
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 34, 2009, 303–314

MATCHING UNIVALENT FUNCTIONS
AND CONFORMAL WELDING

Erlend Grong, Pavel Gumenyuk and Alexander Vasil’ev

University of Bergen, Department of Mathematics
Johannes Brunsgate 12, Bergen 5008, Norway; Erlend.Grong@math.uib.no

University of Bergen, Department of Mathematics
Johannes Brunsgate 12, Bergen 5008, Norway; Pavel.Gumenyuk@math.uib.no

University of Bergen, Department of Mathematics
Johannes Brunsgate 12, Bergen 5008, Norway; Alexander.Vasiliev@math.uib.no

Abstract. Given a conformal mapping f of the unit disk D onto a simply connected domain D

in the complex plane bounded by a closed Jordan curve, we consider the problem of constructing a
matching conformal mapping, i.e., the mapping of the exterior of the unit disk D∗ onto the exterior
domain D∗ regarding to D. The answer is expressed in terms of a linear differential equation with
a driving term given as the kernel of an operator dependent on the original mapping f . Examples
are provided. This study is related to the problem of conformal welding and to representation of
the Virasoro algebra in the space of univalent functions.

Introduction

One of the classical problems of complex analysis resides in finding the conformal
mapping between a given simply connected hyperbolic domain D on the Riemann
sphere C and some canonical domain, e. g., the unit disk D := {z : |z| < 1} or
its exterior D∗ := C \ D, where D means the closure of D. Despite the fact that
the existence and essential uniqueness of the mapping is guaranteed by the Riemann
mapping theorem, only in some particular cases it can be found analytically in a more
or less explicit form. In the present paper we consider a special formulation of this
problem, when the domain D is bounded by a closed Jordan curve and represented
by means of the conformal mapping of D∗ onto the exterior D∗ of the domain D,
∞ ∈ D∗.

If the boundary ∂D is C∞ smooth, then this formulation is closely connected to
Kirillov’s representation of the Lie–Fréchet group Diff+(S1) of all orientation preserv-
ing C∞-diffeomorphisms of the unit circle S1, and to representation of the Virasoro
algebra, which is a central extension by C of the complexified Lie algebra of vec-
tor fields on S1. Virasoro algebra is known to play an important role in non-linear
equations, where the Virasoro algebra is intrinsically related to the KdV canonical
structure (see, e.g., [6, 8]), and in Conformal Field Theory, where the Virasoro–Bott
group appears as the space of reparametrization of a closed string (see, e.g., [20]) .
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Let f be a conformal mapping of D onto a Jordan domain D and let ϕ be a
conformal mapping of D∗ onto a Jordan domain D∗. The functions f and ϕ are
said to be matching if D and D∗ are complementary domains, i.e., D ∩D∗ = ∅ and
∂D = ∂D∗.

A pair of matching functions (f, ϕ), being continuously extended to S1, defines
a homeomorphism of S1 given by the formula

(1) γ = f−1 ◦ ϕ.

Such a representation of homeomorphisms of S1 is called the conformal welding.
Using Möbius transformations we can always assume that

(i) 0 ∈ D and ∞ ∈ D∗;
(ii) f(0) = f ′(1)− 1 = 0;
(iii) ϕ(∞) = ∞.

Conformal weldings have close connection to theory of quasiconformal (q.c.) map-
pings. Denote by S the class of all univalent analytic functions f in D subject to
condition (ii), and let S qc be the subclass of S consisting of functions which can be
extended to a quasiconformal homeomorphism of C. If f ∈ S qc, then ϕ also admits
q.c. extention to C and therefore γ ∈ Homeo+

qs(S
1), where Homeo+

qs(S
1) stands for

the group of all orientation preserving quasisymmetric (q.s.) homeomorphisms of S1,
i.e., γ satisfies

(2) sup

{∣∣∣∣∣
γ
(
ei(t+h)

)− γ
(
eit

)

γ
(
ei(t−h)

)− γ
(
eit

)
∣∣∣∣∣ : t, h ∈ R, 0 < |h| < π

}
< +∞.

