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Abstract. We prove a result on the frequency of zeros of f ◦g−Q, where g is a transcendental
entire function of finite lower order, and f and Q are meromorphic functions in the plane such that
f has finite order and the growth of the target function Q is controlled by that of g. The particular
case f = Q is then investigated further.

1. Introduction

This paper is concerned with the zeros of functions of the form

(1) F = f ◦ g −Q,

where f and Q are meromorphic in the plane and g is a non-linear entire function.
For convenience we will on occasions write f [g] = f ◦g to denote composition, and we
will use the standard notation of Nevanlinna theory [12], including the abbreviation
“n.e. on E” (nearly everywhere on E) to mean as r → ∞ in E \ E1, where E1 has
finite measure.

The study of the zeros of the composition (1) has a long history. Bergweiler [1]
proved a conjecture of Gross [10], to the effect that if f and g are transcendental entire
functions and Q is a non-constant polynomial, then f ◦ g − Q has infinitely many
zeros. Extensions to the case of meromorphic functions f , and further generalisations
including to non-real fixpoints of compositions, as well as to quasiregular mappings,
may be found in [2, 3, 25] and elsewhere.

The first result of the present paper is motivated by two papers of Katajamäki,
Kinnunen and Laine [19, 20], which focus on the frequency of zeros of the composition
(1). Results related to [19, 20] include those of [5, 7, 31, 32]. The main result of
[20] states that if g is a transcendental entire function of finite lower order µ(g),
and f is a transcendental meromorphic function in the plane of finite order, while
Q is non-constant and meromorphic in the plane of order less than µ(g), then the
exponent of convergence of the zeros of f ◦ g − Q is at least µ(g). The methods of
[20] are complicated, but with a simpler proof we will establish the following stronger
theorem, which in particular allows the growth of the target function Q to match
that of g.
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Theorem 1.1. Let the functions f , g and Q be meromorphic in the plane with
the following properties.

(i) f is transcendental of finite order.
(ii) g is transcendental entire of finite lower order.
(iii) There exists a set E ⊆ [1,∞) of positive lower logarithmic density such that

the functions Q and F = f ◦ g −Q satisfy

(2) T (r,Q) = O(T (r, g)) on E

and

(3) N(r, 1/F ) = O(T (r, g)) on E.

Then at least one of the following two conclusions is satisfied.
(a) There exists a rational function R such that f − R has finitely many zeros

and Q = R ◦ g, and this conclusion always holds if f has finitely many poles.
(b) There exist rational functions A,B,C such that f solves the Riccati equation

(4) y′ = A + By + Cy2,

and

(5) Q′ = g′(A[g] + B[g]Q + C[g]Q2),

so that locally we may write Q = w ◦ g for some solution w of (4).
If (2) is replaced by

(6) T (r,Q) = o(T (r, g)) on E

then Q must be constant.

It is obvious that f ◦ g − Q may fail to have zeros if Q is a rational function of
g, and in particular if Q is constant. We will give an example in §4 to show that
when f has infinitely many poles case (b) can occur with the local solution w not
meromorphic in the plane. Of course if Q = w ◦ g with w meromorphic in the plane
then (2) and a well known result of Clunie (see Lemma 2.1 and [12, p. 54]) imply
that w must be a rational function. We remark further that in case (b) the order
and sectorial behaviour of f may be determined asymptotically from (4) [30].

The remainder of this paper is mainly concerned with the case where Q = f
in (1), and follows a line of investigation which was prompted by the study of the
value distribution of differences f(z + c) − f(z). It was conjectured in [4] that if f
is transcendental and meromorphic in the plane of order less than 1 then ∆f(z) =
f(z + 1) − f(z) has infinitely many zeros: such a result would represent a discrete
analogue of a sharp theorem on the zeros of the derivative f ′ [8]. For the case where
ρ(f) < 1/6 it was proved in [4, 22] that either ∆f or (∆f)/f has infinitely many
zeros. The q-difference f(qz) − f(z) was treated next in [9], in which it was shown
that if f is transcendental and meromorphic in the plane with

lim inf
r→∞

T (r, f)

(log r)2
= 0,

and if
h(z) = f(az + b)− f(z), a, b ∈ C, |a| 6= 0, 1,

then either h or h/f has infinitely many zeros: this result is sharp.
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The above investigations suggest the natural question of whether f ◦ g− f must
have zeros, when f is transcendental and meromorphic in the plane and g is a non-
linear entire function. Suppose first that g is a transcendental entire function with
no fixpoints and let f = R◦g◦n for some n ∈ N, where R is a Möbius transformation
and g◦0 = id, g◦1 = g, g◦(k+1) = g ◦ g◦k denote the iterates of g. Then

F = f ◦ g − f = R ◦ g◦(n+1) −R ◦ g◦n

has no zeros, since if z is a zero of F then g◦n(z) is a fixpoint of g. We will deduce
the following result from Theorem 1.1.

Theorem 1.2. Let f and g be transcendental meromorphic functions in the
plane such that g is entire of finite lower order while f has finite order. Assume
that there exists a set E ⊆ [1,∞) of positive lower logarithmic density such that
F = f ◦ g − f and f satisfy

(7) N(r, 1/F ) + T (r, f) = O(T (r, g)) on E.

Then there exist a Möbius transformation R and polynomials P and S such that
f = R ◦ g and

(8) g(z) = z + S(z)eP (z).

In particular, if f has finitely many poles then f = ag + b with a, b ∈ C.

We turn next to the case where F = f ◦ g − f with g a non-linear polynomial.

Theorem 1.3. Let the function f be transcendental and meromorphic of finite
order ρ in the plane, with finitely many poles, and let g be a polynomial of degree
m ≥ 2. Let F = f ◦ g − f . Then F has infinitely many zeros and if ρ > 0 then the
exponent of convergence of the zeros of F is ρ(F ) = mρ.

Finally for f with infinitely many poles we have a somewhat less complete result.

Theorem 1.4. Let the function f be transcendental and meromorphic of order
ρ in the plane, and let g be a polynomial of degree m ≥ 2. Let F = f ◦ g − f . If
0 < ρ < 1/m, or if ρ = 0 and m ≥ 4, then F has infinitely many zeros. If ρ = 0 then
the equation

(9) f(g(z)) = f(z)

has infinitely many solutions z in the plane.

