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Abstract. Given two Ahlfors–David regular sets in metric spaces, we study the question
whether one of them has a subset bilipschitz equivalent with the other.

1. Introduction

In this paper we shall study Ahlfors–David regular subsets of metric spaces.
Throughout (X, d) and (Y, d) will be metric spaces. For E, F ⊂ X and x ∈ X we
shall denote by d(E) the diameter of E, by d(E,F ) the distance between E and F ,
and by d(x,E) the distance from x to E. The closed ball with center x and radius r
is denoted by B(x, r).

1.1. Definition. Let E ⊂ X and 0 < s < ∞. We say that E is s-regular
if it is closed and if there exists a Borel (outer) measure µ on X and a constant
CE, 1 ≤ CE < ∞, such that µ(X \ E) = 0 and

rs ≤ µ(B(x, r)) ≤ CErs for all x ∈ E, 0 < r ≤ d(E), r < ∞.

Observe that this implies that the right hand inequality holds for all x ∈ E, r > 0,
and

µ(B(x, r)) ≤ 2sCErs for all x ∈ X, r > 0.

We would get an equivalent definition (up to the value of CE), if we would use
the restriction of the s-dimensional Hausdorff measure on E, with rs on the left hand
side replaced by rs/CE. When we shall speak about a regular set E, µ will always
stand for a measure as above.

We remark that closed and bounded subsets of regular sets are compact, see
Corollary 5.2 in [DS2]. Self similar subsets of Rn satisfying the open set condition
are standard examples of regular sets, see [H].

A map f : X → Y is said to be bilipschitz if it is onto and there is a positive
number L, called a bilipschitz constant of f , such that

d(x, y)/L ≤ d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X.

The smallest such L is denoted by bilip(f). Evidently any bilipschitz image of an
s-regular set is s-regular. But two regular sets of the same dimension s need not be
bilipschitz equivalent. This is so even for very simple Cantor sets in R, see [FM],
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[RRX] and [RRY] for results on the bilipschitz equivalence of such Cantor sets, and
for [DS2] for extensive analysis of bilipschitz invariance properties of fractal type sets.

The main content of this paper is devoted to the following question: suppose E is
s-regular and F is t-regular. If s < t, does F have a subset which is bilipschitz equiv-
alent to E? In this generality the answer is obviously no due to topological reasons;
E could be connected and F totally disconnected. We shall prove in Theorem 3.1
that the answer is yes for any 0 < s < t if E is a standard s-dimensional Cantor
set in some Rn with s < n. We shall also prove in Theorem 3.3 that the answer is
always yes if s < 1. In Section 4 we show that if E and F as above are subsets of Rn

and s is sufficiently small, then a bilipschitz map f with f(E) ⊂ F can be defined in
the whole of Rn. We don’t know if this holds always when 0 < s < 1.

In the last section of the paper we shall discuss sub- and supersets of regular sets.
It follows from Theorem 3.1 that an s-regular set contains a t-regular subset for any
0 < t < s. In the other direction we shall show that if E ⊂ X is s-regular and X is
u-regular, then for any s < t < u there is a t-regular set F such that E ⊂ F ⊂ X. On
the other hand there are rather nice sets which do not contain any regular subsets:
we shall construct a compact subset of R with positive Lebesgue measure which does
not contain any s-regular subset for any s > 0.

Regular sets in connection of various topics of analysis are discussed for example
in [DS1] and [JW].

2. Some lemmas on regular sets

In this section we shall prove some simple lemmas on regular sets.

2.1. Lemma. Let 0 < s < ∞ and let E ⊂ X be s-regular. For every 0 < r <
R ≤ d(E), R < ∞, and p ∈ E there exist disjoint closed balls B(xi, r), i = 1, . . . , m,
such that xi ∈ E ∩B(p,R),

(5sCE)−1(R/r)s ≤ m ≤ 2sCE(R/r)s

and

E ∩B(p,R) ⊂
m⋃

i=1

B(xi, 5r).

Proof. By a standard covering theorem, see, e.g., Theorem 2.1 in [M], we can find
disjoint balls B(xi, r), i = 1, 2, . . . , such that xi ∈ E∩B(p, R) and the balls B(xi, 5r)
cover E ∩ B(p,R). There are only finitely many, say m, of these balls, since the
disjoint sets B(xi, r) have all µ measure at least rs, they are contained in B(p, 2R)
which has measure at most CE(2R)s. More precisely, we have

mrs ≤
m∑

i=1

µ(B(xi, r)) ≤ µ(B(p, 2R)) ≤ CE(2R)s,

whence m ≤ 2sCE(R/r)s, and

mCE5srs ≥
m∑

i=1

µ(B(xi, 5r)) ≥ µ(B(p,R)) ≥ Rs,

whence m ≥ (5sCE)−1(R/r)s. ¤
For less than one-dimensional sets we can get more information:



Ahlfors–David regular sets and bilipschitz maps 489

2.2. Lemma. Let 0 < s < 1, C ≥ 1, R > 0, let E ⊂ X be closed and bounded
and let µ be a Borel measure on X such that µ(X \ E) = 0 and that

µ(B(x, r)) ≤ Crs for all x ∈ E, r > 0,

and
µ(B(x, r)) ≥ rs for all x ∈ E, 0 < r < R.

Let D = (3C2s)1/(1−s) + 1. For every 0 < r < R/(2D) there exist disjoint closed
balls B(xi, r), i = 1, . . . , m, and positive numbers ρi, r ≤ ρi ≤ Dr, such that
m ≤ Cd(E)s/rs, xi ∈ E, xj 6∈ B(xi, ρi) for i < j,

E ⊂
m⋃

i=1

B(xi, ρi) and E ∩B(xi, ρi + r) \B(xi, ρi) = ∅.

Proof. Let x1 ∈ E. Denote

A0 = B(x1, r), Ai = B(x1, (i + 1)r) \B(x1, ir), i = 1, 2, . . . .