Moreover, it is known that for any γ ∈ Homeo+
qs(S

1) there exists a unique conformal
welding (1) under conditions (i)–(iii). Given γ ∈ Homeo+

qs(S
1), the construction of

the pair (f, ϕ) of matching functions involves solution of the Beltrami equation

∂̄f = µ ∂f,

where ∂ and ∂̄ stand for
(

∂
∂x
∓ i ∂

∂y

)
/2 respectively, with the coefficient µ = µ(z)

depending on γ. See Section 1 for details.
Without any attempt to make a complete list we mention papers [3, 4, 9, 11, 12,

14, 17], where further study of the existence and uniqueness of conformal welding
and its generalizations can be found.

In this paper we establish a more explicit connection between f , ϕ and γ. We
will use the notation Lipα, α ∈ (0, 1) for the class of Hölder continuous functions of
exponent α, and Cn,α for the class of n-times differentiable functions with the n-th
derivative from the class Lipα. In order to indicate the domain of definition and
admissible values of functions we will add them in the parenthesis, e.g., Lipα(S1,R)
will stand for the set of all real-valued functions which are from the class Lipα on
S1. By S n,α, n > 1, we denote the class of all functions f ∈ S that map D
onto domains bounded by Cn,α-smooth Jordan curves. According to the Kellog–
Warschawski theorem (see, e.g., [21, p. 49]), f ∈ S n,α if and only if it can be
continuously extended to S1, with f |S1 ∈ Cn,α, and f ′|S1 does not vanish. The class
of all f ∈ S that map D onto domains bounded by C∞-smooth Jordan curves will
be denoted by S∞.
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Let f ∈ S 1,α. Consider the linear operator If from Lipα(S1,R) to the space
Hol(D) of all holomorphic functions in D, defined by the formula

(3) If [v](z) := − 1

2πi

∫

S1

(
sf ′(s)
f(s)

)2
v(s)

f(s)− f(z)

ds

s
, z ∈ D.

The following statement is our main result.

Theorem 1. Suppose f ∈ S 1,α and ϕ, ϕ(∞) = ∞, are matching univalent
functions. Then the kernel of the operator If : Lipα(S1,R) → Hol(D) is the one-
dimensional manifold ker If = span{v0}, where

(4) v0(z) :=
1

z

(ψ ◦ f)(z)

f ′(z)(ψ′ ◦ f)(z)
, ψ := ϕ−1, z ∈ S1.

Moreover, the function v0 is positive on S1 and satisfies the condition

(5)
∫ 2π

0

dt

v0(eit)
= 2π.

Remark 1. Let f ∈ S 1,α be given. Consider the problem of finding the confor-
mal mapping ψ of D∗ := C \ f(D) onto D∗, ψ(∞) = ∞, (subject to an additional
condition ensuring the uniqueness). Theorem 1 reduces this problem to solution of
the equation If [v] = 0. Indeed, given f and v0, one can calculate ψ on the boundary
of D∗ by solving the following differential equation

ψ′(u) = H(u)ψ(u), u ∈ ∂D∗,

where H := H̃ ◦ f−1 and H̃(z) := 1/ [zf ′(z)v0(z)], z ∈ S1.

Theorem 1 describes the real-valued solutions to the equation If [v] = 0. The set
of complex solutions to this equation is much more extensive. Denote by HolC(D∗)
the class of all continuous functions h : D∗ ∪ S1 → C which are analytic in D∗.

Theorem 2. Suppose f ∈ S 1,α and ϕ, ϕ(∞) = ∞, are matching univalent
functions, and γ := f−1 ◦ ϕ is the induced homeomorphism of S1. Then the kernel
of the operator If : Lipα(S1,C) → Hol(D) coincides with the set of all functions v of
the form

(6) v(z) = v0(z) · (h ◦ γ−1)(z), z ∈ S1,

where h is an arbitrary function belonging to HolC(D∗)∩Lipα(S1,C) and v0 is defined
by (4).

