, and
∫

γ
g ds = ∞ otherwise. If g

is a nonnegative measurable function on X and if (2.1) holds for p -almost every
curve, then g is a p-weak upper gradient of f .

By saying that (2.1) holds for p -almost every curve we mean that it fails only
for a curve family with zero p -modulus, see Definition 2.1 in Shanmugalingam [30].
It is implicitly assumed that

∫

γ
g ds is defined (with a value in [0,∞]) for p -almost

every curve.

If g ∈ Lp(X) is a p -weak upper gradient of f , then one can find a sequence
{gj}∞j=1 of upper gradients of f such that gj → g in Lp(X), see Lemma 2.4 in
Koskela–MacManus [25].

If f has an upper gradient in Lp(X), then it has a minimal p-weak upper

gradient gf ∈ Lp(X) in the sense that gf ≤ g µ -a.e. for every p -weak upper
gradient g ∈ Lp(X) of f , see Corollary 3.7 in Shanmugalingam [31].

If f, h ∈ N1,p(X), then gf = gh µ -a.e. in {x ∈ X : f(x) = h(x)} , in
particular gmin{f,c} = gfχf 6=c for c ∈ R . For these and other facts on p -weak
upper gradients, see, e.g., Björn–Björn [8, Section 3].

Definition 2.2. We say that X supports a weak (1, q)-Poincaré inequality

if there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X , all
measurable functions f on X and all upper gradients g of f ,

(2.2)

∫

B

|f − fB| dµ ≤ C diam(B)

(
∫

λB

gq dµ

)1/q

,
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where fB :=
∫

B
f dµ := µ(B)−1

∫

B
f dµ .

In the definition of Poincaré inequality we can equivalently assume that g is
a q -weak upper gradient—see the comments above. It is also equivalent to require
that (2.2) holds for all f ∈ Lipc(X) and all upper gradients g ∈ Lipc(X) of f ,
see Keith [18, Theorem 2]. We say that E b A if E is a compact subset of A ,
and let Lipc(A) = {f ∈ Lip(A) : supp f b A} .

Following Shanmugalingam [30], we define a version of Sobolev spaces on the
metric space X .

Definition 2.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(
∫

X

|u|p dµ+ inf
g

∫

X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u . The Newtonian space

on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice, see Shanmugalingam [30].

Definition 2.4. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N 1,p(X) such that u = 1 on E .

The capacity is countably subadditive. For this and other properties as well as
equivalent definitions of the capacity we refer to Kilpeläinen–Kinnunen–Martio [20]
and Kinnunen–Martio [21], [22].

We say that a property regarding points in X holds quasieverywhere (q.e.)
if the set of points for which the property does not hold has capacity zero. The
capacity is the correct gauge for distinguishing between two Newtonian functions.
If u ∈ N1,p(X), then u ∼ v if and only if u = v q.e. Moreover, Corollary 3.3 in
Shanmugalingam [30] shows that if u, v ∈ N 1,p(X) and u = v µ -a.e., then u ∼ v .

If X supports a weak (1, p)-Poincaré inequality, then Lipschitz functions
are dense in N1,p(X) and the functions in N1,p(X) are quasicontinuous, see Re-
mark 4.4 in [30]. This means that in the Euclidean setting, N 1,p(Rn) is the refined
Sobolev space as defined on p. 96 of Heinonen–Kilpeläinen–Martio [12].

To be able to compare the boundary values of Newtonian functions we need a
Newtonian space with zero boundary values. We let for a measurable set E ⊂ X ,

N1,p
0 (E) = {f |E : f ∈ N1,p(X) and f = 0 on X \E}.



Removable singularities for bounded p -harmonic functions 75

One can replace the assumption “f = 0 on X \ E ” with “f = 0 q.e. on X \ E ”
without changing the obtained space N 1,p

0 (E). Note that if Cp(X \E) = 0, then

N1,p
0 (E) = N1,p(E).

We say that f ∈ N1,p
loc (Ω) if f ∈ N1,p(Ω′) for every open Ω′

b Ω.
By a continuous function we always mean a real-valued continuous function,

whereas a semicontinuous function is allowed to be extended real-valued, i.e. to
take values in the extended real line R := [−∞,∞] . We let f+ = max{f, 0} and
f
−

= max{−f, 0} .
In addition to the assumptions made in the beginning of this section, from

now on we assume that X supports a weak (1, p)-Poincaré inequality. By Keith–
Zhong [19] it follows that X supports a weak (1, q)-Poincaré inequality for some
q ∈ [1, p), which was earlier a standard assumption. Throughout the paper we
also let Q ≥ 1 be a real number.

3. Quasi(super)harmonic functions

We follow Kinnunen–Martio [23, Section 3], making the following definition.

Definition 3.1. A function u ∈ N1,p
loc (Ω) is a Q-quasiminimizer in Ω if for

all open Ω′
b Ω and all ϕ ∈ N1,p

0 (Ω′) we have

(3.1)

∫

Ω′

gpu dµ ≤ Q

∫

Ω′

gpu+ϕ dµ.

A function u ∈ N1,p
loc (Ω) is a Q-quasisuperminimizer in Ω if (3.1) holds for all

nonnegative functions ϕ ∈ N1,p
0 (Ω′), and a Q-quasisubminimizer in Ω if (3.1)

holds for all nonpositive functions ϕ ∈ N 1,p
0 (Ω′).

A function is a Q -quasiminimizer in Ω if and only if it is both a Q -quasisub-
minimizer and a Q -quasisuperminimizer in Ω.

We will need some characterizations of Q -quasisuperminimizers. The follow-
ing result was proved in A. Björn [4].

Proposition 3.2. Let u ∈ N1,p
loc (Ω) . Then the following are equivalent:

(a) The function u is a Q -quasisuperminimizer in Ω .

(b) For all nonnegative ϕ ∈ Lipc(Ω) we have

∫

ϕ6=0

gpu dµ ≤ Q

∫

ϕ6=0

gpu+ϕ dµ.

(c) For all nonnegative ϕ ∈ N 1,p
0 (Ω) we have

∫

ϕ6=0

gpu dµ ≤ Q

∫

ϕ6=0

gpu+ϕ dµ.



76 Anders Björn

If we omit “super” from (a) and “nonnegative” from (b) and (c) we have a
corresponding characterization for Q -quasiminimizers.

By Proposition 3.8 and Corollary 5.5 in Kinnunen–Shanmugalingam [24], a
Q -quasiminimizer can be modified on a set of capacity zero so that it becomes
locally Hölder continuous in Ω. A Q-quasiharmonic function is a continuous
Q -quasiminimizer.

Kinnunen–Martio [23, Theorem 5.3], showed that if u is a Q -quasisupermini-
mizer in Ω, then its lower semicontinuous regularization

u∗(x) := ess lim inf
y→x

u(y)

is also a Q -quasisuperminimizer in Ω in the same equivalence class as u in
N1,p

loc (Ω). Furthermore, u∗ is Q -quasisuperharmonic in Ω.