If E ∩ A1 = ∅, denote ρ1 = r. Otherwise, let l be the largest positive integer such
that 2lr < R and E ∩ Ai 6= ∅ for i = 1, . . . , l, say yi ∈ E ∩ Ai. Then B(yi, r) ⊂
Ai−1 ∪ Ai ∪ Ai+1 ⊂ B(x1, 2lr). Therefore

lrs ≤
l∑

i=1

µ(B(yi, r)) ≤
l∑

i=1

µ(Ai−1 ∪ Ai ∪ Ai+1) ≤ 3µ(B(x1, 2lr)) ≤ 3C2slsrs,

whence l1−s ≤ 3C2s and, since s < 1, l ≤ (3C2s)1/(1−s) = D − 1. As 2(l + 1) ≤
2D < R/r, we conclude that E ∩Al+1 = ∅ by the maximality of l. Let ρ1 = (l + 1)r.
Then r ≤ ρ1 ≤ Dr and E ∩ B(x1, ρ1 + r) \ B(x1, ρ1) = ∅. Let x2 ∈ E \ B(x1, ρ1) =
E \ B(x1, ρ1 + r). Then the balls B(x1, r) and B(x2, r) are disjoint. Repeating the
same argument as above with x1 replaced by x2 we find ρ2 such that r ≤ ρ2 ≤ Dr
and E ∩B(x2, ρ2 + r) \B(x2, ρ2) = ∅. After k − 1 steps we choose

xk ∈ E \
k−1⋃
i=1

B(xi, ρi),

if this set is non-empty. As in the proof of Lemma 2.1 this process ends after some
m steps when E is covered by the balls B(xi, ρi), i = 1, . . . , m. Also, as before, m
satisfies the required estimate m ≤ Cd(E)s/rs. ¤

The following lemma will be needed to get bilipschitz maps in the whole Rn.

2.3. Lemma. Let C ≥ 1 and λ ≥ 9. There are positive numbers s0 = s0(C, λ),
0 < s0 < 1, and D = D(C, λ) > 1, depending only on C and λ, with the following
property.

Let 0 < s < s0, let E ⊂ X be closed and bounded, let R > 0 and let µ be a Borel
measure on X such that µ(X \ E) = 0 and that

µ(B(x, r)) ≤ Crs for all x ∈ E, r > 0,

and
µ(B(x, r)) ≥ rs for all x ∈ E, 0 < r < R.
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For every 0 < r < R/D there exist disjoint closed balls B(xi, λρi/3), i = 1, . . . , m,
such that xi ∈ E, r ≤ ρi ≤ Dr, m ≤ Cd(E)s/rs,

E ⊂
m⋃

i=1

B(xi, ρi) and E ∩B(xi, λρi) \B(xi, ρi) = ∅.

Proof. The function s 7→ (1 − 3Cλ2s(λs − 1))−1/s is positive and increasing in
some interval (0, s1), so it is bounded in some interval (0, s0). We choose s0 and D
so that

λ(1− 3Cλ2s(λs − 1))−1/s ≤ D for 0 < s < s0.

Set c = log D/ log λ.
Let x ∈ E and denote

A0 = B(x, r), Ai = B(x, λir) \B(x, λi−1r), i = 1, 2, . . . .

If E ∩ A1 = ∅, denote r(x) = r. Otherwise, let l be the largest positive integer
such that l ≤ c and that E ∩ Ai 6= ∅ for 1 = 1, . . . , l. Then for i = 1, . . . , l there is
yi ∈ E∩Ai with B(yi, λ

i−2r) ⊂ Ai−1∪Ai∪Ai+1. By the choice of c, λl−2r < Dr < R.
Hence

rsλ−s λ
sl − 1

λs − 1
= rs

l∑
i=1

λs(i−2) ≤
l∑

i=1

µ(B(yi, λ
i−2r)) ≤

l∑
i=1

µ(Ai−1 ∪ Ai ∪ Ai+1)

≤ 3µ(E ∩B(x, λl+1r)) ≤ 3Cλs(l+1)rs.

This gives
(1− 3Cλ2s(λs − 1))λsl ≤ 1,

whence
λl+1 ≤ λ(1− 3Cλ2s(λs − 1))−1/s ≤ D.

Thus l + 1 ≤ c and we conclude that E ∩ Al+1 = ∅. Let r(x) = λlr. We have now
shown that for any x ∈ E there is r(x), r ≤ r(x) ≤ Dr, such that E ∩B(x, λr(x)) \
B(x, r(x)) = ∅.

Let M1 = sup{r(x) : x ∈ E}. Choose x1 ∈ E with r(x) > M1/2, and then
inductively

xj+1 ∈ E \
j⋃

i=1

B(xi, r(xi)) with r(xj+1) > M1/2

as long as possible. Thus we get points xi ∈ E and radii r(xi), r ≤ r(xi) ≤ Dr, for
i = 1, . . . , k1 such that r(xi)/2 ≤ r(xj) ≤ 2r(xi), xj 6∈ B(xi, r(xi)) for i < j, and

{x ∈ E : r(x) > M1/2} ⊂
k1⋃
i=1

B(xi, r(xi)).

If for some l = 1, 2, . . . the points x1, . . . , xkl
have been selected and there is some

x ∈ E \⋃kl

i=1 B(xi, r(xi)), let

Ml+1 = sup{r(x) : x ∈ E \
kl⋃

i=1

B(xi, r(xi))},
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choose xkl+1
∈ E \⋃kl

i=1 B(xi, r(xi)) with r(xkl+1
) > Ml+1/2, and so on. This process

will end for some l = p. Thus we get points x1, . . . , xm ∈ E, m = kp, such that, with
ρi = r(xi), r ≤ ρi ≤ Dr, for i < j, xj 6∈ B(xi, ρi) and rj ≤ 2ρi,

E ⊂
m⋃

i=1

B(xi, ρi) and E ∩B(xi, λρi) \B(xi, ρi) = ∅.

To show that the balls B(xi, λρi/3) are disjoint, let i < j. Then ρj ≤ 2ρi and
xj ∈ E ∩ (Rn \B(xi, ρi)) = E ∩ (Rn \B(xi, λρi)). So d(xi, xj) > λρi and (λ/3)(ρi +
ρj) ≤ λρi < d(xi, xj), which implies that B(xi, λρi/3) ∩ B(xj, λρj/3) = ∅. The
required estimate m ≤ Cd(E)s/rs follows as before. ¤

3. Bilipschitz maps

In this section we begin to prove the bilipschitz equivalences mentioned in the
introduction. It is easy to get explicit bounds for the bilipschitz constants of the maps
from the proofs. In Theorem 3.1 bilip(f) is bounded by a constant depending only on
s, t, n and CE. In Theorems 3.3 and 4.2, if CE, CF and d(E)/d(F ) (interpreted as 0
if F is unbounded) are all ≤ C, then bilip(f) ≤ L where L depends only on s, t and
C, and also on n in Theorem 4.2. If E and F are bounded, this dependence on the
diameters is seen by first observing that we may assume that d(F ) ≤ d(E); otherwise
F can be replaced in the proofs by F ∩ B(p, d(E)/2) for any p ∈ F . Secondly,
changing the metrics to dE(x, y) = d(x, y)/d(E) and dF (x, y) = d(x, y)/d(F ), we
have d(E) = d(F ) = 1, the regularity constants don’t change and a bilipschitz
constant L changes to Ld(E)/d(F ).