In Section 2 we show how the operator If appears in a natural way within the
identification of the Kirillov’s homogeneous manifold M := Diff+(S1)/Rot(S1) with
S∞ and deduce an analogue of Theorem1 for the C∞-smooth case.

Section 4 is devoted to the proof of Theorems 1 and 2. Examples of univalent
matching functions and conformal weldings are given in Sections 5 and 6.

1. Conformal welding for quasisymmetric homeomorphisms of S1

It is known that conformal welding establishes a bijective correspondence between
S qc and Homeo+

qs(S
1)/Rot(S1), where Rot(S1) stands for the group of rotations of

S1. For the history of the question, see, e.g., [10]. Here we briefly give a sketch of
the proof, see also [22].
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Let u, u(∞) = ∞, be any q.c. automorphism of D∗. Let us construct the
quasiconformal homeomorphism f̃ of the Riemann sphere C, such that the functions
f := f̃ |D and ϕ :=

(
f̃ |D∗

) ◦ u are analytic in D and D∗ respectively. It is easy to see
that f̃ should satisfy the Beltrami equation

(7) ∂̄f̃(z) = µ(z) ∂f̃(z), µ(z) :=

{
∂̄
(
u−1(z)

)
/∂

(
u−1(z)

)
, if z ∈ D∗,

0, otherwise.

In order to have a unique solution we impose the following normalization

(8) f̃(0) = f̃ ′(0)− 1 = 0, f̃(∞) = ∞.

Then f ∈ S qc and ϕ are matching functions and the homeomorphism of the unit
circle γ := f−1 ◦ ϕ coincides with the continuous extension of u to S1.

It is known [2] that an orientation preserving homeomorphism γ : S1 → S1 can
be extended to a q.c. automorphism u of D∗ if and only if it is quasisymmetric, i.e.,
satisfies (2). Moreover, by superposing u and a suitable q.c. automorphism of D∗,
identical on S1, one can always assume that u(∞) = ∞. It follows that for any
γ ∈ Homeo+

qs(S
1) there exists a conformal welding with f ∈ S qc.

Fix any q.c. extension u : D∗ → D∗; ∞ 7→ ∞, of γ ∈ Homeo+
qs(S

1) and let

f̃(z) :=

{
f(z), if z ∈ D,

(ϕ ◦ u−1)(z), otherwise,

where f ∈ S and ϕ are matching univalent functions such that γ = f−1 ◦ γ. Then
f̃ satisfies (7)–(8). This defines f̃ uniquely (see, e.g., [18, p. 194]). It follows that for
any γ ∈ Homeo+

qs(S
1) the conformal welding is unique.

On the hand, if f ∈ S qc, then ϕ and consequently γ = f−1 ◦ϕ, can be extended
to a quasiconformal homeomorphism of C. It follows that γ ∈ Homeo+

qs(S
1). Since

the condition φ(∞) = ∞ defines a conformal mapping onto D∗ := C \ f(D) only
up to rotations, f corresponds to the equivalence class [γ] ∈ Homeo+

qs(S
1)/Rot(S1),

rather than to an element of Homeo+
qs(S

1).

Remark 2. If γ : S1 → S1 is a diffeomorphism, then one of its q.c. extensions
to D∗ is given by the formula u(reit) := rγ(eit), and the Beltrami coefficient µ in (7)
equals

µ(reit) = e2it 1− (
γ−1

)#
(eit)

1 +
(
γ−1

)#
(eit)

,

where we introduce the operator ‘#’ by β# :=
(
π−1 ◦ β ◦ π

)′
, and π : R → S1 is the

universal covering, π(x) = eix.

In Section 6 we consider a certain class of analytic diffeomorphisms γ for which
Theorem 1 can be used to find the conformal welding without solving the Beltrami
equation.