Definition 3.3. A function u: Ω → (−∞,∞] is Q-quasisuperharmonic in Ω
if u is not identically ∞ in any component of Ω, and there is a sequence of open
sets Ωj and Q -quasisuperminimizers vj : Ωj → (−∞,∞] such that

(i) Ωj b Ωj+1 ;

(ii) Ω =
⋃∞
j=1 Ωj ;

(iii) vj ≤ vj+1 in Ωj ;

(iv) u = limj→∞ v∗j in Ω,

where v∗j is the lower semicontinuous regularization of vj .

This definition is due to Kinnunen–Martio [23, Definition 7.1]. The follow-
ing characterization, Theorem 7.10 in [23], is often useful. (Note that there are
misprints in Definition 7.1 and Theorem 7.10 in [23]—which have been corrected
here.)

Theorem 3.4. A function u: Ω → (−∞,∞] is Q -quasisuperharmonic in Ω
if u is not identically ∞ in any component of Ω , u is lower semicontinuously

regularized, and min{u, k} is a Q -quasisuperminimizer in Ω for every k ∈ R .

If uj is a Qj -quasisuperminimizer in Ω, j = 1, 2, then, by Corollary 3.8
in [23], min{u1, u2} is a min{Q1 + Q2, Q1Q2} -quasisuperminimizer in Ω; there
is also a corresponding result for quasisuperharmonic functions, see Theorem 7.6
in [23]. We will use these facts mainly with u2 constant.

By Lemma 5.2 in [23], a quasisuperharmonic function u in Ω obeys the
minimum principle: If u(x) = infΩ u for some x ∈ Ω, then u is constant in the
component of Ω containing x .

Corollary 3.5. Assume that X is bounded and that u is a quasisuperhar-

monic function on X . Then u is constant.
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It may be worth to observe that even if our removability results later in the
paper will show that if Cp(X \ Ω) = 0, then any quasisuperharmonic function
on Ω which is either bounded from below or in N 1,p(Ω) is constant, there may
still exist unbounded quasisuperharmonic functions on Ω. Let, e.g., X =B(0, 1)
in (unweighted) R3 , p = 2, Ω = X \ {0} and u(x) = −|x|−1 . Then it is not
difficult to show that u is 2-superharmonic in Ω. (Note however that by, e.g, the
maximum principle u is not 2-harmonic in Ω.)

Proof. Since X is compact and u lower semicontinuous, there is x such that
u(x) = infX u . As X is connected (which follows from the Poincaré inequality),
the minimum principle gives that u is constant.

The following boundary minimum principle was proved in A. Björn [4].

Lemma 3.6. Assume that Ω is bounded, Cp(X \ Ω) > 0 and f ∈ C(∂Ω) ∩
N1,p

0 (Ω) . Let u be a quasisuperharmonic function in Ω satisfying u−f ∈ N 1,p
0 (Ω) .

Then infΩ u ≥ inf∂Ω f .

We will need the following convergence result.

Proposition 3.7. Let {uj}∞j=1 be a nondecreasing sequence of Q -quasisuper-

harmonic functions in Ω and let u = limj→∞ uj . Then either u is identically ∞
in some component of Ω or u is Q -quasisuperharmonic in Ω .

Proof. Let k ∈ R , wk = min{u, k} and wk,j = min{uj , k} . By Theorem 3.4,
wk,j is a lower semicontinuously regularized Q -quasisuperminimizer in Ω.

Let further Ω1 b Ω2 b · · ·, be open and such that Ω =
⋃∞
j=1 Ωj . Using wk

and wk,j in the place of u and vj , respectively, in Definition 3.3 we see that wk
is Q -quasisuperharmonic in Ω.

Hence wk is lower semicontinuously regularized and it follows easily that also
u is lower semicontinuously regularized. Thus using Theorem 3.4 we see that u is
Q -quasisuperharmonic in Ω, or identically ∞ in some component.

The corresponding result for locally uniformly convergent sequences can be
obtained as a corollary.

Corollary 3.8. Let {uj}∞j=1 be a sequence of Q -quasisuperharmonic func-

tions in Ω which converges locally uniformly and let u = limj→∞ uj . Then u is

Q -quasisuperharmonic in Ω .

Proof. Let Ω′
b Ω be open. Then uj → u uniformly in Ω′ , and by choosing

a subsequence if necessary we may assume that supΩ′ |uj − u| < 2−j . Let now
vj = uj − 3 · 2−j . It is easy to check that vj ≤ vj+1 in Ω′ . Moreover vj → u
in Ω′ , and thus by Proposition 3.7, u is Q -quasisuperharmonic in Ω′ . Since Ω′

was an arbitrary compactly contained open subset of Ω we conclude that u is
Q -quasisuperharmonic in Ω.
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4. A Caccioppoli type estimate for quasisubminimizers

We will need a Caccioppoli type estimate for quasisubminimizers. This esti-
mate was proved for unweighted Rn by Tolksdorf [33, Theorem 1.4]. The proof
given here is an easy adaptation of Tolksdorf’s proof to metric spaces.

Theorem 4.1. Let u ≥ 0 be a Q -quasisubminimizer in Ω . Then for all

nonnegative η ∈ Lipc(Ω) ,
∫

Ω

gpuη
p dµ ≤ c

∫

Ω

upgpη dµ,

where c only depends on p and Q .

Proof. After multiplying η with a constant we may assume that 0 ≤ η ≤ 1.
Let ϕ = ηu ∈ N1,p

0 (Ω). By the quasisubminimizing property of u we have
∫

η=1

gpu dµ ≤
∫

ϕ>0

gpu dµ ≤ Q

∫

ϕ>0

gpu−ϕ dµ ≤ Q

∫

η>0

gpu(1−η) dµ.

Using that gu(1−η) ≤ ug1−η+(1−η)gu = ugη+(1−η)gu we get with Q2 = 2p−1Q ,

∫

η=1

gpu dµ ≤ Q2

∫

η>0

upgpη dµ+Q2

∫

η>0

(1 − η)pgpu dµ

≤ Q2

∫

Ω

upgpη dµ+Q2

∫

0<η<1

gpu dµ.

By adding Q2 times the left-hand side to both sides, and then dividing by Q2 +1,
we obtain

(4.1)

∫

η=1

gpu dµ ≤ θ

∫

Ω

upgpη dµ+ θ

∫

η>0

gpu dµ,

where θ = Q2/(Q2 + 1) < 1.
Next let τ be such that 0 < τ−pθ < τ−2pθ < 1 (note that it follows that

0 < τ < 1), ηj = (min{η, τ j} − τ j+1)+ and η̂j = ηj/(τ
j − τ j+1). Applying (4.1)

to η̂j gives

∫

Ω

gpuη̂
p
j−1 dµ ≤

∫

η̂j=1

gpu dµ ≤ θ

∫

Ω

upgpη̂j
dµ+ θ

∫

η̂j>0

gpu dµ

≤ θ

∫

Ω

upgpη̂j
dµ+ θ

∫

Ω

gpuη̂
p
j+1 dµ

from which it follows that
∫

Ω

gpuη
p
j−1 dµ ≤ τ−pθ

∫

Ω

upgpηj
dµ+ τ−2pθ

∫

Ω

gpuη
p
j+1 dµ.