For any 0 < t < n we shall define some standard t-dimensional Cantor sets in
Rn. Define 0 < d < 1/2 by 2ndt = 1. Let Q ⊂ Rn be a closed cube of side-length
a. Let Q1, . . . , Q2n ⊂ Q be the closed cubes of side-length da in the corners of Q.
Continue this process. Then C(t, a) is defined as

C(t, a) =
∞⋂

k=1

⋃
i1...ik

Qi1...ik ,

where ij = 1, . . . 2n and each Qi1...ik is a closed cube of sidelength dka such that
Qi1...iki, i = 1, . . . , 2n, are contained in the corners of Qi1...ik . It is well known and
easy to prove that C(t, a) is t-regular, it is also a particular case of a self similar set
satisfying the open set condition as considered in [H].

3.1. Theorem. Let E ⊂ X be a bounded s-regular set and 0 < t < s. Then
there is a t-regular subset F of E and a bilipschitz map f : F → C(t, d(E)) where
C(t, d(E)) is a Cantor subset of Rn with t < n as above. Moreover, CF ≤ C where
C depends only s, t, n and CE.

Proof. We may assume that d(E) = 1. Choose a sufficiently large integer N so
that denoting d = 2−Nn/t, i.e., 2Nndt = 1, we have d < 1/3 and ds−t < (15sCE)−1 =:
c. Then we can write C(t, 1) as

C(t, 1) =
∞⋂

k=1

⋃
i1...ik

Qi1...ik
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where each Qi1...ik , 1 ≤ ij ≤ 2Nn, is a closed cube of side-length dk such that
Qi1...ikik+1

⊂ Qi1...ik . By Lemma 2.1 we can find disjoint balls B(xi, 3d), xi ∈ E, i =
1, . . . ,m, such that m ≥ cd−s > d−t = 2Nn. Now we keep the first 2Nn points xi and
forget about the others. Repeating this argument with E replaced by E ∩ B(xi, d)
and so on, we can choose points

xi1...ikik+1
∈ E ∩B(xi1...ik , d

k), 1 ≤ ij ≤ 2Nn,

such that the balls B(xi1...iki, 3d
k+1), i = 1, . . . , 2Nn, are disjoint and contained in

the ball B(xi1...ik , 3d
k). Then for 1 ≤ l < k,

(3.2) d(xi1...il , xi1...ik) ≤
k−1∑

j=l

d(xi1...ij , xi1...ij+1
) ≤

k−1∑

j=l

dj < 2dl

as d < 1/2. Denote

F =
∞⋂

k=1

⋃
i1...ik

B(xi1...ik , 3d
k).

Then F ⊂ E. Let yi1...ik be the center of Qi1...ik and denote

Fk = {xi1...ik : ij = 1, . . . , 2Nn, j = 1, . . . , k}
and

Ck = {yi1...ik : ij = 1, . . . , 2Nn, j = 1, . . . , k}.
Define the maps

fk : Fk → Ck by f(xi1...ik) = yi1...ik .

We check now that fk is bilipschitz with a constant depending only on s, t, n
and CE. Let x = xi1...ik , x′ = xj1...jk

∈ Fk with x 6= x′. Let l ≥ 1 be such that
i1 = j1, . . . , il = jl and il+1 6= jl+1; if i1 6= j1 the argument is similar. Then by (3.2)
x ∈ B(xi1...ilil+1

, 2dl+1) ∩ B(xi1...il , 2d
l) and x′ ∈ B(xj1...jljl+1

, 2dl+1) ∩ B(xi1...il , 2d
l).

Since the balls B(xi1...ilil+1
, 3dl+1) and B(xj1...jljl+1

, 3dl+1) are disjoint, we get that
dl+1 ≤ d(x, x′) ≤ 4dl. Letting y = yi1...ik and y′ = yj1...jk

we see from the construction
of C(t, 1) that (1− 2d)dl ≤ |y − y′| ≤ √

ndl. Hence

d(fk(x), fk(x
′)) = |y − y′| ≤ (

√
n/d)d(x, x′)

and
d(fk(x), fk(x

′)) = |y − y′| ≥ ((1− 2d)/4)d(x, x′).

Denote L = max{√n/d, 4/(1− 2d)}.
If x ∈ F there is a unique sequence (i1, i2, . . . ) such that x ∈ B(xi1...ik , 3d

k) for
all k = 1, 2, . . . . Let y ∈ C(t, 1) be the point for which y ∈ Qi1...ik for all k = 1, 2, . . . .
Then y = limk→∞ yi1...ik = limk→∞ fk(xi1...ik). We define the map f : F → C(t, 1) by
setting f(x) = y. If also x′ = limk→∞ xj1...jk

and y′ = limk→∞ yj1...jk
we have

d(f(x), f(x′)) = lim
k→∞

d(fk(xi1...ik), fk(xj1...jk
)) ≤ lim

k→∞
Ld(xi1...ik , xj1...jk

) = Ld(x, x′)

and similarly d(f(x), f(x′)) ≥ d(x, x′)/L. Obviously, f(F ) = C(t, 1). The last
statement, CF ≤ C, of the theorem follows immediately from the fact that L depends
only s, t, n and CE. ¤

Next we turn to study less than one-dimensional sets.



Ahlfors–David regular sets and bilipschitz maps 493

3.3. Theorem. Let E ⊂ X be s-regular and F ⊂ Y t-regular with 0 < s < 1
and s < t. Suppose that either E is bounded or both E and F are unbounded. Then
there is a bilipschitz map f : E → f(E) ⊂ F .

Proof. We shall first consider the case where both E and F are bounded. By the
remarks in the beginning of this section, we then may assume that d(E) = d(F ) = 1.
Let D = (3CE2s)1/(1−s) + 1. Choose d so small that

0 < dt−s < (2s15tDsCECF )−1 and 2Dd < 1.