The authors thank the referee for several helpful suggestions to improve the
readability of the paper, and for proposing a potentially very fruitful alternative
approach to Theorems 1.3 and 1.4.

2. Results of Clunie, Steinmetz, Hayman and Wittich

This paper will make frequent use of the following result of Clunie [12, p. 54].

Lemma 2.1. ([12]) Let g be a transcendental entire function and let f be a
transcendental meromorphic function in the plane. Then T (r, g) = o(T (r, f ◦ g)) as
r →∞.

The following theorem of Steinmetz [26] (see also [11]) plays a role in the present
paper similar to that in [20].
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Theorem 2.1. ([26]) Suppose that g is a non-constant entire function and that
F0, F1, . . . , Fm and h0, h1, . . . , hm are functions meromorphic in the plane, none of
which vanishes identically, such that

m∑
j=0

T (r, hj) = O(T (r, g))

as r →∞ in a set of infinite measure, and

F0[g]h0 + F1[g]h1 + . . . + Fm[g]hm ≡ 0.

Then there exist polynomials P0, P1, . . . , Pm, not all identically zero, as well as poly-
nomials Q0, Q1, . . . , Qm, again not all identically zero, such that

P0[g]h0 + P1[g]h1 + . . . + Pm[g]hm ≡ 0, Q0F0 + Q1F1 + . . . + QmFm ≡ 0.

We need next a result of Hayman.

Theorem 2.2. ([13, 16]) Let the function g be transcendental and meromorphic
of finite lower order in the plane, and let δ > 0. Then there exist a positive real
number C0 and a set E ′ ⊆ [1,∞), of upper logarithmic density at least 1 − δ, such
that

T (2r, g) ≤ C0T (r, g) and T (r, g) ≤ C0T (r, g′) for all r ∈ E ′.

Theorem 2.2 follows from [13, Lemma 4] combined with either [13, Lemma 5] or
the Hayman–Miles theorem [16]. In the present paper the result will only be applied
when g is a transcendental entire function of finite lower order, in which case [13,
Lemma 4] gives a set E ′ of upper logarithmic density at least 1 − δ and a positive
constant C1 such that for r ∈ E ′ we have T (2r, g) ≤ C1T (r/2, g), and hence

T (r, g) ≤ C1T (r/2, g) ≤ C1 log M(r/2, g′) + O(log r) ≤ (3C1 + o(1))T (r, g′).

We require three fairly standard lemmas concerning Riccati equations: we sketch
the proofs for completeness. For a discussion of the Riccati equation see [21, Chap-
ter 9].

Lemma 2.2. Let the functions A, B, C and 1/C be analytic on the simply
connected plane domain U , and let u be a meromorphic solution of the Riccati
equation (4) on a non-empty domain U ′ ⊆ U . Then u extends to a meromorphic
solution of (4) on U .

Proof. Choose z1 ∈ U ′ with u(z1) ∈ C and near z1 write

v = −Cu,
V ′

V
= v, v′ = −AC +

(
B +

C ′

C

)
v − v2,

V ′′ =
(

B +
C ′

C

)
V ′ − ACV.

(10)

The coefficients of the linear equation for V in (10) are analytic on U and so V
extends to be analytic on U . ¤

Lemma 2.3. Let the functions A, B and C be analytic on the plane domain
U , and let u and v be meromorphic solutions of (4) on U . Assume that there exists
z0 ∈ U with u(z0) = v(z0). Then u ≡ v on U .



Meromorphic compositions and target functions 619

Proof. Assume that u 6≡ v on U and suppose first that u(z0) = v(z0) ∈ C. Then
(4) gives

u′ − v′

u− v
= B + C(u + v)

and at z0 the left-hand side has a pole, while the right-hand side is regular. On the
other hand if u and v both have a pole at z0 then the same argument may be applied
to 1/u and 1/v, which solve

−Y ′ = C + BY + AY 2. ¤
The last of these lemmas is essentially due to Wittich [30, p. 283].

Lemma 2.4. Let A, B and C be rational functions vanishing at infinity. Then
(4) cannot have a solution which is transcendental and meromorphic in the plane.

Proof. Let A, B and C be as in the hypotheses and assume that u is a transcen-
dental meromorphic solution of (4) in the plane. Then C 6≡ 0: if this is not the case
then u has finitely many poles and cannot be transcendental by the Wiman-Valiron
theory [29]. We now apply the transformations (10) and deduce that all but finitely
many poles of v are simple, and that there exists a rational function R which vanishes
at infinity such that all poles of the transcendental meromorphic function w = v−R
are simple with residue 1. Hence there exists a transcendental entire function W
with W ′/W = w. But w and W satisfy

w′ + w2 = −AC −R′ −R2 +

(
B +

C ′

C

)
R +

(
B − 2R +

C ′

C

)
w,

W ′′ =
(
−AC −R′ −R2 +

(
B +

C ′

C

)
R

)
W +

(
B − 2R +

C ′

C

)
W ′,

and the linear equation for W has a regular singular point at infinity, which contra-
dicts the fact that W is transcendental. ¤

3. Proof of Theorem 1.1

The proof of Theorem 1.1 will be accomplished in three main steps.

3.1. Proof of Theorem 1.1: the first part. To prove Theorem 1.1 let the
functions f , g, Q, F and the set E be as in the hypotheses. If Q = R ◦ g is a
rational function of g and if α1, . . . , αm are distinct zeros of f − R then the second
fundamental theorem and (3) give

(m− 1− o(1))T (r, g) ≤
m∑

k=1

N(r, 1/(g − αk)) ≤ N(r, 1/F ) = O(T (r, g)) n.e. on E,

and so f−R has finitely many zeros. Assume henceforth that Q has no representation
as a rational function of g. Then in particular Q is non-constant.

Choose entire functions f1, f2 of finite order with no common zeros such that
f = f1/f2 and define K by

(11) K = f1[g]−Q · f2[g].

Then (3) and (11) give

(12) f1 = f · f2, K = F · f2[g] 6≡ 0.
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It then follows from (2), (3), (12) and the fact that f1 and f2 have no common zeros
that

(13) N(r,K) + N(r, 1/K) ≤ N(r, 1/F ) + N(r,Q) = O(T (r, g)) on E.

