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Abstract. We construct a planar Borel set A of finite H 1-measure such that through posi-
tively many points of A, positively many lines meet A at infinitely many points. This answers a
question of Mattila.

Recall that a set A ⊂ R2 is called rectifiable if H 1-almost all of A can be
covered by countably many C1 curves; a set A is purely unrectifiable if it intersects
every rectifiable set (or, equivalently, every C1-curve) in a set of H 1-measure zero.
In this note, unless it is otherwise specified, by ‘almost every point’ we always
understand H 1-a.e. point, by a ‘null set of lines through a given point’ we mean
a set of lines passing through the point whose directions form a nullset (according
to the natural measure on the set of directions) and finally by a ‘null set of lines
of a given direction’ we mean a collection of parallel lines of that direction, whose
intersection with another (non-parallel) line has zero measure.

It is not difficult to see that for every rectifiable set C of finite measure, almost
every line through almost every point of C intersects C only in finitely many points
(we will recall the proof in the next section). Mattila asked (see 10.12 in [4], or
Problem 12 in [5]) whether the same statement is true for every Borel set A with
H 1(A) < ∞. We answer his question negatively:

Theorem 1. For every purely unrectifiable Borel set E ⊂ R2 with H 1(E) < ∞
there is a rectifiable set F with H 1(F ) < ∞ such that through a.e. point of E a.e.
line intersects F in an infinite set.

By choosing A = E ∪ F we obtain a counterexample to Mattila’s question
mentioned above.

By Besicovitch’s projection theorem (see [1], [3] or [4]), if E is purely unrec-
tifiable and H 1(E) < ∞, then almost every projection of E has measure zero.
Therefore Theorem 1 is an immediate corollary of the following, slightly more gen-
eral theorem:
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Theorem 2. Let µ be a Borel measure on R2, and let E ⊂ R2 be a Borel set
such that a.e. projection of E has measure zero, and µ(E) < ∞. Then there exists a
collection of vertical segments whose total length is finite, such that through µ-a.e.
point of E a.e. line intersects infinitely many segments.

It seems to be a much harder question, and it is still open, whether there exists
a purely unrectifiable counterexample to Mattila’s question. The conjecture is that
if A is purely unrectifiable and H 1(A) < ∞, then through a.e. point x ∈ A, a.e.
line meets A only at x. If this conjecture were true then the proof of Besicovitch’s
projection theorem could be slightly simplified (see Remark 18.10 in [4]). The
conjecture was proved by Simon and Solomyak in the special case when A is self-
similar (see [6]).

1. Preliminaries

In the proof of Theorem 2 it is convenient to study the projective plane instead
of R2; in essence, a projective plane may be thought of as an extension of the
Euclidean geometry of R2 in which the ‘direction’ of each line is subsumed within
the line as an extra point, and in which the set of all extra points is regarded as
an extra line. We call these extra points and line ‘infinite points’ and ‘infinite line’,
respectively. In this note we denote the infinite line by D, and the natural measure
on D by m, and say that a subset of D is ‘null’ if its m-measure is zero. Notice
that when one considers a ’null set of lines of a given direction’ to be a nullset of
lines through the infinite point belonging to that direction, then every projective
transformation maps a null set of lines through a point of the projective plane to
another null set of lines through the image of that point.

We will use the standard duality mapping between lines and points of the pro-
jective plane (that maps the points (a, b) ∈ R2 to the lines y = ax + b and the
directions d ∈ D to the vertical lines x = d), allowing any theorem to be trans-
formed by swapping ‘point’ and ‘line’, ‘is contained by’ and ‘contains’. We say that
a set of lines L is Borel if its dual set of points L̂ in the projective plane is a Borel
set, and for every Borel measure µ we define a dual measure µ̂(L) = µ(L̂). We
denote the Lebesgue measure on R2 by λ (and its dual by λ̂). By Fubini’s theorem,
one can see easily (see e.g. in [2]) that a set of lines L has zero measure with respect
to λ̂ if and only if L contains only a null set of lines in a.e. direction.

Another measure on the space of lines is µC , where C is a rectifiable set, and
µC(L) is the (H 1 ×m)-measure of the set

{(x, d) ∈ C ×D : the line through x in direction d belongs to L}.
It was shown in Theorem 16 in [2] that for every rectifiable set C, µC is absolutely

continuous with respect to λ̂. From this it follows easily (as it was claimed in the
introduction) that:

Claim 1. Through a.e. point of a rectifiable set C with H 1(C) < ∞, a.e. line
intersects C only at finitely many points.
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Indeed, the set of those lines that intersect C in infinitely many points has λ̂-
measure zero, since for any fixed direction there is only a nullset of lines of that
direction that meet C in infinitely many points (moreover, if Pd denotes the orthog-
onal projection onto a line ` of direction d, then

∫
`
#P−1

d (x) dx ≤ H 1(C) < ∞). It
follows from the absolute continuity that the set of these lines is µC-null, and then
applying Fubini’s theorem the claim is proved.