We shall show that there exist s-regular sets Ei1...ik , points xi1...ik ∈ E, yi1...ik ∈ F
and radii ρi1...ik where

1 ≤ ij ≤ mi0...ij−1
, j = 1, . . . , k, with mi0...ij−1

≤ CE2sDs/ds, i0 = 0,

such that for all k = 1, 2, . . . ,

E =
⋃

i1...ik

Ei1...ik ,

Ei1...ikik+1
⊂ Ei1...ik ,

dk ≤ ρi1...ik ≤ Ddk,

xi1...ik ∈ Ei1...ik ⊂ B(xi1...ik , ρi1...ik),

E ∩B(xi1...ik , ρi1...ik + dk) \B(xi1...ik , ρi1...ik) = ∅,
d(Ei1...ik , Ej1...jk

) ≥ dk if ik 6= jk,

yi1...ikik+1
∈ F ∩B(yi1...ik , d

k),

B(yi1...ikik+1
, 2dk+1) ⊂ B(yi1...ik , 2d

k),

B(yi1...ik , 3d
k) ∩B(yj1...jk

, 3dk) = ∅ if ik 6= jk.

By Lemma 2.2 we find xi ∈ E and ρi, d ≤ ρi ≤ Dd, with i = 1, . . . , m0, m0 ≤
CE/ds, such that the balls B(xi, d) are disjoint, xj 6∈ B(xi, ρi) for i < j,

E ⊂
m0⋃
i=1

B(xi, ρi)

and
E ∩B(xi, ρi + d) \B(xi, ρi) = ∅.

By Lemma 2.1 we find yi ∈ F with i = 1, . . . , n0, n0 ≥ (15tCF dt)−1 ≥ CE/ds ≥ m0

such that the balls B(yi, 3d) are disjoint. We define

E1 = E ∩B(x1, ρ1) and Ei = E ∩B(xi, ρi) \
i−1⋃
j=1

Ej for i ≥ 2.

Then the required properties for k = 1 are readily checked.
Suppose then that for some k ≥ 1, Ei1...ik , xi1...ik ∈ E, yi1...ik ∈ F and ρi1...ik have

been found with the asserted properties. Fix i1 . . . ik. We shall apply Lemma 2.2 with
E = Ei1...ik , R = dk, r = dk+1 and C = CE, recall that 2Dd < 1. Since d(Ei1...ik , E \
Ei1...ik) ≥ dk, we have E ∩ B(x, r) = Ei1...ik ∩ B(x, r) for x ∈ Ei1...ik and 0 < r < dk,
so this is possible. Thus we obtain xi1...iki ∈ Ei1...ik and ρi1...iki, i = 1, . . . , mi0...ik ,
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such that mi0...ik ≤ CEd(Ei1...ik)
s/d(k+1)s ≤ CE2sDs/ds, the balls B(xi1...iki, d

k+1) are
disjoint, xi1...ikj 6∈ B(xi1...iki, ρi1···ki) for i < j,

dk+1 ≤ ρi1...iki ≤ Ddk+1,

Ei1...ik ⊂
mi0...ik⋃

i=1

B(xi1...iki, ρi1...iki)

and
E ∩B(xi1...iki, ρi1...iki + dk+1) \B(xi1...iki, ρi1...iki) = ∅.

Define
Ei1...ik1 = Ei1...ik ∩B(xi1...ik1, ρi1...ik1)

and

Ei1...iki = Ei1...ik ∩B(xi1...iki, ρi1...iki) \
i−1⋃
j=1

Ei1...ikj for i ≥ 2.

Applying Lemma 2.1 we find points yi1...iki ∈ F ∩B(yi1...ik , d
k), i = 1, . . . , ni0...ik , with

ni0...ik ≥ (15tCF dt)−1 ≥ CE2sDs/ds ≥ mi0...ik such that the balls B(yi1...iki, 3d
k+1), i =

1, . . . , ni0...ik , are disjoint. Then the required properties are easily checked.
Set

Ak = {xi1...ik : ij = 1, . . . , mi0...ij−1
, j = 1, . . . , k}

and
Bk = {yi1...ik : ij = 1, . . . , mi0...ij−1

, j = 1, . . . , k}.
Define the maps

fk : Ak → Bk by f(xi1...ik) = yi1...ik .

We check now that fk is bilipschitz with a constant depending only on s, t, CE

and CF . Let x = xi1...ik , x
′ = xj1...jk

∈ Ak with x 6= x′. Let l ≥ 1 be such
that i1 = j1, . . . , il = jl and il+1 6= jl+1; if i1 6= j1 the argument is similar.
Then, as in (3.2) in the proof of Theorem 3.1, x ∈ Ei1...ilil+1

∩ B(xi1...il , 2Ddl)
and x′ ∈ Ej1...jljl+1

∩ B(xi1...il , 2Ddl). Since d(Ei1...ilil+1
, Ej1...jljl+1

) ≥ dl+1, we get
that dl+1 ≤ d(x, x′) ≤ 4Ddl. Letting y = yi1...ik and y′ = yj1...jk

, we have y ∈
B(yi1...ilil+1

, 2dl+1)∩B(yi1...il , 2d
l) and y′ ∈ B(yj1...jljl+1

, 2dl+1)∩B(yi1...il , 2d
l). Hence,

as B(yi1...ilil+1
, 3dl+1) ∩B(yj1...jljl+1

, 3dl+1) = ∅, dl+1 ≤ d(y, y′) ≤ 4dl,

d(fk(x), fk(x
′)) = d(y, y′) ≤ (4/d)d(x, x′)

and
d(fk(x), fk(x

′)) = d(y, y′) ≥ (d/(4D))d(x, x′).