Denote positive constants by Cj. Since g has finite lower order and E has positive
lower logarithmic density, Theorem 2.2 gives a set E1 ⊆ E ⊆ [0,∞) of infinite linear
measure such that

(14) T (2r, g) ≤ C1T (r, g) for all r ∈ E1.

Now set

(15) γ =
K ′

K
.

Then (13), (14), (15), the lemma of the logarithmic derivative and the fact that f1

and f2 have finite order imply that, n.e. on E1,

T (r, γ) ≤ C2 log+ T (r,K) + O(T (r, g))

≤ C2

2∑
j=1

log+ T (r, fj[g]) + O(T (r, g))

≤ C2

2∑
j=1

log+ log+ M(r, fj[g]) + O(T (r, g))

≤ C2

2∑
j=1

log+ log+ M(M(r, g), fj) + O(T (r, g))

≤ C3 log M(r, g) + O(T (r, g)) ≤ C4T (2r, g) ≤ C5T (r, g).

(16)

Differentiating (11) gives

g′ · f ′1[g]−Q′ · f2[g]−Qg′ · f ′2[g] = K ′ = γ(f1[g]−Q · f2[g])

and so

(17) g′ · f ′1[g]− γ · f1[g]−Qg′ · f ′2[g] + (γQ−Q′)f2[g] = 0.

By (2) and (16) the coefficients in (17) satisfy, n.e. on E1,

T (r, g′) + T (r, γ) + T (r,Qg′) + T (r, γQ−Q′) = O(T (r, g))

and so it follows from Theorem 2.1 that there exist polynomials φj, not all the zero
polynomial, such that

(18) φ1f
′
1 + φ2f1 + φ3f

′
2 + φ4f2 = 0.

Here φ1 and φ3 cannot both vanish identically, since f = f1/f2 is not a rational
function. Obviously (18) gives

(19) φ1[g]f ′1[g] + φ2[g]f1[g] + φ3[g]f ′2[g] + φ4[g]f2[g] = 0.

Lemma 3.1. There exist rational functions A,B,C such that f solves the Riccati
equation (4).
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Proof. Suppose first that φ1 does not vanish identically in (18). Multiplying (19)
by g′ and (17) by φ1[g] and subtracting we obtain

(g′ · φ2[g] + γ · φ1[g])f1[g] + (g′ · φ3[g] + Qg′ · φ1[g])f ′2[g]

+ (g′ · φ4[g] + (Q′ − γQ)φ1[g])f2[g] = 0.
(20)

In this equation the coefficient of f ′2[g] does not vanish identically since Q is not a
rational function of g. Hence using (16) again we may apply Theorem 2.1 to (20) to
obtain polynomials ψj, not all zero, such that

(21) ψ1f1 + ψ2f
′
2 + ψ3f2 = 0.

Here ψ2 cannot be the zero polynomial since f is not a rational function. Using (21)
and the assumption that φ1 is not the zero polynomial in (18) we therefore obtain
rational functions Rj, Sj such that

(22) f ′1 = R1f1 + S1f2, f ′2 = R2f1 + S2f2,
f ′

f
=

f ′1
f1

− f ′2
f2

= R1 +
S1

f
−R2f − S2,

from which a Riccati equation (4) for f follows at once.
Suppose now that φ1 is the zero polynomial. Then φ3 does not vanish identically.

We multiply (19) by Qg′ and (17) by φ3[g] and add, to obtain

(Qg′ · φ1[g] + g′ · φ3[g])f ′1[g] + (Qg′ · φ2[g]− γ · φ3[g])f1[g]

+ (Qg′ · φ4[g] + (γQ−Q′)φ3[g])f2[g] = 0,

in which the coefficient of f ′1[g] cannot vanish identically since φ1 is the zero polyno-
mial but φ3 is not. This time we obtain

ψ1f
′
1 + ψ2f1 + ψ3f2 = 0

with polynomials ψj and ψ1 6≡ 0, and since φ3 6≡ 0 in (18) this leads to (22) again. ¤
Since f satisfies (4) we now have

g′ · f ′[g] = g′(A[g] + B[g]f [g] + C[g]f [g]2)

and so

(23) F ′ + Q′ = g′ · f ′[g] = g′(A[g] + B[g](F + Q) + C[g](F + Q)2).

Lemma 3.2. The function

(24) L = Q′ − g′(A[g] + B[g]Q + C[g]Q2)

vanishes identically, and we may write Q in the form Q = w[g] for some local solution
w of (4).

Proof. Assume that L does not vanish identically and using (24) write (23) in
the form

L = −F ′ + Fg′(B[g] + C[g](2Q + F )),

which leads at once to

(25)
1

F
=

1

L

(
−F ′

F
+ L1 + FL2

)
, L1 = g′(B[g] + 2C[g]Q), L2 = g′ · C[g].
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Then (2), (3) and (25) give, n.e. on E1,

T (r, f [g]) ≤ T (r, F ) + O(T (r, g)) = m(r, 1/F ) + N(r, 1/F ) + O(T (r, g))

≤ m(r, 1/L) + o(T (r, F )) + m(r, L1) + m(r, L2)

+ N(r, 1/L) + N(r, 1/F ) + N(r, L1) + N(r, L2) + O(T (r, g))

≤ o(T (r, F )) + O(T (r, g)) ≤ o(T (r, f [g])) + O(T (r, g)),

which contradicts Lemma 2.1. Thus L vanishes identically, which gives (5), and it
follows at once that we may write Q in the form Q = w[g] for some local solution w
of (4). ¤

This completes the main part of the proof of Theorem 1.1. It remains only to
deal with the case where f has finitely many poles, and that in which (2) is replaced
by (6).

3.2. Proof of Theorem 1.1: the case of finitely many poles. Still with the
hypotheses of Theorem 1.1, we suppose that f has finitely many poles, and continue
to assume that conclusion (a) does not hold, that is, that Q is not a rational function
of g. Since f is transcendental with finitely many poles the Riccati equation (4) must
take the form

(26) f ′ = A + Bf,

with C ≡ 0. Using (5) we now obtain

Q′ = g′(A[g] + B[g]Q), g′ · f ′[g] = g′(A[g] + B[g]f [g]),

and subtraction gives
F ′ = g′ · f ′[g]−Q′ = g′ ·B[g]F,

so that

(27) g′ ·B[g] =
F ′

F
.