Removable singularities for bounded p -harmonic functions 79

Using that gηj
≤ gη and iterating gives us

(4.2)

∫

η=1

gpu dµ ≤ (1 − τ)−p
∫

Ω

gpuη
p
0 dµ ≤ Q3

∫

Ω

upgpη dµ,

where Q3 = (1 − τ)−pτ−pθ(1 − τ−2pθ)−1 . Using (4.2) with η replaced by ψ =
min{(4η − 1)+, 1} gives

∫

η≥1/2

gpu dµ =

∫

ψ=1

gpu dµ ≤ Q3

∫

Ω

upgpψ dµ ≤ 4pQ3

∫

1/4<η<1/2

upgpη dµ.

Finally, let ψj = min{2jη, 1} . Then we get
∫

Ω

gpuη
p dµ ≤

∞
∑

j=0

2−jp
∫

ψj≥1/2

gpu dµ

≤ 4pQ3

∞
∑

j=0

2−jp
∫

1/4<ψj<1/2

upgpψj
dµ ≤ 4pQ3

∫

Ω

upgpη dµ.

5. p-harmonic functions

If Q = 1, “quasi” is omitted from the notation and a function is, e.g., p-
harmonic if it is 1-quasiharmonic, and superharmonic if it is 1-quasisuperhar-
monic. For equivalent definitions and characterizations of superharmonic func-
tions, see A. Björn [5].

We need some results for p -harmonic functions, see, e.g., Shanmugalingam
[31] or Björn–Björn–Shanmugalingam [9]. Assume throughout this section that Ω
is bounded and Cp(X \ Ω) > 0.

If f ∈ N1,p(X), then there is a unique solution to the Dirichlet problem with
boundary values f , i.e. there is a unique function Hf = HΩf such that Hf = f
in X \ Ω and Hf is p -harmonic in Ω.

Lemma 5.1. If f1, f2 ∈ N1,p(X) and f1 ≤ f2 q.e. on ∂Ω , then Hf1 ≤ Hf2
in Ω .

It follows that for f ∈ N1,p(X), (Hf)|Ω only depends on f |∂Ω . A Lipschitz
function f on ∂Ω can be extended to a function f̃ ∈ Lipc(X) such that f = f̃
on ∂Ω. As (Hf̃)|Ω does not depend on the choice of extension, we define Hf :=
(Hf̃)|Ω .

Definition 5.2. A point x0 ∈ ∂Ω is regular if

lim
Ω3y→x0

Hf(y) = f(x0) for all f ∈ Lip(∂Ω).

If x0 ∈ ∂Ω is not regular, then it is irregular.

For equivalent characterizations of regular boundary points see Björn–Björn
[8, Theorem 6.2]. Recall the following result from Björn–Björn–Shanmugalingam
[9, Theorem 3.9].
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Theorem 5.3 (The Kellogg property). The set of all irregular points on ∂Ω
has capacity zero.

6. Removability

From now on let E ( Ω be relatively closed and such that no component of
Ω is completely contained in E .

Definition 6.1. The set E is (uniquely) removable for bounded Q -quasi-
(super)harmonic functions in Ω \ E if every bounded Q -quasi(super)harmonic
function u in Ω \ E has a (unique) bounded Q -quasi(super)harmonic extension
to Ω.

Similarly, E is (uniquely) removable for Q -quasi(super)harmonic functions
in N1,p(Ω \ E) if every Q -quasi(super)harmonic function u ∈ N 1,p(Ω \E) has a
(unique) Q -quasi(super)harmonic extension in N 1,p(Ω).

Here, when we, e.g., talk about a Q -quasiharmonic function u ∈ N 1,p(Ω), we
mean that it is Q -quasiharmonic in Ω.

In view of Theorems 6.2 and 6.3 below one can get the feeling that it is not
essential to stress the set Ω \ E in the definition, and that the notation could
therefore be simplified. However, in Section 11, we see in (a ′ ) that for removable
singularities of positive capacity it is essential to always stress on which set we
discuss removability.

In this section we show that sets of capacity zero are removable for Q-quasi-
(super)harmonic functions that are either bounded or in N 1,p . Moreover the
extensions are always unique in these cases.

In Björn–Björn–Shanmugalingam [10, Propositions 8.2 and 8.3], the following
two results were shown under the additional assumption that Q = 1, u is bounded
and Ω is a bounded domain with Cp(X \ Ω) > 0. (The uniqueness was given as
a comment in the text.) In the proof of Proposition 8.3 (which was also used to
derive Proposition 8.2) in [10] it was not explicitly shown that u ∈ N 1,p

loc (Ω). How
this can be observed is pointed out in the proof of Theorem 6.3 below.

Theorem 6.2. Assume that Cp(E) = 0 . Let u be a Q -quasiharmonic

function in Ω \E . Assume that one of the following conditions hold:

(a) u ∈ N1,p(Ω \E);
(b) u is the restriction of a function in N 1,p

loc (Ω);
(c) u ∈ N1,p(B \E) for every ball B b Ω;
(d) u is bounded.

Then u has a unique quasisuperharmonic extension U to Ω . Moreover, U is

Q -quasiharmonic in Ω , U is bounded if u is bounded, and U ∈ N 1,p(Ω) if

u ∈ N1,p(Ω \E) .

By saying that u is quasisuperharmonic we, of course, mean that there is
some Q′ such that u is Q′ -quasisuperharmonic.
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Theorem 6.3. Assume that Cp(E) = 0 . Let u be a Q -quasisuperharmonic

function in Ω \E . Assume that one of the following conditions hold:

(a) u ∈ N1,p(Ω \E);

(b) u is the restriction of a function in N 1,p
loc (Ω);

(c) u ∈ N1,p(B \E) for every ball B b Ω;

(d) u is bounded from below.

Then u has a unique quasisuperharmonic extension U to Ω . Moreover, U is

Q -quasisuperharmonic in Ω , U is bounded if u is bounded, and U ∈ N 1,p(Ω) if

u ∈ N1,p(Ω \E) .

Note that to find the extension U we only need to find the unique semicon-
tinuously regularized extension of u to Ω; U(x) = ess lim infΩ\E3y→x u(y). In
Theorem 6.2 part of the conclusion is that this extension is continuous in Ω.

Note also that some condition of the type (a)–(d) is needed: Consider a
bounded open set Ω ⊂ Rn (unweighted), n ≥ 3, p = 2, and let v be the Green
function of Ω with respect to some y ∈ Ω (or v(x) = |x− y|2−n ). Then −v is a
harmonic function in Ω \ {y} with no quasisuperharmonic extension to Ω.

Let us next observe that unique removability for bounded Q -quasisuperhar-
monic functions is the same as for Q -quasisuperharmonic functions bounded from
below. Note that in Section 10 we give examples of sets which are nonuniquely re-
movable for p -harmonic functions, but we do not know if there are any nonuniquely
removable sets for superharmonic functions (or for Q -quasisuperharmonic func-
tions).