Denote L = 4D/d > 4/d.
As in the proof of Theorem 3.1 we define the map f : E → f(E) ⊂ F by

f(x) = lim
k→∞

fk(xi1...ik)

when x = limk→∞ xi1...ik . Then bilip(f) ≤ L.
If E is bounded and F unbounded, the same proof works with F replaced by

F ∩ B(p, 1) for any p ∈ F . Suppose E and F are unbounded, and let p ∈ E. Using
the proof of Lemma 2.2 we find Rk, (2D)k ≤ Rk ≤ D(2D)k, k = 1, 2, . . . , such that

E ∩B(p,Rk + (2D)k) \B(p,Rk) = ∅.
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Let Ek = E ∩ B(p,Rk). We check that Ek is s-regular with CEk
≤ (2D)sCE. To see

this, let x ∈ Ek and 0 < r ≤ d(Ek) ≤ (2D)k+1. If r ≤ (2D)k, then Ek ∩ B(x, r) =
E∩B(x, r), so µ(Ek∩B(x, r)) ≥ rs. If r > (2D)k, we have µ(Ek∩B(x, r)) ≥ (2D)ks ≥
(2D)−srs. These facts imply that CEk

≤ (2D)sCE. Since the sets Ek are bounded we
can find bilipschitz maps fk : Ek → f(Ek) ⊂ F with bilip(fk) ≤ L where L depends
only on s, t, CE and CF . Using Arzela–Ascoli theorem we can extract a subsequence
(fki

) such that the sequence (fki
)ki≥k converges on Ek for every k = 1, 2, . . . . Then

f = limi→∞ fki
: E → f(E) ⊂ F is bilipschitz with bilip(f) ≤ L. ¤

4. Mappings in Rn

In this section we prove for small dimensional sets in Rn that we can find bilip-
schitz mappings of the whole Rn. The following lemma may be well known, but we
have not found a suitable reference in literature.

4.1. Lemma. Let 0 < δ < c(n), where c(n) < 1/2 is a positive constant depend-
ing only on n and determined later. Let p, q ∈ Rn and R > 0. For i = 1, . . . , m let
δR ≤ ri ≤ R/3 and xi ∈ B(p,R) and yi ∈ B(q, R) with B(xi, 3ri) ∩ B(xj, 3rj) = ∅
and B(yi, 3ri)∩B(yj, 3rj) = ∅ for i 6= j. Then there is a bilipschitz map f : Rn → Rn

such that f(x) = x−p+q for x ∈ Rn\B(p, 2R) and f(x) = x−xi+yi for x ∈ B(xi, ri).
Moreover, bilip(f) ≤ L where L depends only on n and δ.

Proof. We may assume that p = q = 0 and R = 1. Let ε = δ2n+3. It is enough to
construct a bilipschitz map f : Rn → Rn with bilip(f) ≤ L, L depending only on n
and δ, such that f(x) = x for |x| > 3

√
n and f(x) = x−xi+yi for x ∈ B(xi, ε). To see

this, consider bilipschitz maps g, h : Rn → Rn with bilipschitz constants depending
only on n and δ such that g(x) = (ε/ri)(x− xi) + xi for x ∈ B(xi, ri), g(x) = x for
x ∈ B(0, 3/2)\⋃m

i=1 B(xi, 2ri), h(y) = (ε/ri)(y−yi)+yi for y ∈ B(yi, ri), h(y) = y for
y ∈ B(0, 3/2)\⋃m

i=1 B(yi, 2ri), g(x) = h(x) for |x| > 2 and g(B(0, 2)) = h(B(0, 2)) =
B(0, 3

√
n). Then h−1 ◦ f ◦ g has the required properties.

For the rest of the proof we assume that n ≥ 2, for n = 1 a much simpler argument
works. Denote Q = [−2, 2]n−1. Let a, b ∈ B(0, 1) ⊂ Rn−1. For v ∈ ∂B(a, ε) denote
by v′ the single point in ∂Q ∩ {t(v − a) + a : t ≥ 1}. Let g(a, b) : Q → Q be the
bilipschitz map such that

g(a, b)(x) = x− a + b for x ∈ B(a, ε)

and for v ∈ ∂B(a, ε) g(a, b) maps the line segment [v, v′], affinely onto the line
segment [v − a + b, v′]. Then g(a, b)(x) = x for x ∈ ∂Q and g(a, a) is the identity
map. Moreover, g(a, b) has a bilipschitz constant depending only on n.

Now we show that there exists a unit vector θ ∈ Sn−1 such that |θ ·(xi−xj)| > 5ε
and |θ · (yi − yj)| > 5ε for i 6= j. To see this, let σ denote the surface measure on
Sn−1. We have by some simple geometry (or one can consult [M], Lemma 3.11)

σ({θ ∈ Sn−1 : |θ · (xi − xj)| ≤ 5ε}) ≤ C1(n)|xi − xj|−1ε ≤ C1(n)δ2n+2,

and similarly for yi, yj. There are less than C2(n)δ−2n pairs (xi, xj) and (yi, yj),
whence

σ({θ ∈ Sn−1 : |θ · (xi − xj)| ≤ 5ε or |θ · (yi − yj)| ≤ 5ε for some i 6= j}) < δ,



496 Pertti Mattila and Pirjo Saaranen

if C1(n)C2(n)δ < 1, which we have taking c(n) ≤ (C1(n)C2(n))−1 in the statement
of the theorem. Taking also c(n) ≤ σ(Sn−1) our θ exists. We may assume that
θ = (0, . . . , 0, 1).

Let ti and ui, i = 1, . . . , m, be the n’th coordinates of xi and yi, respectively, and
let t0 = u0 = −2, tm+1 = um+1 = 2. We may assume that ti < ti+1 and ui < ui+1 for
i = 0, . . . , m. Then |ti− tj| > 5ε and |ui−uj| > 5ε for i 6= j, i, j = 0, . . . , m + 1. For
x = (x1, . . . , xn) ∈ Rn, let x̃ = (x1, . . . , xn−1). Let Q0 = [−2, 2]n and for i = 1, . . . , m,

Ri = {x ∈ Q0 : |xn − ti| ≤ ε},
Si = {y ∈ Q0 : |yn − ui| ≤ ε}.

We shall define f in Q0 with the help of the maps g(a, b) in such a way that it
maps Ri onto Si translating B(xi, ε) onto B(yi, ε). Between Ri and Ri+1 f is defined
by simple homotopies changing f |Ri to f |Ri+1, and similarly in Q0 ’below’ R1 and
’above’ Rm. Finally f can be extended from Q0 to all of Rn rather trivially. We do
this now more precisely.