The proof of the following lemma is immediate.

Lemma 3.3. If B has a pole at α ∈ C of multiplicity β and if z0 ∈ C is a zero
of g − α of multiplicity γ then g′ ·B[g] has a pole at z0 of multiplicity

βγ − (γ − 1) = (β − 1)γ + 1 ≥ 1. ¤
We now consider two cases.

Case I: Suppose that B has a pole α ∈ C which either is multiple or has non-
rational residue.

Then (27) and Lemma 3.3 show that α is an omitted value of g and so is unique.
By writing f(w) = f1(w − α) we may assume that α = 0. Hence g = eP , where P
is a non-constant polynomial since g has finite lower order. Moreover Q has finite
lower order by (2).

If β ∈ C \ {0} is a pole of B then g − β has infinitely many simple zeros, and so
(27) shows that β is a simple pole of B with integer residue. Integration of (27) then
gives

(28) f [g]−Q = F = ecP eP1[eP ]+P2[e−P ]

m∏

k=1

(eP − αk)
qk ,
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where c is the residue of B at 0, P1 and P2 are polynomials, the αk are the poles of B
in C \ {0} (if there are none then the product is just unity) and the qk are integers.
Here at least one of P1 and P2 is non-constant since otherwise we obtain

T (r, f [g]) = O(T (r, g)) on E,

using (2), which contradicts Lemma 2.1 since f is transcendental.
It follows at once from (28) that we may now write Q(z) = Q1(P (z)) with Q1

meromorphic of finite lower order in the plane, and (28) now leads to

(29) f(ew)−Q1(w) = ecweP1(ew)+P2(e−w)

m∏

k=1

(ew − αk)
qk .

Thus we obtain

Q1(w)−Q1(w + 2πi) = (ec2πi − 1)ecweP1(ew)+P2(e−w)

m∏

k=1

(ew − αk)
qk ,

from which it follows that c must be an integer, since otherwise the left-hand side
has finite lower order while the right-hand side has infinite lower order. But then
(29) shows that Q1(w) = Q2(e

w) and Q = Q2(g) for some function Q2 which is
meromorphic in the plane, and recalling (2) and Lemma 2.1 we see that Q2 must be
a rational function, contrary to hypothesis. This contradiction disposes of Case I.
We are left with:

Case II: Suppose that all poles of B are simple and have rational residues.

Let the residue of B at a pole α ∈ C be p/q, where p and q are integers with no
non-trivial common factor, and q > 0. Then (27) shows that all zeros of g − α have
multiplicity divisible by q, and so we may write

pg′

q(g − α)
=

h′

h
,

where h is a meromorphic function in the plane with T (r, h) = O(T (r, g)). Thus
integration of (27) gives

f [g]−Q = F = S1e
S2[g],

with S1 a meromorphic function satisfying T (r, S1) = O(T (r, g)) and S2 a polynomial.
By (2) and Theorem 2.1 there exist rational functions T1 and T2 with

f = T1e
S2 + T2.

On substitution into (26) this gives

0 = A + Bf − f ′ = (BT1 − T ′
1 − S ′2T1)e

S2 + (A + BT2 − T ′
2),

and so the rational function T2 solves the same equation (26) as f . But then the
general solution of the equation y′ = A + By is f + c(T2 − f) with c constant, and
so is meromorphic in the plane. By (5) and the fact that C ≡ 0 there exists a
meromorphic function Q1 in the plane with Q = Q1[g]. Here Q1 must be a rational
function by (2) and Lemma 2.1 again, which contradicts the assumption that Q is
not a rational function of g. This completes our discussion of the case where f has
finitely many poles. ¤

3.3. Proof of Theorem 1.1: the case where Q is a small function.
Suppose again that f , g, Q, F and E are as in the hypotheses of Theorem 1.1, but
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with (2) replaced by (6). If conclusion (a) holds then the rational function R must
be constant, and so must Q. Assume henceforth that conclusion (b) is satisfied, and
that Q is non-constant. Then (5) holds, and leads to

(30) A =
P1

S
, B =

P2

S
, C =

P3

S
, S[g]Q′ = g′(P1[g] + P2[g]Q + P3[g]Q2),

where S and the Pj are polynomials, and no root α of S is such that Pj(α) = 0 for
all j. Let

(31) M = max{degPj : j = 1, 2, 3}, s = degS.

Suppose that s ≤ M in (31). Since Q is non-constant we have

P1[g] + P2[g]Q + P3[g]Q2 =
M∑

k=0

bkg
k

where T (r, bk) = o(T (r, g)) on E and bM 6≡ 0. This implies that we may write the
last equation of (30) in the form

g′bMgM = P̃ [g],

where P̃ [g] is a polynomial of total degree at most M in g and g′, with coefficients
aj which satisfy T (r, aj) = o(T (r, g)) n.e. on E. Since bM is not identically zero,
Clunie’s lemma [12, p. 68] gives

(32) T (r, g′) = m(r, g′) = o(T (r, g)) n.e. on E.

But E has positive lower logarithmic density and g has finite lower order, and so (32)
is impossible by Theorem 2.2. Thus s > M and so A, B and C all vanish at infinity.
Since f is transcendental and satisfies (4), this contradicts Lemma 2.4. The proof of
Theorem 1.1 is complete. ¤

4. An example for Theorem 1.1

Write

(33) w = z1/2 − 1

4z
, w′ + w2 = z +

5

16z2
.

Consider the linear differential equation

(34) 16z2y′′ = (16z3 + 5)y,

which has a regular singular point at 0. By [17, Chapter VII] or direct computation,
there exists a non-trivial solution y of (34) of the form y(z) = zch(z), with c ∈ C
and h an entire function. We then write

f(z) =
y′(z)

y(z)
=

c

z
+

h′(z)

h(z)

and a simple calculation gives

(35) f ′(z) + f(z)2 =
y′′(z)

y(z)
=

c2 − c

z2
+

2ch′(z)

zh(z)
+

h′′(z)

h(z)
= z +

5

16z2
.
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Thus f solves the same Riccati equation as w. It follows from (35) and the Wiman–
Valiron theory [29] that the order of h is 3/2, so that h has infinitely many zeros and
f is transcendental of finite order. Now set

g(z) = ez, Q(z) = w(g(z)) = ez/2 − 1

4ez
, G(z) = f(g(z)).