2. Proof of Theorem 2

Let E ⊂ R2 be a Borel set such that a.e. projection of E has measure zero, and
let µ be a finite Borel measure on E. Then µ̂ is a finite Borel measure on the dual
set of lines Ê. Let Ẽ be the set of points covered by the lines of Ê, and let µ̃ be the
measure on Ẽ defined by

(1) µ̃(B) =

∫

Ê

H 1(` ∩B) dµ̂(`)

where B ⊂ R2 is a Borel set.
Note that µ̃ is a singular measure on the plane. Indeed, since a.e. projection

of E has measure zero therefore (by definition) the set of all lines intersecting E
has zero measure with respect to the dual of the Lebesgue measure, and then, by
duality, the set of all points covered by the lines of Ê has measure zero.

It requires a bit more work to understand the dual of the statement that through
a.e. point of E a.e. line meets infinitely many vertical segments and the total length
of the vertical segments is finite.

The dual of a vertical line segment is a ‘strip’, i.e. a collection of parallel lines
that meet every other (non-parallel) line in an interval. The dual of the statement
‘a.e. line through a given point meets infinitely many vertical segments’ is ‘a.e. point
of a given line is covered by infinitely many strips’. The dual of ‘a vertical segment
through a given point’ is ‘a strip containing a given line’. In what follows, we will
only use strips whose middle line is one of the lines of Ê.

We can assume without loss of generality that E is bounded. Then the lines of
Ê and the strips will have bounded slopes, and the length of a vertical segment is
comparable to the width of its dual strip. Therefore our aim is to show that µ̃-a.e.
point of Ẽ can be covered by infinitely many strips, such that the total width of the
strips is finite. Of course it is enough to show that µ̃-a.e. point can be covered by
(at least one) strip such that the total width is arbitrarily small. More generally,
we will show the following:

Proposition 1. Let ν be an arbitrary non-zero singular Borel measure with
the property

ν(B) > 0 =⇒ H 1(B ∩ `) > 0 for some line `.

Then for any ε > 0 there exists a w > 0 and a strip S of width w, so that w < εν(S).
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Proof of Theorem 2. Let B be an arbitrary Borel set of positive and finite µ̃-
measure, and fix an ε0 > 0. Let ε = ε0/µ̃(B). By applying Proposition 1 inductively
we define sets Bα and strips Sα of width wα, where B0 = B, Bα = B \⋃

β<α Sβ, and
we apply the proposition to the measure να which is the restriction of µ̃ to the set
Bα (provided that µ̃(Bα) > 0; otherwise we stop the construction). We infer from
(1) that µ̃ and hence also να satisfy the requirements of Proposition 1.

Then wα < εµ̃(B ∩ Sα \
⋃

β<α Sβ) for each α, and hence
∑

α

wα < ε
∑

α

µ̃(B ∩ Sα \
⋃

β<α

Sβ).

Since the sets Sα \
⋃

β<α Sβ are pairwise disjoint and µ̃(B) < ∞, therefore after
countably many steps the induction will stop, and we will have µ̃(B \ ⋃

Sα) = 0
and

∑
wα < ε

∑
µ̃(B ∩ Sα \

⋃
β<α Sβ) = εµ̃(B) = ε0. That is, µ̃-a.e. point of B is

covered by strips whose total width is at most ε0. Since B was an arbitrary set of
finite measure and ε0 was arbitrary small, Theorem 2 is proved. ¤

Proof of Proposition 1. Let B(x, r) denote the open disc of centre x and radius
r. Since ν is a singular measure, ν(B(x, r))/r2 → ∞ as r → 0 for ν-a.e. x. Let B
be a Borel set of positive ν-measure on which ν(B(x, r))/r2 →∞ uniformly.

Since ν(B) > 0 there is a line ` that intersects B in a set of positive length.
We choose a positive and finite m ≤ H 1(B ∩ `), and choose an r so small that
ν(B(x, r)) > 8r2/mε for any x ∈ B. At least half of B∩` can be covered by disjoint
discs of centres in B ∩ ` and of radius r. The number of discs needed to cover a set
of measure m/2 is at least m/4r, and each of these discs has measure larger than
8r2/mε. Therefore the total measure of the discs is larger than 2r/ε, and they are
contained in a strip S of width w = 2r with centre line `. ¤
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