Let x ∈ Q0 and 1 ≤ i ≤ m + 1. We set

f(x) = (g(x̃i, ỹi)(x̃), xn − ti + ui) if |xn − ti| ≤ ε and i ≤ m,

f(x) = (g((2ε− |xn − ti|)/ε)x̃i, (2ε− |xn − ti|)/ε)ỹi)(x̃), xn + ui − ti)

if ε ≤ |xn − ti| ≤ 2ε and i ≤ m,

f(x) = (x̃,
xn − ti−1 − 2ε

ti − ti−1 − 4ε
(ui − 2ε) +

ti − 2ε− xn

ti − ti−1 − 4ε
(ui−1 + 2ε))

if ti−1 + 2ε ≤ xn ≤ ti − 2ε,

f(x) = x if − 2 ≤ xn ≤ −2 + 2ε or 2− 2ε ≤ xn ≤ 2.

Then f : Q0 → Q0 is bilipschitz with a constant depending only on n and δ, f(x) =
x − xi + yi for x ∈ B(xi, ε), f(x) = x for x ∈ Q0 with xn = −2 or xn = 2, and
at the other parts of the boundary of Q0 f is of the form f(x) = (x̃, φ(xn)) where
φ : [−2, 2] → [−2, 2] is strictly increasing and piecewise affine. It is an easy matter
to extend f to a bilipschitz mapping of Rn with a bilipschitz constant depending
only on n and δ and with f(x) = x for x ∈ Rn \ B(0, 3

√
n). For example, setting

||x̃||∞ = max{|x1|, . . . , |xn−1|}, we can take

f(x) = (x̃, (3− ||x||∞)φ(xn) + (||x||∞ − 2)xn)

when 2 ≤ ||x̃||∞ ≤ 3 and |xn| ≤ 2, and f(x) = x when ||x̃||∞ > 3 or |xn| > 2. ¤

4.2. Theorem. Let C ≥ 1 and let s0 = s0(C, 18), 0 < s0 < 1/6, be the constant
of Lemma 2.3. Let 0 < s < s0 and s < t < n, let E ⊂ Rn be s-regular and F ⊂ Rn

t-regular with CE, CF ≤ C. Suppose that either E is bounded or both E and F are
unbounded. Then there is a bilipschitz map f : Rn → Rn such that f(E) ⊂ F .

Proof. We assume that E and F are bounded. The remaining case can be
dealt with as at the end of the proof of Theorem 3.3. We can then assume that
E, F ⊂ B(0, 1) with d(E) = d(F ) = 1/2. Let c(n) and D = D(C, 18) be as in
Lemma 2.3, and choose d such that

d < c(n), 12Dd < 1 and 0 < dt−s < (2s60tCECF Dt)−1.
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By Lemma 2.3 we find xi ∈ E and ρi, d ≤ ρi ≤ Dd, with i = 1, . . . , m0, m0 ≤ CE/ds,
such that the balls B(xi, 6ρi) are disjoint,

E ⊂
m0⋃
i=1

B(xi, ρi)

and
E ∩B(xi, 18ρi) \B(xi, ρi) = ∅.

By Lemma 2.1 we find yi ∈ F with i = 1, . . . , n0, n0 ≥ (5tCF )−1(1/(12Dd))t ≥
CE/ds ≥ m0 such that the balls B(yi, 6Dd), j = 1, . . . , n0, are disjoint. Next applying
Lemma 2.3 with E replaced by E ∩ B(xi, ρi), R = d, r = d2 and C = CE, we
find for every i = 1, . . . , m0, xij ∈ E ∩ B(xi, ρi) and ρij, d

2 ≤ ρij ≤ Dd2, with
j = 1, . . . , mi, mi ≤ CEd(E ∩ B(xi, ρi))

s/d2s ≤ CE2sDs/ds, such that the balls
B(xij, 6ρij) are disjoint,

E ∩B(xi, ρi) ⊂
mi⋃
j=1

B(xij, ρij)

and
E ∩B(xij, 18ρij) \B(xij, ρij) = ∅,

and by Lemma 2.1 we find yij ∈ F∩B(yi, d), j = 1, . . . , ni, ni ≥ (5tCF )−1(d/(6Dd2))t

≥ 2sCE/ds ≥ mi such that the balls B(yij, 6Dd2) are disjoint. Continuing this we
find for all k = 1, 2, . . . , xi1...ik , ρi1...ik and yi1...ik such that for all ij = mi0...ij−1

, j =
1, . . . , k, k = 1, 2, . . . , with i0 = 0,

E ⊂
⋃

i1...ik

B(xi1...ik , ρi1,...,ik),

B(xi1...ik , 6ρi1...ik) ∩B(xj1...jk
, 6ρi1...ik) = ∅ if ik 6= jk,

xi1...ikik+1
∈ E ∩B(xi1...ik , ρi1...ik),

dk ≤ ρi1...ik ≤ Ddk,

B(xi1...ikik+1
, 4ρi1...ikik+1

) ⊂ B(xi1...ik , 2ρi1...ik),

E ∩B(xi1...ik , 18ρi1...ik) \B(xi1...ik , ρi1...ik) = ∅,
yi1...ikik+1

∈ F ∩B(yi1...ik , d
k),

B(yi1...ik , 6Ddk) ∩B(yj1...jk
, 6Ddk) = ∅ if ik 6= jk.

Using Lemma 4.1 we find a bilipschitz map f1 : Rn → Rn such that f1(x) = x for
|x| > 2 and f1(x) = x− xi + yi for x ∈ B(xi, 2ρi), and bilip(f) ≤ L where L depends
only on s, t, n and C. Let

Bk =
⋃

i1...ik

B(xi1...ik , 2ρi1,...,ik).

Then Bk+1 ⊂ Bk for all k and E =
⋂∞

k=1 Bk. We use Lemma 4.1 to define inductively
fk : Rn → Rn such that fk+1(x) = fk(x) for x ∈ Rn \Bo

k, where Bo
k is the interior of

Bk, fk+1|B(xi1...ik , 2ρi1,...,ik) is L-bilipschitz and fk+1(x) = x−xi1,...,ik+1
+ yi1,...,ik+1

for
x ∈ B(xi1...ik+1

, 2ρi1,...,ik+1
). We check now by induction that

(4.3) |x− y|/L ≤ |fk(x)− fk(y)| ≤ L|x− y| for all x, y ∈ Rn.
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For k = 1 this was already stated. Suppose this is true for k−1 for some k ≥ 2 and let
x, y ∈ Rn. If x, y ∈ Rn \Bo

k, (4.3) follows from the definition of fk and the induction
hypothesis. If x, y ∈ B(xi1...ik , 2ρi1,...,ik) for some i1 . . . ik, then (4.3) follows from the
fact that fk is a translation in B(xi1...ik , 2ρi1,...,ik). Finally, let x ∈ B(xi1...ik , 2ρi1,...,ik)
and y ∈ Rn \B(xi1...ik , 2ρi1,...,ik). Let z ∈ ∂B(xi1...ik , 2ρi1,...,ik) be the point on the line
segment with end points x and y. Then, by the two previous cases,

|fk(x)− fk(y)| ≤ |fk(x)− fk(z)|+ |fk(z)− fk(y)| ≤ L|x− z|+ L|z − y| = L|x− z|.
This proves the right hand inequality of (4.3). A similar argument for f−1

k with the
balls B(yi1...ik , 2ρi1,...,ik) gives the left hand inequality.