2. Kirillov’s representation of Diff+(S1) via univalent functions

The group Diff+(S1) of all orientation preserving C∞-diffeomorphisms of the
unit circle S1 is one of the simplest, and by this reason important, example of an
infinite-dimensional Lie group. Denote by F the Fréchet space of all C∞-smooth
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functions h : S1 → R endowed with the countable family of seminorms ‖h‖n :=
maxx∈R

∣∣(dn/dxn)h(eix)
∣∣, n > 0. It is known (see, e.g., [5]) that Diff+(S1) becomes a

Lie–Fréchet group if we define the structure of a C∞-smooth manifold on Diff+(S1) by
means of the covering mapping h 7→ γ[h], γ[h](ζ) := ζeih(ζ), of the open set {h ∈ F :
dh(eix)/dx > −1} onto Diff+(S1). All the tangent spaces TγDiff+(S1) are identified
then in a natural way with F .

Kirillov [15] suggested to use the correspondence between Homeo+
qs(S

1) and S qc

established by means of conformal welding, in order to represent the homogeneous
manifold M := Diff+(S1)/Rot(S1), usually referred to as Kirillov’s manifold, via
univalent functions.

Consider the class S∞ of all functions f ∈ S having C∞-smooth extension to
∂D with non-vanishing derivative. By the Kellog–Warschawski theorem (see, e.g.,
[21, p. 49]), f ∈ S∞ if and only if f has a C∞-smooth extension to S1 and the
derivative f ′

∣∣
S1 does not vanish. It follows that S∞ corresponds via conformal

welding to a subset of Diff+(S1)/Rot(S1). According to the result of Kirillov [15],
it actually coincides with Diff+(S1)/Rot(S1), and consequently one can identify M
with S∞.

Denote by K : S∞ → M the mapping that takes each f ∈ S∞ to the corre-
sponding equivalence class of diffeomorphisms [γ]. The infinitesimal version of the
inverse mapping is as follows.

Fix any v ∈ F ∼= TidDiff+(S1) and consider the right-invariant vector field over
Diff+(S1), V : γ 7→ v ◦ γ ∈ F ∼= TγDiff+(S1) generated by v. This gives us the
identification TγDiff+(S1) ∼= TidDiff+(S1) ∼= F , which we adhere further on, and
which is obviously different from the identification of TγDiff+(S1) with F described
above.

Thus, to each v ∈ F and each γ ∈ Diff+(S1) one associates the variation γε(ζ) :=
γ(ζ) exp[iε(v ◦ γ)(ζ)] of γ. According to [16], the corresponding variation of the
function f equals to fε := K−1([γε]) = f + δf + o(ε), where

(9) δf(z) =
ε

2π

∫

S1

(
sf ′(s)
f(s)

)2
f 2(z) v(s)

f(z)− f(s)

ds

s
= iεf 2(z)If [v](z), z ∈ D.

A natural consequence is that If [v](z) = 0 for all z ∈ D if and only if the
variation of γ produces no variation of [γ] ∈ M (up to higher order terms). It can be
reformulated as follows: the element of TγDiff+(S1) represented by v ◦ γ is tangent
to the one-dimensional manifold

γ ◦ Rot(S1) = [γ] ⊂ Diff+(S1).

The latter is equivalent to

v ∈ Adγ

(
TidRot(S1)

)
= Adγ

{
constant functions on S1

}
.

Elementary calculations show that

Adγu =
u ◦ γ−1

(
γ−1

)#
.

As a conclusion we get

Proposition 1. The kernel of If : F → Hol(D) is one-dimensional and coincides
with span{1/(γ−1)#}.
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Remark 3. Proposition 1 reveals a version of Theorem 1 for C∞-smooth case.
It reduces the problem of calculating K−1(f) to solution of the equation If [v] = 0.
The nontrivial solution v0 subject to the normalization

∫ 2π

0

dt

v0(eit)
= 2π

allows us to determine [γ] by means of the equality

(10) γ−1(eix) = exp

(∫ x

0

i dt

v0(eit)
+ iC

)
,

with the arbitrary constant C being responsible for the fact that (10) defines γ only
up to the right action of Rot(S1).

3. Virasoro algebra and complex structure on Kirillov’s manifold

The Lie algebra of Diff+(S1) is the Fréchet space F endowed with the Lie bracket

(11) {v1, v2}(eix) = v2(e
ix)

dv1(e
ix)

dx
− v1(e

ix)
dv2(e

ix)

dx
.