Proposition 6.4. The set E is uniquely removable for Q -quasisuperhar-

monic functions bounded from below on Ω\E if and only if it is uniquely removable

for bounded Q -quasisuperharmonic functions on Ω \E .

Proof. The necessity is obvious. As for the sufficiency assume that E is
uniquely removable for bounded Q -quasisuperharmonic functions on Ω \ E . Let
u be a Q -quasisuperharmonic function bounded from below on Ω\E . Then uj :=
min{u, j} has a Q -quasisuperharmonic extension Uj to Ω. As min{Uj+1, Uj} =
uj in Ω \ E , both Uj and min{Uj+1, Uj} are Q -quasisuperharmonic extensions
of uj to Ω. By uniqueness Uj = min{Uj+1, Uj} and thus Uj+1 ≥ Uj in Ω. Let
U = limj→∞ Uj . Then U = u in Ω and hence U is not identically ∞ in any
component of Ω. By Proposition 3.7, U is a Q -quasisuperharmonic extension of
u to Ω.

As for the uniqueness, let U be a Q -quasisuperharmonic extension of u to Ω.
Then min{U, k} is the unique Q -quasisuperharmonic extension of min{u, k} to Ω.
It follows that U is unique.

Proof of Theorem 6.3. The uniqueness follows from the observation above,
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we let
U(x) = ess lim inf

Ω\E3y→x
u(y), x ∈ Ω.

Assume first that (c) holds. It follows that u ∈ N 1,p
loc (Ω \ E), moreover gu

is a p -weak upper gradient of U in Ω \ E . Let ΓE be the set of curves passing
through E . By Lemma 3.6 in Shanmugalingam [30], Modp(ΓE) = 0, and hence
gu is a p -weak upper gradient of U in Ω. Let B b Ω. Since µ(E) = 0, we
see that ‖U‖N1,p(B) = ‖u‖N1,p(B\E) < ∞ , and thus U ∈ N1,p

loc (Ω). Moreover, if
u ∈ N1,p(Ω \E), then U ∈ N1,p(Ω).

We shall now show that U is a Q -quasisuperminimizer in Ω. Let ϕ ∈ N 1,p
0 (Ω)

be nonnegative, and let ϕ′ = ϕχΩ\E . Then ϕ′ ∈ N1,p
0 (Ω \ E). Since U is

a Q -quasisuperminimizer in Ω \ E , we see that (using characterization (c) in
Proposition 3.2),

∫

ϕ6=0

gpU dµ =

∫

ϕ′ 6=0

gpU dµ ≤ Q

∫

ϕ′ 6=0

gpU+ϕ′ dµ = Q

∫

ϕ6=0

gpU+ϕ dµ.

Thus U is a Q -quasisuperminimizer in Ω, and since U is lower semicontinuously
regularized, U is Q -quasisuperharmonic in Ω.

That (a) ⇒ (c) and (b) ⇒ (c) hold are clear.

Let us consider the following condition:

(e) u is bounded.

We next want to show that (e) ⇒ (c). Assume therefore that (e) holds. Let
2B b Ω and η ∈ Lipc(2B) be such that 0 ≤ η ≤ 1 in Ω and η = 1 in B . Since
E ∩ 2B is compact and has zero capacity, there exists a sequence ψj ∈ Lipc(X)
such that ‖ψj‖N1,p(X) → 0, 0 ≤ ψj ≤ 1 in X and ψj = 1 on E ∩ 2B , see
Theorem 1.1 in Kallunki–Shanmugalingam [17] and Proposition 4.4 in Heinonen–
Koskela [13]. We may also assume that ψj → 0 µ -a.e. Let ηj = η(1−2ψj)+ . Then
ηj ∈ Lipc(Ω \E), 0 ≤ ηj ≤ 1 and ηj → η in N1,p(X). Let v = −u . Without loss
of generality 1

2
≤ v ≤ 1. Using the Caccioppoli type estimate (Theorem 4.1) we

see that
∫

B\E

gpuη
p
j dµ ≤

∫

Ω\E

gpvη
p
j dµ ≤ c

∫

Ω\E

vpgpηj
dµ ≤ c

∫

Ω\E

gpηj
dµ.

By Fatou’s lemma
∫

B\E

gpu dµ ≤ lim inf
j→∞

∫

B\E

gpuη
p
j dµ ≤ c lim inf

j→∞

∫

Ω\E

gpηj
dµ = c

∫

Ω\E

gpη dµ <∞.

Since u is bounded we conclude that u ∈ N 1,p(B \E), and thus (c) holds.
Assume now that (d) holds. As we have shown that E is uniquely re-

movable for bounded Q -quasisuperharmonic functions on Ω \ E , it follows from
Proposition 6.4 that u has a Q -quasisuperharmonic extension to Ω, which must
equal U .
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In order to obtain Theorem 6.2 from Theorem 6.3 we formulate the following
result. In view of Problem 9.2 we make it more general than what is actually
needed in this section.

Proposition 6.5. Assume that µ(E) = 0 and that u is a Q -quasiharmonic

function in Ω \ E , which has a Q -quasisuperharmonic extension U and a Q -

quasisubharmonic extension V to Ω . Then U = V is both unique and Q -

quasiharmonic in Ω . If u is bounded, then U is also bounded, and if u ∈
N1,p(Ω \E) , then U ∈ N1,p(Ω) .

Here V is Q-quasisubharmonic if −V is Q -quasisuperharmonic.

Proof. Since U is lower semicontinuously regularized and µ(E) = 0, we have

U(x) = ess lim inf
Ω3y→x

U(y) = ess lim inf
Ω\E3y→x

u(y), x ∈ Ω.

Thus U is unique. Moreover if u is bounded, then U is bounded.
Let B b Ω. As V is upper semicontinuous in Ω it is bounded from above

in B . It follows that u is bounded from above in B \ E , and hence also U
is bounded from above in B . By Theorem 7.3 in Kinnunen–Martio [23], U is
a Q -quasisuperminimizer in Ω and U ∈ N 1,p

loc (Ω). Similarly V ∈ N1,p
loc (Ω) is a

Q -quasisubminimizer in Ω. Since U = V µ -a.e. in Ω, Corollary 3.3 in Shanmu-
galingam [30] shows that U = V q.e. in Ω. Thus U is also a Q -quasisubminimizer
in Ω. Hence U is a Q -quasiminimizer in Ω, and there exists a Q -quasiharmonic
function W such that W = U = u µ -a.e. in Ω. Since both W and u are
continuous in Ω \E , they coincide in Ω \E . By uniqueness, W = U = V in Ω.

Since Ω\E is open, the minimal p -weak upper gradient gU of U in Ω is also
minimal as a p -weak upper gradient in Ω\E . Hence ‖U‖N1,p(Ω) = ‖u‖N1,p(Ω\E) .