We have left to show that the limit limk→∞ fk(x) = f(x) exists for all x ∈ Rn.
Then also f satisfies (4.3) and f(E) ⊂ F . First, if x ∈ Rn \ E, then x ∈ Rn \ Bl

for some l, and so fk(x) = fl(x) for k ≥ l. If x ∈ E, there are i1, i2, . . . , such that
x ∈ B(xi,...ik , 2ρi1...ik) for all k. Then fk(x) ∈ B(yi1...ik , 2Ddk) and limk→∞ fk(x) =
y = f(x) where y = limk→∞ yi1...ik . ¤

5. Sub- and supersets

In this section we shall consider the question whether a given regular set contains
regular subsets of smaller dimension and whether it is contained in higher dimensional
regular sets.

5.1. Theorem. Let E ⊂ X be s-regular and 0 < t < s. For every x ∈ E and
0 < r < d(E), E ∩ B(x, r) contains a t-regular subset F such that CF ≤ C and
d(F ) ≥ cr where C and c are positive constants depending only on s, t and CE.

This can be proven with the same method as Theorem 3.1. In fact, that method
gives that E ∩ B(x, r) has a t-regular subset which is bilipschitz equivalent with
C(t, r) with a bilipschitz constant depending only on s, t and CE. Observe that the
regularity of E implies that d(E ∩B(x, r)) ≥ C

−1/s
E r.

5.2. Theorem. Let 0 < s < t < u. Suppose that E ⊂ X is s-regular and that
X is u-regular. Then there is a t-regular set F with E ⊂ F ⊂ X. Moreover, CF ≤ C
where C depends only on s, t, CE and CX .

Proof. We shall only consider the case where X and E are bounded. A slight
modification of the proof works if X or both X and E are unbounded. Recalling
the remarks at the beginning of Section 3, we may assume that d(E) = 1. Let
0 < d < 1/30 be such that du−s < 4−s30−uC−1

E C−1
X . By Lemma 2.1 there are for every

k = 1, 2, . . . , disjoint balls B(xk,i, 6d
k), i = 1, . . . , mk, such that xk,i ∈ E and the balls

B(xk,i, 30dk) cover E. Further, there are disjoint balls B(xk,i, 6d
k), i = mk+1, . . . , nk,

such that xk,i ∈ X \∪mk
i=1B(xk,i, 30dk) and the balls B(xk,i, 30dk), i = 1, . . . , nk, cover

X.
Fix k and i, 1 ≤ i ≤ mk. Denote

J = {j ∈ {1, . . . , nk} : B(xk+1,j, d
k+1) ⊂ B(xk,i, 3d

k)},
J ′ = {j ∈ {1, . . . , nk} : B(xk+1,j, 30dk+1) ∩B(xk,i, d

k) 6= ∅},
I = {j ∈ J : E ∩B(xk+1,j, 6d

k+1) 6= ∅},
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and let n, n′ and m be the number of indices in J , J ′ and I, respectively. Then,
as d < 2/31, J ′ ⊂ J and so n′ ≤ n. Since B(xk,i, d

k) ⊂ ⋃
j∈J ′ B(xk+1,j, 30dk+1), we

have, comparing measures as in the proof of Lemma 2.1, that n ≥ n′ ≥ 30−uC−1
X d−u.

If j ∈ I there is zj ∈ E ∩B(xk+1,j, 6d
k+1) and then, as also j ∈ J and d < 1/7,

B(zj, d
k+1) ⊂ B(xk+1,j, 7d

k+1) ⊂ B(xk,i, 4d
k).

Then the balls B(zj, d
k+1), j ∈ I, are disjoint and

md(k+1)s ≤
∑
j∈I

µ(B(zj, d
k+1)) ≤ µ(B(xk,i, 4d

k)) ≤ 4sCEdks,

whence m ≤ 4sCEd−s. Combining these inequalities and recalling the choice of d, we
find that

m ≤ 4sCEd−s < 30−uC−1
X d−u ≤ n.

Thus we can choose some j ∈ J \ I. Let yk,i = xk+1,j and Bk,i = B(yk,i, d
k+1).

Denote also 2Bk,i = B(yk,i, 2d
k+1). Then for a fixed k the balls 2Bk,i, i = 1, . . . , mk,

are disjoint. If x ∈ 2Bk,i, then, as j 6∈ I, d(x,E) ≥ 4dk+1. On the other hand, as
j ∈ J , d(x,E) ≤ d(x, xk,i) ≤ d(x, yk,i) + d(yk,i, xk,i) ≤ 2dk+1 + 3dk < dk−1. It follows
that the balls 2Bk,i and 2Bl,j with |k − l| ≥ 2 are always disjoint. Hence any point
of X can belong to at most two balls 2Bk,i, i = 1, . . . , mk, k = 1, 2, . . . .

By Theorem 5.1 we can choose for every k, i, 1 ≤ i ≤ mk, t-regular sets Fk,i ⊂ Bk,i

such that CFk,i
≤ C and d(Fk,i) ≥ cdk with C and c depending only on t, u and CX .

Let νk,i be the Borel measure related to Fk,i as in Definition 1.1. We define

F = E ∪
∞⋃

k=1

mk⋃
i=1

Fk,i

and

ν =
∞∑

k=1

mk∑
i=1

νk,i.