Remark 4. The expression (11) differs in sign from the commutator [V1, V2] of
the vector fields Vj : γ → vj ◦ γ generated by vj, because Vj are right-invariant vector
fields rather than left-invariant, which are usually considered in this context.

The simplest basis for the complexification FC := {v1 + iv2 : v1, v2 ∈ F} of F
is given by powers of z:

Lk(z) := izk, k ∈ Z.

Continuation of the Lie bracket {·, ·} : F ×F → F by complex bilinearity to FC

gives the commutation relations {Lk, Lj} = (j − k)Lk+j.
The (complex) Virasoro algebra can defined now as the central extension of FC

by C which is the Lie algebra over FC ⊕C with the commutation relations{(
Lk, a

)
,
(
Lj, b

)}
=

({Lk, Lj}, c
12

k(k2 − 1)δk,−j

)
.

Here c is a constant parameter referred to as the central charge in mathematical
physics.

Unfortunately, it is not known whether the Lie–Fréchet algebra FC is the Lie
algebra of any Lie–Fréchet group, which, if exists, can serve as complexification for
Diff+(S1). There are strong reasons to believe that such a group does not exist [19].
Nevertheless, the infinitesimal action F ×M → TM induced by the left action of
Diff+(S1), can be extended from F to FC, due to the fact that the linear space
spanned by the variations (9) has a natural complex structure, the operation of
multiplication by i. This induces complex structure Jγ on F/ ker If

∼= T[γ]M . We
use Theorem2 to obtain the explicit form of it. Instead of looking for the operator
on F/ ker If we define Jγ as an operator on F with the property that Jγ[v0] = 0.
For v ∈ F we have

iIf [v] = If [iv] = If [Jγv].

It follows that Jγv = iv − ṽ, where ṽ ∈ FC is a solution of If [ṽ] = 0 satisfying the
condition Im ṽ = v. Using the representation (6) for ṽ we obtain the formula

(12) Jγ[v] ◦ γ = (v0 ◦ γ) · J0

[
v ◦ γ

v0 ◦ γ

]
,
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where J0 : F → F is the so-called conjugation,

J0

[∑

k∈Z

akz
k

]
= i

∑

k∈Z

sgn(k)akz
k.

Elementary calculations lead us to the following

Proposition 2. The complex structure on TM induced by the standard com-
plex structure on FC via If is given by Jγ = AdγJ0 (Adγ)

−1, where Adγ stands for
the differential of Aγβ := γ ◦ β ◦ γ−1 at the origin β = id.

Remark 5. The complex structure Jγ coincides with that introduced in [1] only
for the case γ = id and thus it is not invariant under the right action of Diff+(S1) on
M . However, Jγ is left-invariant, which is proved by Kirillov [15] and easily follows
from the fact that the differential of the left action of Diff+(S1) is given by v 7→ Adγv,
where v ∈ F ∼= TγDiff+(S1).

Remark 6. In [7] Gardiner and Sullivan considered the group Homeo+
sym(R)

of all symmetric orientation preserving homeomorphisms of R. In particular, they
showed that the tangent space to Homeo+

sym(R) at the identity can be identified with
the class of all functions F : R → R, “smooth” in the sense of Zygmund.

4. Proof of Theorems 1 and 2

Here we give a proof of Theorems 1 and 2 stated in the Introduction, which is
based purely on complex analysis.

Proof of Theorem 1. Denote D := f(D), Γ := ∂D,

H(u) :=
g(u)v(g(u))

u2g′(u)
, F (w) := − 1

2πi

∫

Γ

H(u)

u− w
du, w ∈ C \ Γ,

where g stands for the inverse of the function f .
The equation If [v](z) = 0, z ∈ D, is equivalent to

(13) F (w) = 0, w ∈ D.

Using the Sokhotsky–Plemelj formulas we conclude that if v is a solution to (13), then
H(u) is the boundary values of an analytic function in D∗ := C \ D vanishing at
w = ∞. The converse is also true due to the Cauchy integral formula for unbounded
domains. It follows that v0 is a solution to (13). Indeed, for v = v0 we have

H(u) =
ψ(u)

u2ψ′(u)
.