Then (33) and (35) imply that Q and G are both meromorphic solutions of the
Riccati equation

Y ′(z) = ez

(
ez +

5

16e2z
− Y (z)2

)
= A(z) + C(z)Y 2,

where A and C are entire and C has no zeros. Since G has infinite order and Q has
finite order, the function F = G−Q = f ◦ g −Q does not vanish identically, and F
has no zeros by Lemma 2.3.

5. Proof of Theorem 1.2

Assume that f , g and F are as in the hypotheses and suppose first that f has
finitely many poles. Since f has finite order we may apply Theorem 1.1 with Q = f ,
to obtain a rational function R such that f−R has finitely many zeros and f = R[g].
Moreover there exist a rational function R1 and a polynomial P1 such that

(36) f(z) = R1(z)eP1(z) + R(z) = R(g(z)).

Since R1 has finitely many zeros it follows that g has finitely many fixpoints and so
satisfies (8) with S and P polynomials. Now (8) implies that g has no finite Picard
values and so since f has finitely many poles we deduce from (36) that R must be a
polynomial. Furthermore, substitution of (8) into (36) shows that R must be linear,
which completes the proof in this case.

Assume henceforth that f has infinitely many poles. Then by Theorem 1.1 there
exist rational functions A, B and C such that f satisfies the Riccati equation (4), as
well as the relation

(37) f ′ = g′(A[g] + B[g]f + C[g]f 2).

Clearly C does not vanish identically, since f has infinitely many poles.

Lemma 5.1. Let D be the set of all poles of A, B, C and 1/C in C. Then g
has no fixpoints in C \D, and g satisfies (8) with S and P polynomials.

Proof. Suppose that z0 ∈ C\D is a fixpoint of g. Choose an open disc U ⊆ C\D
of centre z0, and an open disc U1 ⊆ U , again centred at z0, such that U2 = g(U1) ⊆ U .
Choose z1 ∈ U1 with g′(z1) 6= 0, and choose an open disc U3 ⊆ U1, centred at z1,
on which g is univalent. Then the branch g−1 : U4 = g(U3) → U3 of the inverse
function gives a meromorphic solution u = f ◦ g−1 of (4) on U4 ⊆ U2 ⊆ U , by (37).
Now Lemma 2.2 shows that u extends to a meromorphic solution of (4) on U . But
f = u ◦ g on U3 ⊆ U1, and so we have f = u ◦ g on U1, which contains z0. This gives

f(z0) = u(g(z0)) = u(z0),

and so f ≡ u on U , by Lemma 2.3. Hence f = f ◦ g on U1 and so on C, which
contradicts (7). This proves the first assertion of the lemma, and the second follows
at once since g has finite lower order. ¤
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Lemma 5.2. Let (ζj) denote the distinct zeros of g′, ordered so that |ζ1| ≤ |ζ2| ≤
. . .. Then we have

(38) lim
n→∞

g(ζn) = ∞.

Moreover, the function g has no finite asymptotic values. Next, let M be a positive
real number. Then there exists an integer N > 0 such that if Ω is a component of
the set g−1(B(0,M)) then no value w ∈ B(0, M) is taken more than N times in Ω,
counting multiplicity. Finally, all but finitely many components of g−1(B(0,M)) are
mapped univalently onto B(0,M) by g.

Here B(A,R) denotes as usual the open disc of centre A and radius R.

Proof. The assertion (38) is an immediate consequence of (8) and elementary
computation. The fact that g has no finite asymptotic values follows from (8) and
the Denjoy–Carleman–Ahlfors theorem applied to g1(z) = g(z)/z, since g−1

1 has ρ(g1)
direct transcendental singularities over 1, and ρ(g1) direct transcendental singularities
over ∞.

Hence g has finitely many critical values in B(0,M) and there exists a piecewise-
linear Jordan arc γ such that GM = B(0,M) \ γ is simply connected and contains
no singular value of g−1, and so all components of g−1(GM) are mapped univalently
onto GM by g. Moreover, g has at most N1 < ∞ critical points over B(0,M) and
so there exists N ∈ N such that each component of g−1(B(0,M)) contains at most
N components of g−1(GM). It follows finally that all but finitely many components
of g−1(B(0,M)) contain no critical points of g and are mapped conformally onto
B(0,M) by g. ¤

Choose M in Lemma 5.2, so large that D ⊆ B(0,M/2). Choose a component Ω
of g−1(B(0,M)) which is mapped univalently onto B(0,M) by g. Then taking the
branch of g−1 mapping B(0,M) onto Ω gives a meromorphic solution u = f ◦ g−1 of
(4) on B(0,M), by (37). Applying Lemma 2.2 twice now shows that u extends to a
meromorphic solution of (4) on C. Since f = u ◦ g on Ω we have f = u ◦ g on C,
and because (7) implies that

T (r, u ◦ g) = O(T (r, g)) on E,

it follows from Lemma 2.1 that u = R is a rational function.
Suppose that R is not a Möbius transformation. Then R has a multiple point

α ∈ C: this follows from a standard argument involving continuation of R−1 on the
extended plane punctured at R(∞). Since g takes the value α infinitely often in C
by (8), the function f = R ◦ g must have infinitely many multiple points z ∈ C with
f(z) = R(α) = β, and β must be finite since f solves (4). Hence there are infinitely
many points z ∈ C with

0 = f ′(z) = A(z) + B(z)β + C(z)β2,

and so the rational function A(z) + B(z)β + C(z)β2 must vanish identically. Thus
y = β is a constant solution of (4), and f − β has finitely many zeros by Lemma 2.3.
Now set

H =
1

f − β
, G = H[g]−H =

f − f [g]

(f [g]− β)(f − β)
.
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Then H has finitely many poles. Moreover if z is a pole of f ◦ g but not of f , then
G(z) 6= 0. We deduce from (7) that

N(r, 1/G) + T (r,H) = O(T (r, g)) on E,

and so applying the first part of the proof to H shows that H is a linear function of
g. This is a contradiction, and so R must indeed be a Möbius transformation. The
proof of Theorem 1.2 is complete. ¤

We remark that if we strengthen the hypothesis on the zeros of F in Theorem 1.2
by assuming that the counting function of the distinct points at which f(g(z)) = f(z)
is o(T (r, g)) on E then since R is injective we obtain

N(r, 1/(g[g]− g)) = o(T (r, g)) on E,

and by (8) the polynomial S has no zeros and must be constant.