Then F is a closed and bounded subset of X containing E.
We check now that F is t-regular. Let x ∈ F and 0 < r ≤ d(F ). It is enough

to verify the required inequalities for r < d, so we assume this. Let l be the positive
integer for which dl+1 ≤ r < dl. Denote

K = {(k, i) : i = 1, . . . , mk, k < l and Bk,i ∩B(x, r) 6= ∅}
and

L = {(k, i) : i = 1, . . . , mk, k ≥ l and Bk,i ∩B(x, r) 6= ∅}.
We have

ν(B(x, r)) ≤
∑

(k,i)∈K

νk,i(Bk,i ∩B(x, r)) +
∑

(k,i)∈L

νk,i(Bk,i ∩B(x, r)).

If (k, i) ∈ K, then r < dk+1 and B(x, r) ⊂ 2Bk,i. Since this can happen for at
most two balls 2Bk,i, K can contain at most two elements and the first sum above
is bounded by 2t+1Crt. To estimate the second sum, let pk be the number of indices
in Ik = {i : (k, i) ∈ L}. Let (k, i) ∈ L. Then Bk,i ∩ B(x, r) 6= ∅, and so d(xk,i, x) ≤
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d(xk,i, yk,i) + d(yk,i, x) ≤ 3dk + 2dk+1 + r < 5dl, which gives B(xk,i, d
k) ⊂ B(x, 6dl).

Consequently,

pkd
ks ≤

∑
i∈Ik

µ(B(xk,i, d
k)) ≤ µ(B(x, 6dl)) ≤ CE12sdls,

and so pk ≤ 12sCEd(l−k)s. Hence
∑

(k,i)∈L

νk,i(Bk,i ∩B(x, r)) ≤
∞∑

k=l

12sCEd(l−k)sC4td(k+1)t ≤ 12s4tCECdls

∞∑

k=l

d(t−s)k

= 12s4tCECdlt 1

1− d(t−s)
≤ 12s4tCECd−t 1

1− d(t−s)
rt.

This proves the upper regularity of ν.
To prove the opposite inequality, suppose first that x ∈ E. Let k be the positive

integer for which 33dk ≤ r < 33dk−1. Then for some i, 1 ≤ i ≤ mk, x ∈ B(xk,i, 30dk).
Since Bk,i ⊂ B(xk,i, 3d

k) we have that Bk,i ⊂ B(x, 33dk) ⊂ B(x, r). Thus

ν(B(x, r)) ≥ νk,i(Bk,i) ≥ d(Fk,i)
t ≥ ctdkt ≥ ctdt33−trt.

Suppose finally that x ∈ Fk,i for some k and i. If r ≤ 9dk, then d(Fk,i) ≥ cdk ≥ (c/9)r,
whence

ν(B(x, r)) ≥ ν(B(x, (c/9)r) ≥ (c/9)trt.

If r > 9dk, then d(x, xk,i) ≤ 3dk < r/3, so B(xk,i, r/2) ⊂ B(x, r). Since xk,i ∈ E, the
required inequality follows from the case x ∈ E. ¤

In the next example note that limr→0 L 1(F ∩ B(x, r))/(2r) = 1 for L 1 almost
all x ∈ F by the Lebesgue density theorem. However, F has no subset E with
L 1(E) > 0 for which L 1(F ∩B(x, r))/(2r) would be bounded below with a positive
number uniformly for small r > 0.

5.3. Example. There exists a compact set F ⊂ R with Lebesgue measure
L 1(F ) > 0 such that it contains no non-empty s-regular subset for any s > 0.

Proof. Let a < b, 0 < λ < 1/2 and 0 < t < 1. We shall construct a family
I ([a, b], λ, t) of closed disjoint subintervals of [a, b]. We do this for [0, 1] and then
define I ([a, b], λ, t) = {f(I) : I ∈ I ([0, 1], λ, t)} where f(x) = (b− a)x + a.

Let
I1,1 = [(1− λ)/2, (1 + λ)/2].

Then [0, 1] \ I1,1 consists of two intervals J1,1 and J1,2 of length (1− λ)/2. We select
closed intervals I2,1 and I2,2 of length λ(1− λ)/2 in the middle of them (that is, the
center of I2,i is the center of J1,i). Continuing this we get intervals Ik,i, i = 1, . . . , 2k−1,
and Jk,i, i = 1, . . . , 2k, such that d(Ik,i) = 21−kλ(1−λ)k−1 and d(Jk,i) = 2−k(1−λ)k.
Moreover, each Ik,i is the mid-interval of some Jk−1,j and Jk−1,j \ Ik,i consists of two
intervals Jk,j1 and Jk,j2 . Then

l∑

k=1

2k−1∑
i=1

d(Ik,i) =
l∑

k=1

λ(1− λ)k−1 = 1− (1− λ)l → 1 as l →∞.

We choose l such that
l∑

k=1

2k−1∑
i=1

d(Ik,i) > t
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and denote
I ([0, 1], λ, t) = {Ik,i : i = 1, . . . , 2k−1, k = 1, . . . , l}.

Then for any compact interval I ⊂ R,∑

J∈I (I,λ,t)

d(J) > td(I).

Let 0 < λk < 1/2, 0 < tk < 1, k = 1, 2, . . . , such that limk→∞ λk = 0 and
t =

∏∞
k=1 tk > 0. Define

I1 = I ([0, 1], λ1, t1),

and inductively for m = 1, 2, . . . ,

Im+1 = {J : J ∈ I (I, λm+1, tm+1), I ∈ Im}.
The compact set F is now defined as

F =
∞⋂

m=1

⋃

I∈Im

I.

For every m = 1, 2, . . . we have∑

I∈Im

d(I) > t1 · · · · · tm > t,

whence L 1(F ) ≥ t.
Suppose that s > 0 and that E is an s-regular subset of F . Choose m so large

that λm < C−s
E /4. Let x ∈ E. Then x ∈ I for some I ∈ Im. Suppose that I would

be one of the shortest intervals in the family Im. Then by our construction there is
an interval J such that I is in the middle of J, I ∩ E = J ∩ E and d(I) = λmd(J).
As B(x, d(J)/4) ⊂ J we have by the regularity of E,

4−sd(J)s ≤ µ(B(x, d(J)/4)) = µ(B(x, d(I)) ≤ CEd(I)s = CE(λmd(J))s.

Thus λm ≥ C
−1/s
E /4. This contradicts with the choice of m. So E contains no points

in the shortest intervals of Im. But then we can repeat the same argument with the
second shortest intervals of Im concluding that neither can they contain any points
of E. Continuing this we see that E = ∅. ¤
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