Proof of Theorem 6.2. This now follows directly by combining Theorem 6.3
and Proposition 6.5.

We end this section by observing that removability for quasi(super)harmonic
functions is the same as removability for quasi(super)minimizers. By saying that
removability is unique for Q -quasi(super)minimizers we mean that the extensions
are unique up to capacity zero.

Proposition 6.6. The set E is (uniquely) removable for bounded Q -quasi-

(super)minimizers in Ω \E if and only if E is (uniquely) removable for bounded

Q -quasi(super)harmonic functions in Ω \E .

This result can be combined with Proposition 6.4. There is also a similar result
showing that removability for Q -quasi(super)minimizers in N 1,p is the same as
removability for Q -quasi(super)harmonic functions in N 1,p .
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Proof. Assume first that E is removable for bounded Q -quasi(super)mini-
mizers in Ω \ E , and that u is a bounded Q -quasi(super)harmonic function in
Ω \ E . Then u is a Q -quasi(super)minimizer in Ω \ E , and has a bounded Q -
quasi(super)minimizer extension U to Ω. Let U ∗ be the lower semicontinuous
regularization of U , a Q -quasi(super)harmonic function in Ω. Since both U ∗ and
u are lower semicontinuously regularized in Ω \ E and U ∗ = u q.e. in Ω \ E , we
see that U∗ = u everywhere in Ω \E .

Conversely, assume that E is removable for bounded Q -quasi(super)harmonic
functions in Ω \ E , and that u is a bounded Q -quasi(super)minimizer in Ω \E .
Let u∗ be the lower semicontinuous regularization of u in Ω \ E . Then u∗ is
Q -quasi(super)harmonic in Ω \ E and has a bounded Q -quasi(super)harmonic
extension U∗ to Ω. Thus

U =

{

U∗, in E,
u, in Ω \E,

is a Q -quasi(super)minimizer extending u to Ω.
If the removability is not unique in one case, then the constructions above can

be used to obtain two extensions which are different on a set of positive capacity
from which the nonuniqueness of the other case follows.

7. Nonremovability

Let from now on K ⊂ Ω be compact, and recall that E ( Ω is assumed to be
relatively closed and such that no component of Ω is completely contained in E .

For unbounded Ω the Dirichlet problem needs to be further studied (with or
without a boundary condition at ∞). Without such a theory we are able to give
one nonremovability result which holds for unbounded domains.

Proposition 7.1. Assume that for some component G ⊂ Ω the set G \K
is disconnected. Then there is a bounded p -harmonic function in Ω \K with no

quasisuperharmonic extension to Ω .

Note that by Example 10.2 there are relatively closed removable sets E ⊂ Ω
for which Ω is connected and Ω \E is disconnected.

Proof. Let u ≡ 1 in one component of G \K and 0 otherwise. Then u is a
bounded p -harmonic function in Ω\K . Assume that it has a quasisuperharmonic
extension U to Ω. Since U is lower semicontinuous there is x ∈ G∩K such that
U(x) = infG∩K U . Thus

inf
G
U = min

{

U(x), inf
G\K

u
}

= min{U(x), 0}

is attained at some point in G . By the minimum principle, U is constant in G .
But this contradicts the fact that u is nonconstant in G \K .
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In the rest of this section we will consider bounded open sets Ω.

Proposition 7.2. Assume that Ω is bounded, Cp(X \ Ω) > 0 and µ(E) =
0 < Cp(K∪E) . Then there is a bounded p -harmonic function in N 1,p

(

Ω\(K∪E)
)

with no quasisuperharmonic extension to Ω .

When we just consider quasiharmonic extensions we can be slightly more
general.

Proposition 7.3. Assume that Ω is bounded, Cp(X \Ω) > 0 , E has empty

interior and Cp(K ∪ E) > 0 . Then there is a bounded p -harmonic function in

N1,p
(

Ω \ (K ∪E)
)

with no quasiharmonic extension to Ω .

Note that in neither Proposition 7.2 nor 7.3 the requirement Cp(X \ Ω) > 0
can be omitted, not even when E = ∅ , see Example 9.3.

In the case when Ω is bounded and Cp(X \ Ω) = 0 we have the following
result. (Observe that in this case X = Ω is bounded and Ω is connected.)

Proposition 7.4. Assume that Ω is bounded, Cp(X\Ω) = 0 and Cp(E) > 0 .

Assume that either

(a) the capacity of Ω ∩ ∂E is not concentrated to one point, i.e. that for every

x ∈ Ω ∩ ∂E we have Cp
(

(Ω ∩ ∂E) \ {x}
)

> 0 , or

(b) Ω \E is disconnected.

Then there exists a bounded p -harmonic function in N 1,p(Ω\E) with no bounded

quasisuperharmonic extension to Ω , nor any quasisuperharmonic extension in

N1,p(Ω) .

When the (positive) capacity of E is concentrated to one point and Ω \ E
is connected, it is possible both to have removability and nonremovability for
quasiharmonic functions, see Examples 7.7 and 9.3.

When singleton sets have zero capacity we can say more.

Proposition 7.5. Assume that Ω is bounded and Cp(E) > 0 . If Cp({x}) =
0 for all x ∈ Ω∩∂E , then there is a bounded p -harmonic function in N 1,p(Ω \E)
that has no quasiharmonic extension to Ω .

To prove these propositions we need the following lemma.

Lemma 7.6 (Björn–Björn–Shanmugalingam [10, Lemma 8.6]). If Ω is a

connected set and Cp(E) > 0 , then Cp(Ω ∩ ∂E) > 0 .

A standing assumption in [10] was that Ω is a nonempty bounded connected
open set with Cp(X \ Ω) > 0. However, the proof of this lemma in [10] does not
use the boundedness nor the assumption Cp(X \ Ω) > 0, and thus the lemma
holds as stated here.
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Proof of Proposition 7.2. Since Cp(K ∪ E) > 0 we can find a compact
set K ′ such that K ⊂ K ′ ⊂ K ∪ E and Cp(K

′) > 0. Observe that f(x) =
min{dist(K ′, x)/ dist(K ′, X \ Ω), 1} is a Lipschitz function. Let u = HΩ\K′f .
Then u is p -harmonic in Ω \K ′ , u = 0 on K ′ and u = 1 on X \ Ω. Note that
0 ≤ u ≤ 1.

Suppose there is a quasisuperharmonic function U in Ω such that U = u
in the open set Ω \ (K ∪ E). The continuity of u and the lower semicontinuous
regularity of U together with the condition µ(E) = 0 imply that U = u in
Ω \K ⊃ Ω \K ′ .

Since u ≥ 0, it follows that U ≥ 0 in Ω, by the minimum principle.
Lemma 7.6 implies that Cp(∂K

′) > 0 and by the Kellogg property (Theorem 5.3),
there exists a regular point x0 ∈ ∂K ′ , i.e.

lim
Ω\K′3y→x0

U(y) = lim
Ω\K′3y→x0

u(y) = u(x0) = 0.