6. Proof of Theorem 1.3: preliminaries

If g is a non-linear polynomial then ∞ is a superattracting fixpoint of g and the
following lemma summarises some standard results concerning the behaviour of g(z)
near ∞.

Lemma 6.1 ([23, 27]). (Böttcher coordinates) Let g(z) = azm + . . . be a poly-
nomial of degree m ≥ 2. Then there exist a neighbourhood U of ∞ and a function
φ analytic and univalent on U such that

(39) φ(z) = z + O(1) and φ(g(z)) = aφ(z)m for all z ∈ U .

Moreover, for j = 0, . . . , m− 1 define uj and wj(z) by

(40) uj = e2πij/m, wj(z) = φ−1(ujφ(z)).

Then wj is analytic and univalent on a neighbourhood V ⊆ U of ∞ and

¤(41) wj(z) = ujz + O(1) and g(wj(z)) = g(z) for all z ∈ V .

We deduce the following simple lemma, in which g◦0 = id, g◦1 = g, g◦(k+1) = g◦g◦k
as before denote the iterates of g.

Lemma 6.2. Let R > 0 and let the function f be non-constant and meromorphic
on the region R < |z| < ∞. Let g be a polynomial of degree m ≥ 2. Then there
exists a greatest non-negative integer N such that we may write f = hN ◦ g◦N with
hN meromorphic on the region RN < |z| < ∞ for some RN > 0.

Proof. Obviously f = f ◦ g◦0 so assume that there exist arbitrarily large n such
that we have f = hn ◦g◦n with hn meromorphic on a punctured neighbourhood of∞.
Let φ and a be as in Lemma 6.1. Then it follows easily from (39) that the iterates
g◦k satisfy

φ ◦ g◦k = bkφ
mk

, bk ∈ C \ {0}.
For large z we may then write

vk = φ−1
(
e2πi/mk

φ(z)
)

, φ(g◦k(vk)) = bkφ(vk)
mk

= bkφ(z)mk

= φ(g◦k(z)),

and we deduce that, for arbitrarily large n,

f(vn) = hn(g◦n(vn)) = hn(g◦n(z)) = f(z).
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Since vn → z but vn 6= z this contradicts the identity theorem and proves the
lemma. ¤

Lemma 6.3. Let f be a function meromorphic in the plane and g a polynomial
of degree m ≥ 2. Define the uj and wj(z) by (40), and assume that there exists
R1 > 0 such that

(42) f(wj(z)) = f(z) for R1 < |z| < ∞ and for j = 0, . . . , m− 1.

Then there exists a meromorphic function h1 on the plane such that f = h1 ◦ g.

Proof. Let D be the complex plane punctured at the finitely many critical values
of g. Choose v∗ with |v∗| large and a branch of g−1 mapping w∗ = g(v∗) to v∗. Then
h1 = f ◦g−1 admits continuation along any path in D starting at w∗. Let σ be a path
in D starting and finishing at w∗. If g1 denotes the result obtained on continuing
g−1 once around σ then we must have g(g1(w)) = w = g(g−1(w)) near w∗ and so
g1(w) = wj(g

−1(w)) for some j. Since |g−1(w)| is large for w near w∗ we deduce from
(42) that f ◦ g1 = h1 near w∗. It follows that h1 = f ◦ g−1 defines a single-valued
meromorphic function on D. Since g takes each of its critical values only finitely
often, the singularities of h1 are at worst poles, and h1 extends to a meromorphic
function satisfying f = h1 ◦ g near v∗ and so throughout the plane. ¤

The next lemma is [4, Lemma 3.3].

Lemma 6.4. ([4]) Let H be a function transcendental and meromorphic in the
plane of order less than 1. Let t0 > 0. Then there exists an ε-set E1 such that

H(z + c)

H(z)
→ 1 as z →∞ in C \ E1,

uniformly in c for |c| ≤ t0.

Here an ε-set is defined, following Hayman [15], to be a countable union of discs

E1 =
∞⋃

j=1

B(bj, rj) such that lim
j→∞

|bj| = ∞ and
∞∑

j=1

rj

|bj| < ∞.

The set of r ≥ 1 such that the circle S(0, r) of centre 0 and radius r meets the ε-set
E1 then has finite logarithmic measure [15].

The next lemma requires the Nevanlinna characteristic for a function h which is
meromorphic and non-constant on a domain containing the set {z ∈ C : R ≤ |z| <
∞}, for some real R > 0 [6, pp. 88–98]. Such a function h has a Valiron representation
[29, p. 15] of form

h(z) = znψ(z)H(z)

where H is meromorphic in the plane, and the zeros and poles of H are the zeros
and poles of h in R ≤ |z| < ∞, with due count of multiplicity. Furthermore, n is an
integer and ψ is analytic near ∞ with ψ(∞) = 1. The Nevanlinna characteristic is
then given by

TR(r, h) = mR(r, h) + NR(r, h) =
1

2π

∫ 2π

0

log+ |h(reiθ)| dθ + NR(r, h),

where
NR(r, h) =

∫ r

R

n(t) dt

t
= N(r,H)
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and n(t) is the number of poles of h, counting multiplicity, in R ≤ |z| ≤ t.

Lemma 6.5. Let the function f be transcendental and meromorphic of order ρ
in the plane, let g be a polynomial of degree m ≥ 2, let F = f ◦ g − f = f [g] − f ,
and let wj(z) be defined as in (40). Then there exist positive constants c1, c2 with
the following properties. First, for each a ∈ C ∪ {∞} we have

(43) N(c1r
m, a, f)−O(1) ≤ N(r, a, f [g]) ≤ N(c2r

m, a, f) + O(1)

and

(44) (1− o(1))T (c1r
m, f) ≤ T (r, f [g]) ≤ (1 + o(1))T (c2r

m, f)

as r →∞. Moreover, if δ > 0 then we have

(45) T (r, F ) ≥ (m− 1− δ)T (r, f),

as r → ∞, and F is transcendental of order ρ(F ) = mρ. If, in addition, we have
ρ < 1, then

(46) TR(r, f ◦ wj) ≤ (1 + o(1))T ((1 + o(1))r, f)

as r →∞, for some appropriate choice of R.