The function v0 can be expressed as v0(z) = ζϕ′(ζ)/
(
zf ′(z)

)
, where ζ := ψ(f(z)).

Both vectors ζϕ′(ζ) and zf ′(z) are the outer normal vectors of Γ at the point w =
f(z) = ϕ(ζ). It follows that v0(z) > 0. The continuous function τ(t) defined by
eiτ(t) = ψ

(
f(eit)

)
, t ∈ R, satisfies the conditions τ ′(t) = 1/v0(e

it) and τ(t + 2π) =
τ(t) + 2π. It follows that (5) holds.

It remains to prove that any real-valued solution v ∈ Lipα(S1,R) to equation (13)
is of the form v = λv0, λ ∈ R. Assume v1 ∈ Lipα(S1,R) is a solution. And consider
the one-parameter family of solutions defined by v := v0 + εv1, where ε ∈ R is
sufficiently small for v to be positive on S1. By the above argument, the function
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G(u) := uψ′(u)H(u), u ∈ Γ, has an analytic continuation to D∗, which will be
denoted by G(w).

The function G does not vanish in D∗ ∪ Γ provided ε is small enough. Indeed,
G(w) → ψ(w)/w as ε → 0 uniformly in D∗ ∪ Γ, with the limit function ψ(w)/w
continuous and non-vanishing. It follows that G̃(w) := log G(w) is analytic in D∗

and continuous on D∗ ∪Γ. The inequality v > 0 implies that Im G̃(u) = Im log J(u),
u ∈ Γ, where J(u) := g(u)ψ′(u)/

(
ug′(u)

)
. This equality determines G̃ up to a real

constant term. Therefore, v(z) is unique up to a positive constant coefficient. This
completes the proof. ¤

By the same techniques one can prove Theorem 2.

Proof of Theorem 2. Let us look for solutions to If [v] = 0 in the form (6) without
any a priori assumptions on h, except for that h ∈ Lipα(S1,C). Any solution can be
represented in this form because v0 is positive. Now we use the change of variable
s = γ(t) in integral (3). Taking into account that

v0(s) = 1/(γ−1)#(s) = (t/s) · (ds/dt) and f ′
(
γ(t)

) · (ds/dt) = ϕ′(t),

we conclude that

If [v](z) = − 1

2πi

∫

S1

(
tϕ′(t)
ϕ(t)

)2
h(t)

ϕ(t)− w

dt

t
, w := f(z), z ∈ D.

Applying another change of variable u = ϕ(t), we obtain the following expression
for the above quantity

− 1

2πi

∫

Γ

ψ(u)

uψ′(u)

h(ψ(u))/u

u− w
du,

Due to the Sokhotsky–Plemelj formulas and to the Cauchy integral formula for un-
bounded domains, the above quantity equals zero for all w ∈ D := f(D) if and only
if h represents the boundary values of an analytic function in D∗. This fact proves
the theorem. ¤

5. Examples of matching univalent functions

Here we consider a class of examples, for which both matching functions f and
ϕ are expressed by means of ordinary differential equations.

Given an integer n > 1, let us consider the following quadratic differentials

Ξ(ζ) dζ2 := −dζ2

ζ2
;

W (w) dw2 := −wn−2 dw2

P (w)
, P (w) :=

n−1∏

k=0

(w − wk), wk := e2πik/n;

Z(z) dz2 := −zn−2 dz2

Q(z)
; Q(z) := κ

n−1∏

k=0

|zk|
zk

(zk − z)(z − 1/zk), zk := re2πik/n,

where r ∈ (0, 1), and κ > 0 is such that
∫

S1

√
Z(z) dz = 2π for the appropriately

chosen branch of the square root.
These quadratic differentials have the following structure of trajectories (see, e.g.,