By the lower semicontinuity of U , U(x0) = 0. The minimum principle implies
that U is constant in the component G ⊂ Ω containing x0 . Since Cp(X \ G) ≥
Cp(X \Ω) > 0, Lemma 7.6 and the Kellogg property (Theorem 5.3) however imply
that U is nonconstant in G , a contradiction.

Proof of Proposition 7.3. This proof is almost identical to the proof of
Proposition 7.2, we only need to modify the second paragraph a little as follows:
Suppose there is a quasiharmonic function U in Ω such that U = u in the open
set Ω \ (K ∪ E). The continuity of u and U together with the condition that E
has no interior imply that U = u in Ω \ K ⊃ Ω \ K ′ . The rest of the proof is
identical to the proof of Proposition 7.2.

Proof of Proposition 7.4. In case (i), it follows that we can find two disjoint
compact sets K1, K2 ⊂ Ω∩∂E with positive capacity. Let f = 1 on K1 , f = 0 on
K2 and let u = HX\(K1∪K2)f . By the Kellogg property there are regular points
x1 ∈ ∂K1 and x2 ∈ ∂K2 . It follows that u is nonconstant.

In case (ii), we let u ≡ 1 in one component of Ω \ E and u ≡ 0 in all other
components of Ω \E .

Thus in both cases we have a nonconstant p -harmonic function u in Ω\E . As-
sume that u has a quasisuperharmonic extension U to Ω, which is either bounded
or belongs to N1,p(Ω). Then, by Theorem 6.3, there is a quasisuperharmonic func-
tion V on X which is an extension of U and hence of u . By Corollary 3.5, V is
constant, which contradicts the fact that u is nonconstant.

Proof of Proposition 7.5. There is a component G of Ω such that Cp(G∩E) >
0. Since by Lemma 7.6 we have Cp(G ∩ ∂E) > 0, there exists τ > 0 so that
Cp(Gτ ∩ ∂E) > 0, where Gτ := {x ∈ G : dist(x,X \ G) > τ} (if X = G we set
Gτ = G).
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By the Kellogg property (Theorem 5.3) and by the fact that finite subsets of
G ∩ ∂E have zero capacity, there exists a sequence {xn}∞n=1 of points in Gτ ∩ ∂E
that are regular for the open set G \ E . Since Gτ is compact, without loss of
generality we may assume that this sequence converges to a point x∞ ∈ G ∩ ∂E ,
has no other limit points, and moreover consists of distinct points. For each xn in
this sequence, let Bn = B(xn, rn) be a ball so that Bn ⊂ G . We can also choose
the balls Bn to be pairwise disjoint.

It follows from Theorem 1.1 in Kallunki–Shanmugalingam [17] and Propo-
sition 4.4 in Heinonen–Koskela [13], that we can find ϕn ∈ Lipc(Bn) so that
ϕn(xn) = 1, 0 ≤ ϕn ≤ 1 and ‖gϕn

‖Lp < 2−j . Let

Φ(x) =

∞
∑

n=1

ϕ2n(x).

It is easy to see that Φ ∈ N 1,p(X) is a bounded lower semicontinuous function
which is continuous apart from at x∞ . Let u = HΩ\EΦ. Clearly u is a bounded
p -harmonic function in N1,p(Ω \E). We will show that u has no quasiharmonic
extension to Ω.

Since Φ is continuous at xn , we see by Corollary 7.2 in Björn–Björn–Shan-
mugalingam [10] that

lim
Ω\E3y→xn

u(y) = Φ(xn).

Note that Φ(xn) = 1 if n is even and Φ(xn) = 0 if n is odd. Hence as x∞ is
the limit point of the sequence {xn}∞n=1 , we obtain a sequence {yn}∞n=1 in Ω \E
which converges to x∞ and is such that u(yn) ≥ 3

4 if n is even and u(yn) ≤ 1
4

if n is odd. Thus u|Ω\E has no continuous extension to the point x∞ ∈ Ω ∩ ∂E .
Since quasiharmonic functions are continuous, u has no quasiharmonic extension
to Ω.

Example 7.7. Let X ⊂ R2 be the unit circle with the Euclidean distance
and the one-dimensional Lebesgue measure. Let K = {(1, 0)} . Observe that
Cp(K) > 0. By considering (1, 0) as two points we can find a nonconstant p -
harmonic function u in X \K such that

lim
(x,y)→(1,0)

y<0

u(x, y) = 0 and lim
(x,y)→(1,0)

y>0

u(x, y) = 1.

Since quasisuperharmonic functions on X are constant, by Corollary 3.5, u has
no quasisuperharmonic extension to X , and K is not removable.

Note that in this case no (nonempty) set is removable.
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8. Characterizations of removability

Combining Theorems 6.2, 6.3 and Proposition 7.2, gives the following conse-
quence. (Note that the condition Cp(X \ Ω) is essential, see Example 9.3.)

Corollary 8.1. Assume that Ω is bounded and Cp(X \ Ω) > 0 . Then the

following are equivalent:

(a) Cp(K) = 0;

(b) K is removable for bounded Q -quasiharmonic functions in Ω \K ;

(c) K is removable for Q -quasiharmonic functions in N 1,p(Ω \K);

(d) K is removable for bounded Q -quasisuperharmonic functions in Ω \K ;

(e) K is removable for Q -quasisuperharmonic functions in N 1,p(Ω \K) .

The following characterization is an immediate consequence of Theorem 6.2
and Proposition 7.5.

Corollary 8.2. Assume that Ω is bounded and that Cp({x}) = 0 for each

x ∈ Ω ∩ ∂E . Then the following are equivalent:

(a) Cp(E) = 0;

(b) E is removable for bounded Q -quasiharmonic functions in Ω \E ;

(c) E is removable for Q -quasiharmonic functions in N 1,p(Ω \E) .

(Recall that if some component of Ω is contained in E , then E is not con-
sidered removable, by Definition 6.1.)

The following is a consequence of Theorems 6.2, 6.3 and Propositions 7.2
and 7.3.

Corollary 8.3. Assume that Ω is bounded, Cp(X \Ω) > 0 and E has empty

interior. Then the following are equivalent:

(a) Cp(K ∪ E) = 0;

(b) K ∪E is removable for bounded Q -quasiharmonic functions in Ω \ (K ∪E);

(c) K ∪ E is removable for Q -quasiharmonic functions in N 1,p
(

Ω \ (K ∪ E)
)

.

If moreover µ(E) = 0 , then also the following statements are equivalent to those

above:

(d) K ∪ E is removable for bounded Q -quasisuperharmonic functions in Ω\
(K ∪E);

(e) K∪E is removable for Q -quasisuperharmonic functions in N 1,p
(

Ω\(K∪E)
)

.
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9. Removable sets with positive capacity

In this section we construct some examples of sets with positive capacity which
are removable for bounded p -harmonic functions. Example 9.4 is a little simpler
than our first example, but we prefer to start with the following example.