Here we write N(r,∞, f) = N(r, f) and N(r, a, f) = N(r, 1/(f−a)) when a ∈ C.

Proof. As observed by the referee, inequalities (43) and (44) may be found in
[18, Section 14] but the proof is included here for completeness. There exist positive
constants c1, c2 such that

(47) B(0, c1r
m) ⊆ g(B(0, r)) ⊆ B(0, c2r

m),

for large r, in which B(0, T ) denotes the closed disc of centre 0 and radius T . To
prove (43) assume that a = ∞. Then (47) and the fact that g has degree m give

m · n(c1r
m, f) ≤ n(r, f [g]) ≤ m · n(c2r

m, f)

for r ≥ r0, say. This leads in turn to

N(r, f [g]) ≥
∫ r

r0

n(t, f [g]) dt

t
−O(1) ≥ m

∫ r

r0

n(c1t
m, f) dt

t
−O(1)

=

∫ c1rm

c1rm
0

n(s, f) ds

s
−O(1) ≥ N(c1r

m, f)−O(1).

This proves the first inequality of (43) and the second is established similarly. Now
(44) follows at once from (43) and the first fundamental theorem, since we may choose
a, b ∈ C such that T (r, f) ∼ N(r, a, f) and T (r, f [g]) ∼ N(r, b, f [g]) as r → ∞ [24,
pp. 280–281]. In particular, the order of f [g] is mρ.
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Next we choose a such that T (r, f) ∼ N(r, a, f) and a small positive τ . Then
(43) gives

(m− τ)N(r, a, f) ≤ (m− 1− τ)n(r, a, f) log r + N(r, a, f) + O(1)

=

∫ rm−τ

r

n(r, a, f) dt

t
+ N(r, a, f) + O(1)

≤
∫ rm−τ

r

n(t, a, f) dt

t
+ N(r, a, f) + O(1)

= N(rm−τ , a, f) + O(1) ≤ N(c1r
m, a, f) + O(1)

≤ N(r, a, f [g]) + O(1).

(48)

Hence we obtain

(m− τ − o(1))T (r, f) ≤ T (r, f [g]) + O(1),

from which (45) follows at once. In particular F is transcendental. If f has order 0
then evidently so has F by (44), and if ρ is finite but positive then F has the same
order mρ as f [g]. Finally if ρ = ∞ then F has infinite order by (45).

To prove (46) assume that ρ < 1. Then (41) and the same argument which
established (43) give

NR(r, f ◦ wj) ≤ (1 + o(1))N((1 + o(1))r, f)

as r →∞, and Lemma 6.4 implies that there exists an ε-set E1 such that

mR(r, f ◦ wj) ≤ m(r, f) + o(1)

for all r such that the circle S(0, r) does not meet E1, and hence for all r outside a
set E2 of finite logarithmic measure. This gives (46), initially for r 6∈ E2, and hence
without exceptional set by the Valiron representation of f ◦wj and the monotonicity
of the Nevanlinna characteristic of a function meromorphic in the plane. ¤

7. Proof of Theorem 1.3

To prove Theorem 1.3 let f , g and F be as in the hypotheses. If f has order
0 then F is transcendental of order 0 by Lemma 6.5, and so F has infinitely many
zeros.

Suppose now that ρ > 0. Then Lemma 6.5 gives ρ(F ) = mρ. Recall next from
Lemma 6.2 that there exists a greatest integer N ≥ 0 such that f has a representation
f = hN ◦ g◦N where g◦N is the Nth iterate of g and hN is meromorphic. Then
F = FN ◦ g◦N where FN = hN ◦ g − hN . Since g◦N has degree mN it follows from
Lemma 6.5 that ρ(hN) = m−Nρ and ρ(FN) = m1−Nρ. Moreover hN has finitely many
poles. Hence if it can be shown that the exponent of convergence of the zeros of FN

is m1−Nρ then it follows from Lemma 6.5 again that the zeros of F have exponent of
convergence mρ as required.

In order to prove Theorem 1.3 it therefore suffices to consider the case where this
maximal integer N is 0, and so in particular f has no representation f = h1[g] with h1

meromorphic in the plane. By Lemma 6.3, there exists an integer j ∈ {1, . . . , m− 1}
such that the function

(49) fj(z) = f(wj(z))− f(z)
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does not vanish identically near infinity, where wj(z) is defined by (40). Since wj is
the jth iterate of w1 by (40), we may assume that f1 does not vanish identically near
infinity.

Assume that the exponent of convergence of the zeros of F = f [g] − f is less
than ρ(F ) = mρ. Then n = mρ is a positive integer by the Hadamard factorisation
theorem, and there exist a polynomial P of degree n and a meromorphic function Π
of order less than n, with finitely many poles, such that

(50) F = f ◦ g − f = ΠeP .

The following lemma is a standard consequence of the Poisson-Jensen formula
and the fact that ρ(Π) < n.

Lemma 7.1. Let (uk) denote the sequence of zeros of Π with repetition according
to multiplicity. Then

(51)
∑

k

|uk|−n < ∞

and there exists R1 > 1 with

¤(52) log |Π(z)| = o(|z|n) for |z| > R1, z 6∈ H1 =
⋃

k

B(uk, |uk|−n).

On combination with (50) this leads at once to the following estimates for F .

Lemma 7.2. There exists d1 ∈ R with the following property. If ε is small and
positive then there exists d2 > 0 such that the following holds for all large z and for
all k ∈ Z. We have

(53) log |F (z)| < −d2|z|n for d1 +
2kπ

n
+ ε < arg z < d1 +

(2k + 1)π

n
− ε

and

(54) log |F (z)| > d2|z|n for z 6∈ H1,

d1 +
(2k + 1)π

n
+ ε < arg z < d1 +

(2k + 2)π

n
− ε. ¤

Lemma 7.3. The integers m and n are such that m divides n, and we have
ρ ≥ 1.