[13, 23]). All the trajectories of Ξ(ζ) dζ2 are circles centered on the origin, with 0 and
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∞ as critical points. Critical trajectories of W (w) dw2 are line intervals joining w = 0
with wk. Denote the union of their closures by Ew. All the remaining trajectories are
closed Jordan curves separating Ew and the critical point at infinity. The structure
of trajectories of the quadratic differential Z(z) dz2 is symmetric with respect to the
unit circle, which is also a trajectory. Similarly to W (w) dw2, singular trajectories
of Z(z) dz2 that lie in D are line intervals joining the origin with zk. They form
a continuum, which we denote by Ez. The singular trajectories lying outside D
form a symmetric continuum E∗

z . All the remaining trajectories are Jordan curves
separating Ez and E∗

z .
Let us choose any non-singular trajectory Γ of the quadratic differential W (w) dw2

and construct the bijective conformal mappings f : D → D, f(0) = 0, f ′(0) > 0, and
ϕ : D∗ → D∗, ϕ(∞) = ∞, ϕ′(∞) > 0, where D and D∗ are the interior and exterior
of Γ, respectively.

The mapping f can be constructed as follows. Let us define the parameter r
in Z(z) dz2 by requiring that the moduli of the annular domains D \Ez and D \Ew

are equal. Consider the conformal mapping f of D \ Ez onto D \ Ew normalized by
f(z0) = w0. This mapping satisfies the following differential equation

(14) W (w) dw2 = Z(z) dz2.

Indeed, the conformal mapping ζ = %(z) of the ring domain C \ (Ez ∪ E∗
z ) onto the

domain of the form G := {ζ : ρ < |ζ| < 1/ρ} normalized by %(z0) = ρ satisfies the
equation (see, e.g., [23, pp. 43–46])

(15) Z(z) dz2 = Ξ(ζ) dζ2.

Analogously, the conformal mapping ζ = ψ(w) of the circular domain C \ Ew of
the quadratic differential W (w) dw2 onto the domain {z : |z| > ρ} normalized by
ψ(∞) = ∞ and ψ(w0) = ρ satisfies the equation

W (w) dw2 = Ξ(ζ) dζ2.

Since the moduli of the annular domains D\Ez and D\Ew are equal, ψ(D\Ew) = G′,
G′ := {ζ : ρ < |ζ| < 1}, and consequently f = ψ−1 ◦ %. It follows that (14) holds.

Now using the symmetry of Ew and Ez one can prove that f extends analytically
to Ez, i.e., f is the desired conformal mapping of D onto D.

It follows from the above consideration, that the exterior mapping is ϕ = ψ−1|D∗ .
By rescaling w-plane we can assure that f ∈ S . Now we can easily calculate

the function v0 spanning the kernel of the operator If [v0], formula (3). According to
Theorem 1 and equality (15),

v0(z) =
(−z2Z(z)

)−1/2
=

√
κ
rn

n−1∏

k=0

|z − reikt/n|, z ∈ S1.

Remark 7. The choice of the coefficient κ in the construction of quadratic
differential Z(z)dz2 garantees that v0 satisfies normalization (5).

Remark 8. The circle diffeomorphism γ coincides on S1 with %−1. Consequently,
it can be extended analytically from S1 to the ring G.
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Remark 9. For the case n = 2 the curve Γ is an ellipse with foci w = ±1 and
the mapping f is

f(z) = sin

(
πF( z

r
, r2)

2K(r2)

)
,

where F(z, k) is the first elliptic integral,

F(z, k) =

∫ z

0

dq√
(1− q2)(1− k2q2)

,

and K(k) = F(1, k). The eccentricity of the ellipse Γ equals λ = 1/f(1). The exterior
mapping is just the Joukowski mapping

ϕ(ζ) =
1

2

(
cλζ +

1

cλζ

)
, cλ :=

1 +
√

1− λ2

λ
,

and

v0(z) =
1

(ϕ−1 ◦ f)#(z)
=

2rK(r2)
√

(r2 − z2)(z2 − r−2)

πz
=

2K(r2)|r2 − z2|
π

.