Example 9.1. Let X = R (equipped with the Euclidean distance and the
one-dimensional Lebesgue measure). In this one-dimensional setting it is easy to
see that p -harmonic functions are exactly the linear functions, i.e. of the form
x 7→ ax + b , moreover this is true simultaneously for all p . (Observe that on
bounded sets all p -harmonic functions are automatically bounded in this case.)
Let Ω = (0, 2) and E = [1, 2). Note that Cp(E) > 0 and even µ(E) > 0. Thus
if f : Ω \E → R is a p -harmonic function it is linear and thus directly extends to
a p -harmonic function in Ω, i.e. E is removable for p -harmonic functions. Note
that the extension is unique.

Let us now look at bounded superharmonic functions. In this setting super-
harmonic functions are exactly the concave functions (again simultaneously for
all p). Thus f(x) =

√
1 − x2 is a bounded superharmonic function in Ω \ E ,

and since limx→1−
f ′(x) = −∞ we cannot find a superharmonic (i.e. concave)

extension of f to all of Ω. Thus E is not removable for bounded superharmonic
functions.

This example shows that the sets removable for bounded p -harmonic functions
do not coincide with the sets removable for bounded superharmonic functions. A
natural question to ask is the following question.

Problem 9.2. If E is removable for bounded superharmonic functions in
Ω \E , does it then follow that E is removable for bounded p -harmonic functions
in Ω \E ?

If µ(E) = 0, then this follows from Proposition 6.5. Otherwise, if f is a
bounded p -harmonic function in Ω \ E , then it, of course, has a subharmonic
extension and a superharmonic extension to all of Ω, but it is not clear whether
these can always be made to coincide.

In the special case when Ω = X is bounded, we can find a compact set with
positive capacity which is removable for quasiharmonic functions.

Example 9.3. Let X = Ω = [0, 1] with the Euclidean distance and the
one-dimensional Lebesgue measure. Let K = {1} . Observe that Cp(K) > 0. Let
u be a quasiharmonic function in X \ K . Assume that u(a) = u(b) for some
0 ≤ a < b < 1. Then in order to quasiminimize in (a, b), u must be constant
in [a, b] . It follows that u is a continuous monotone function. Without loss of
generality, assume that u is nondecreasing. Then u(0) = infX\K u , and by the
minimum principle, u is constant, and thus extendible to all of X as a p -harmonic
function. Thus K is removable for Q -quasiharmonic functions in X \K .



90 Anders Björn

Superharmonic functions in X \ K are exactly concave nonincreasing func-
tions, whereas all quasisuperharmonic functions in X are constant, by Corol-
lary 3.5. Thus K is not removable for bounded Q -quasisuperharmonic functions
in X \K .

In this case the sets E removable for bounded Q -quasiharmonic functions in
X \E are all the sets [0, a] and [a, 1] for 0 ≤ a ≤ 1, except for X itself.

Example 9.4. Let X = [0,∞) with the Euclidean distance and the one-
dimensional Lebesgue measure. Let Ω = [0, 1). Then by the arguments in the
previous example, a relatively closed set E ⊂ Ω is removable for bounded Q -
quasiharmonic functions in Ω \E if and only if E = [a, 1) for some 0 < a < 1.

10. Nonunique removability

Next we will give an example of a set which is removable for p -harmonic
functions, but in which the extensions are not unique. We will consider p -harmonic
functions on a graph. Such p -harmonic functions were considered by Holopainen–
Soardi [15], [16] and Shanmugalingam [32]. For the reader’s convenience we give
a brief explanation of how p -harmonic functions are defined on graphs.

Let G = (V , E ) be a connected finite or infinite graph, where V stands for
the set of vertices and E the set of edges. If x and y are endpoints of an edge
we say that they are neighbours and write x ∼ y . Consider an edge as a geodesic
open ray of length 1 between its endpoints, and let X = V ∪⋃

e∈E
e be the metric

graph equipped with the one-dimensional Hausdorff measure µ .
Let Ω b X be a domain and assume for simplicity that ∂Ω ⊂ V . Then u

is a p -harmonic function in Ω if and only if it is linear on each edge in Ω and
satisfies

(10.1)
∑

y∼x

|u(y) − u(x)|p−2
(

u(y) − u(x)
)

= 0 for all x ∈ V ∩ Ω.

Example 10.1. Consider the graph G =
(

{1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4)}
)

,
let X be the corresponding metric graph, Ω = X \ {2, 3, 4} and E = (1, 3) ∪
(1, 4) ∪ {1} , i.e. Ω \E is just the open edge (1, 2).

A p -harmonic function u in Ω \ E is linear and thus can be described by
giving its boundary values u(1) and u(2). Let now

U1(1) = U2(1) = u(1),

U1(2) = U2(2) = u(2),

U1(3) = U2(4) = u(1),

U1(4) = U2(3) = 2u(1) − u(2)

and let U1 and U2 be linear on the edges. It is then easy to check that U1 and
U2 are p -harmonic in Ω (simultaneously for all p). Thus E is removable for
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p -harmonic functions in Ω \E (which are automatically bounded). However, the
extensions are not unique in this case.

Finally note that the same argument as in Example 9.1 shows that E is not
removable for bounded superharmonic functions.

In the next example we show that even if E disconnects Ω it is possible to
have removability.

Example 10.2. Consider the graph

G =
(

{1, . . . , 6}, {(1, 2), (1, 3), (1, 4), (4, 5), (4, 6)}
)

,

let X be the corresponding metric graph, Ω = X \ {2, 3, 5, 6} and

E = {1, 4} ∪ (1, 3) ∪ (1, 4) ∪ (4, 6).

Then Ω \E is disconnected and consists of the two edges (1, 2) and (4, 5).
Let u be any p -harmonic function in Ω \ E , which can be described by its

boundary values. We want to extend it to a p -harmonic function U in Ω. Again
U is described by its boundary values. Apart from being linear at each edge we
only need to require U to satisfy (10.1) at the internal edges, and this holds if and
only if

0 = ϕ
(

U(2) − U(1)
)

+ ϕ
(

U(3) − U(1)
)

+ ϕ
(

U(4) − U(1)
)

= ϕ
(

U(1) − U(4)
)

+ ϕ
(

U(5) − U(4)
)

+ ϕ
(

U(6) − U(4)
)

,

where ϕ(t) = |t|p−2t . Since ϕ: R → R is onto and we can freely choose U(3) and
U(6) this can always be achieved.

We can modify this construction to get a set E that disconnects Ω and is
nonuniquely removable.

Example 10.3. Consider the graph

G =
(

{1, . . . , 7}, {(1, 2), (1, 3), (1, 4), (4, 5), (4, 6), (4, 7)}
)

,

let X be the corresponding metric graph, Ω = X \ {2, 3, 5, 6, 7} and

E = {1, 4} ∪ (1, 3) ∪ (1, 4) ∪ (4, 6) ∪ (4, 7).

(Thus we have added the extra edge (4, 7) to Example 10.2.)
Arguing as in Example 10.2 we see that every p -harmonic function in Ω \E

is extendible to Ω. Moreover, since we now have the freedom to choose both U(6)
and U(7) we can actually prescribe one of them arbitrarily, which shows that the
removability is nonunique.
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11. Properties of removable singularities

Let E = E1 , E2, . . ., be sets of capacity zero, relatively closed in the non-
empty open sets Ω = Ω1 , Ω2, . . ., respectively. Then Ej is (uniquely) removable
for bounded p -harmonic functions in Ωj \ Ej . Moreover, we have the following
properties: (Let Ω′ be a nonempty open set.)

(a) (Removability is independent of the surrounding set.) If E is relatively closed
in Ω′ , then E is uniquely removable for bounded p -harmonic functions in
Ω′ \E .

(b) (A subset of a removable set is removable.) If E ′ ⊂ E and E′ ⊂ Ω is relatively
closed, then E′ is uniquely removable for bounded p -harmonic functions in
Ω \E′ .

(c) (A countable union of removable sets is removable.) If E ′ :=
⋃∞
j=1Ej ⊂ Ω

is relatively closed, then E ′ is uniquely removable for bounded p -harmonic
functions in Ω \E′ .

(d) (A generalization of (a)–(c).) If E ′ ⊂ ⋃∞
j=1Ej and E′ ⊂ Ω′ is relatively

closed, then E′ is uniquely removable for bounded p -harmonic functions in
Ω′ \E′ .

This follows directly from the countable subadditivity of the capacity together
with Theorem 6.2. The corresponding statements for Q -quasi(super)harmonic
functions that are bounded or in N 1,p follow in the same way.

For removable singularities with positive capacity the situation is quite dif-
ferent, even when we restrict our attention to compact removable singularities.

Let X = [0, 1] with the Euclidean distance and the one-dimensional Lebesgue
measure, as in Example 9.3. Recall that in this case the sets E removable for
bounded Q -quasiharmonic functions in X \E are all the sets [0, a] and [a, 1] for
0 ≤ a ≤ 1, except for X itself.

We get the following counterexamples corresponding to (a)–(c) above:

(a ′ ) Let K = {0} and Ω′ = [0, 1), then K is removable for bounded Q -quasi-
harmonic functions in X\K , but not for bounded Q -quasiharmonic functions
in Ω′ \K .

(b ′ ) Let K =
[

0, 1
2

]

and K ′ =
{

1
2

}

⊂ K , then K is removable for bounded
Q -quasiharmonic functions in X \K , but K ′ is not removable for bounded
Q -quasiharmonic functions in X \K ′ .

(c ′ ) Let K1 = {0} and K2 = {1} , then Kj is removable for bounded Q -quasi-
harmonic functions in X \Kj , j = 1, 2, but K1 ∪ K2 is not removable for
bounded Q -quasiharmonic functions in X \ (K1 ∪K2).

There is however one similar property that holds also for removable singular-
ities of positive capacity.

Proposition 11.1. Let E1, E2 ⊂ Ω be relatively closed and such that

no component of Ω is contained in E1 ∪ E2 . Assume that E1 and E2 are
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(uniquely) removable for bounded Q -quasi(super)harmonic functions in Ω \ E1

and Ω \ (E1 ∪ E2) , respectively. Then E1 ∪ E2 is (uniquely) removable for

bounded Q -quasi(super)harmonic functions in Ω \ (E1 ∪E2) .

It is implicitly assumed that Ω′ := (Ω \E1) ∪E2 is open.

Proof. Let u be a bounded Q -quasi(super)harmonic function in Ω′ \ E2 =
Ω \ (E1 ∪ E2). By assumption there is a bounded Q -quasi(super)harmonic ex-
tension U ′ to Ω′ . Thus U ′′ := U ′|Ω\E1

is a bounded Q -quasi(super)harmonic
extension of u to Ω \ E1 . Since E1 is removable, there exists a bounded Q -
quasi(super)harmonic extension U of U ′′ to Ω. It is immediate that U is a
bounded Q -quasi(super)harmonic extension of u to Ω.

In the case when E1 and E2 are uniquely removable we see that U |Ω′ is
a Q -quasisuperharmonic extension of u to Ω′ , and hence is unique (and equal
to U ′ ). Therefore U |Ω\E1

is also unique (and equal to U ′′ ). Using that E1 is
uniquely removable, the uniqueness of U follows.

It is not known if being p -harmonic is a local property, and in particular if
p -harmonic functions form sheaves, i.e. p -harmonicity in both Ω1 and Ω2 implies
p -harmonicity in Ω1 ∪ Ω2 . When p -(super)harmonic functions are defined using
Cheeger’s definition, see, e.g., Björn–Björn–Shanmugalingam [10], then the sheaf
property is known to hold (this follows using the p -Laplace equation and a parti-
tion of unity argument, see J. Björn [11]). This means that, e.g., on graphs and
in Euclidean Rn the sheaf property holds.

On the other hand Q -quasiharmonic functions do not form sheaves.

Proposition 11.2. Assume that X is such that p -(super)harmonic functions

form a sheaf. Assume further that Ω′ is open, E ⊂ Ω′ ⊂ Ω and that E is

(uniquely) removable for bounded p -(super)harmonic functions on Ω′ \E . Then

E is (uniquely) removable for bounded p -(super)harmonic functions on Ω \E .

Recall that Ω \E is assumed to be open.

Proof. Let u be a bounded p -harmonic function in Ω\E . Then u is bounded
and p -harmonic in Ω′ \ E , and hence has a bounded p -harmonic extension U ′

to Ω′ . Let now

U =

{

u, in Ω \E,
U ′, in Ω′.

Then U is p -harmonic in Ω′ as well as in Ω \E , and hence by the sheaf property
U is p -harmonic in Ω.

If U ′ is unique, then any bounded p -harmonic extension U of u to Ω, must
satisfy U |Ω′ = U ′ , and hence U is also unique.

The corresponding result for superharmonic functions is proved similarly.
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Corollary 11.3. Assume that X is such that p -(super)harmonic functions

form a sheaf. Let E1, E2 ⊂ Ω be relatively closed and such that no component

of Ω is contained in E1 ∪ E2 . Assume further that E1 and E2 are (uniquely)
removable for bounded p -(super)harmonic functions on Ω \ (E1 ∪ E2) . Then

E1 ∪ E2 is (uniquely) removable for bounded p -(super)harmonic functions on

Ω \ (E1 ∪ E2) .

It is implicitly assumed that (Ω \E1) ∪ E2 and (Ω \E2) ∪E1 are open.

Proof. By Proposition 11.2, E1 is (uniquely) removable for bounded p -
(super)harmonic functions on Ω \ E1 . The result then follows from Proposi-
tion 11.1.

The results corresponding to Propositions 11.1, 11.2 and Corollary 11.3 for
functions in N1,p can be proved analogously. Propositions 11.1, 11.2 and Corol-
lary 11.3 can also be combined with Proposition 6.4.

The author has constructed examples of removable singularities for various
classes of analytic functions with a similar character to (a ′ )–(c ′ ), see [1], [2] and
[6], see also Hejhal [14, Example 1, p. 19].
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