6. Conformal welding for a class of circle diffeomorphisms

Consider a diffeomorphism γ : S1 → S1 such that the function v0 := 1/(γ−1)#

has the form v0(z) =
∑n

k=−n akz
k, in which case, since v0 is positive, a−k = ak, and

so we have two equivalent representations:

(16) v0(z) = a0 +
n∑

k=1

akz
k +

ak

zk
= κ

n∏

k=1

e−itk

z
(rke

itk − z)(z − eitk/rk),

where rk ∈ (0, 1), tk ∈ R, k = 1, . . . , n, and the coefficients κ and ak’s are subject to
the conditions v0 > 0 and

∫ 2π

0
dt/v0(e

it) = 2π.
The set of all diffeomorphisms γ satisfying the above condition is dense in many

important spaces of circle homeomorphisms. Let us consider the problem of finding
the function f ∈ S∞ corresponding to v0 given by (16). In general, for a diffeomor-
phism γ ∈ C1,α, α ∈ (0, 1), the conformal welding is given by a unique solution to
the equation

(17) If [v0](z) := − 1

2πi

∫

S1

(
sf ′(s)
f(s)

)2
v0(s)

f(s)− f(z)

ds

s
= 0, z ∈ D,

regarded as an equation with respect to f ∈ S 1,α. The existence and uniqueness
of the solution to (17) is implied by Theorem 1 and the fact that for any γ ∈
Homeo+

qs(S
1) there exists a unique conformal welding with f ∈ S .

If v0 is of the form (16), then (17) can be substantially simplified by means of
calculus of residues. The residue of the expression under the integral at s = z equals
zf ′(z)v0(z)/(f(z))2 and the residue at the origin is of the form P0

(
1/f(z)

)
/f(z),

where P0 is a polynomial of degree n with coefficients depending on ak’s and the first
Taylor coefficients of f . It follows that the function w = f(z) satisfies the differential
equation

(18)
wn−1 dw

P (w)
=

zn−1 dz

Q(z)
,
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where

P (w) := b0

n∏

k=1

(w − wk),

b0 and wk’s are unknown parameters and

Q(z) := znv0(z) = κ
n∏

k=1

|zk|
zk

(zk − z)(z − 1/zk), zk := rke
itk .

Since f is univalent and analytic in D, wk’s are exactly the images of zk’s and we
can suppose that they are numbered so that wk = f(zk).

For simplicity we suppose that all the roots of Q are simple. Then wk 6= wj for
k 6= j and comparing residues of zn−1/Q(z) and f ′(z)

(
f(z)

)n−1
/P (f(z)) we obtain

the following system of algebraic equations:

(19)
wn−1

k

Pk(wk)
= Ak, k = 1, . . . , n,

where
Pk(w) :=

P (w)

w − wk

, Ak := Res
z=zk

zn−1

Q(z)
.

Using the residue theorem we further conclude that

1

b0

=
n∑

k=1

Ak =

∫ 2π

0

dt

v0(eit)
= 1.

In view of (18) the condition f ′(0) = 1 results in the equality

(20)
n∏

k=1

wk = (−1)nQ(0) = κ
n∏

k=1

zk

|zk| .

Now we can summarize the above consideration as following

Proposition 3. Suppose γ ∈ Diff+(S1) is such that v0 := 1/(γ−1)# is of the
form (16). Then the function f ∈ S∞ that corresponds to γ via conformal welding,
is a solution to differential equation (18) with b0 := 1 and wk := f(zk). Moreover,
the vector (w1, . . . , wn) satisfies system (19), (20), provided all the roots zk of Q are
simple.

Remark 10. Given any non-vanishing values of the parameters wk, k = 1, . . . , n,
differential equation (18) with b0 := 1 has a unique analytic solution w = w(z) in a
neighborhood of z = 0 that satisfies the condition w(0) = w′(0)− 1 = 0. At the same
time the number of solutions of system (19), (20) grows drastically as n increases.

The simplest case n = 1 corresponds to the subgroup Möb(S1) ⊂ Diff+(S1)
consisting of Möbius transformations of the unit disk restricted to S1 (excluding
rotations, which correspond to n = 0) and f has the form z/(1 − c1z), |c1| ∈ (0, 1).
But even for n = 2 the expressions turn out to be quite complicated.
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