Proof. Let R2 be large and positive such that the circle S(0, R2) does not meet
the exceptional set H1 of (52); the fact that such an R2 exists follows from (51). Let
Γ be the arc given by

|z| = R2, d1 − 2π

m
+ 2ε ≤ arg z ≤ d1 − 2π

m
+

π

n
− 2ε,

where ε is small and positive. It follows from (41) that w = z1 = w1(z) maps the arc
Γ into the region

d1 + ε < arg w < d1 +
π

n
− ε,

on which F (w) is small by (53). This gives, for z ∈ Γ, using (41),

F (z) = f(g(z))−f(z) = f(g(z1))−f(z) = F (z1)+f(z1)−f(z) = O
((

exp(R
ρ+o(1)
2

))
.
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In view of (54) and the fact that S(0, R2) does not meet H1 it follows that there must
exist k ∈ Z such that[

d1 − 2π

m
+ 2ε, d1 − 2π

m
+

π

n
− 2ε

]
⊆

[
d1 +

2kπ

n
− ε, d1 +

(2k + 1)π

n
+ ε

]
,

so that ∣∣∣∣−
2π

m
− 2kπ

n

∣∣∣∣ ≤ 3ε.

Since we may assume that εmn is small, this forces km = −n, so that m divides n
and ρ = n/m is an integer. ¤

Next, let ε be small and positive, let R3 be large and set

c = d1 +
π

2n
, Ω = {z ∈ C : |z| > R3, | arg z − c| < ε}.

Then for z ∈ Ω we have ∣∣∣∣arg w1(z)− 2π

m
− c

∣∣∣∣ < 2ε

and so, since |w1(z)| ∼ |z| and 1/m is an integer multiple of 1/n, it follows from (53)
that

log |F (z)| < −d2|z|n and log |F (w1(z))| ≤ −1

2
d2|z|n.

Using the fact that (41) and (49) give

(55) F (z) = f(g(z))− f(z) = f(g(w1(z)))− f(z) = F (w1(z)) + f1(z),

we therefore obtain
log |f1(z)| ≤ −1

4
d2|z|n

for z ∈ Ω, and hence, for some R > 0 and d3 > 0,

TR(r, f1) ≥ mR(r, 1/f1)−O(log r) ≥ d3r
n

as r →∞. Since Lemma 6.5 gives

TR(r, f1) ≤ (2 + o(1))T ((1 + o(1))r, f) ≤ rρ+o(1)

this is a contradiction, and the proof of Theorem 1.3 is complete. ¤

8. Proof of Theorem 1.4

Let f , g and F be as in the hypotheses. By Lemma 6.2 again, there exists a
greatest integer N ≥ 0 such that f has a representation f = hN ◦ g◦N where g◦N is
the Nth iterate of g and hN is meromorphic in the plane, and F = FN ◦ g◦N where
FN = hN ◦g−hN . Then the order of hN is m−Nρ by Lemma 6.5, and if F has finitely
many zeros so has FN . Moreover, if the equation (9) has finitely many solutions in
the plane then so has the equation

hN(g(z)) = hN(z).

Thus in order to prove Theorem 1.4 it suffices again to consider the case where N = 0
and f has no representation f = h1[g] with h1 meromorphic in the plane. As in the
proof of Theorem 1.3 we may therefore assume that the function f1 defined by (40)
and (49) does not vanish identically near ∞. Since ρ(F ) < 1 in all cases, (40), (41)
and Lemma 6.4 give an ε-set E1 such that

(56) F (w1(z)) ∼ F (u1z) = F (e2πi/mz) for all large z with u1z 6∈ E1.



Meromorphic compositions and target functions 633

Suppose first that 0 < ρ < 1/m but F has finitely many zeros. Then by
Lemma 6.5 there exists a polynomial P such that

(57) G =
P

F

is a transcendental entire function of order σ = mρ ∈ (0, 1). Moreover, f [g] also has
order σ. Choose a small positive ε, in particular so small that

(58) 0 < σ − ε < σ = mρ < σ + ε <
1

1 + ε
< 1,

and fix a large positive constant K. Denote by cj positive constants which are
independent of ε and K.

By the standard existence theorem for Pólya peaks [12, p. 101], there exist arbi-
trarily large positive sn such that

T (r, f [g])

T (sn, f [g])
≤

(
r

sn

)σ−ε

(1 ≤ r ≤ sn),

T (r, f [g])

T (sn, f [g])
≤

(
r

sn

)σ+ε

(sn ≤ r < ∞).

(59)

Then we have, for sn ≤ r ≤ 8Ksn, by (44), (46), (49), (57) and (59),

TR(r, f1) ≤ (2 + o(1))T (2r, f) ≤ (2 + o(1))T (c3r
1/m, f [g])

≤ (2 + o(1))T (c3(8K)1/ms1/m
n , f [g]) = o(T (sn, f [g])) = o(T (r, f [g])),

(60)

where R is chosen so that f1 is meromorphic for |z| ≥ R. For the same r we obtain
similarly

(61) T (r, f) = o(T (r, f [g])), T (r,G) ∼ T (r, F ) ∼ T (r, f [g]).

Choose z0 with

(62) |z0| = sn, log |G(z0)| = log M(sn, G) ≥ T (sn, G),

and let C be that component of the set

{z ∈ C : log |G(z)| ≥ εT (sn, G)}
which contains z0. For r ≥ sn let θ(r) be the angular measure of the intersection
S(0, r) ∩ C. Suppose that

(63) θ(r) ≤ π(1 + ε) for all r ∈ [2sn, 2Ksn].

Then (58), (59), (61), (62), (63) and a standard application of the Carleman–Tsuji
estimate for harmonic measure [28, p. 116] give

T (sn, G) ≤ log |G(z0)|

≤ εT (sn, G) + c4 log M(4Ksn, G) exp

(
−π

∫ 2Ksn

2sn

dt

tθ(t)

)

≤ εT (sn, G) + c5T (8Ksn, G)K−1/(1+ε)

≤ T (sn, G)
(
ε + c5(8K)σ+εK−1/(1+ε)

) ≤ 1

2
T (sn, G)

since ε is small and K is large.
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This contradiction shows that the assumption (63) must fail, and so there exists
rn in [2sn, 2Ksn] such that the set

Sn = {z ∈ S(0, rn) : log |G(z)| ≥ εT (sn, G)}
has angular measure greater than π(1 + ε), and so has the set

Tn = {z ∈ S(0, rn) : u1z ∈ Sn}.
Evidently the intersection Sn ∩ Tn has angular measure at least 2πε and, for z ∈
Sn ∩ Tn such that u1z does not belong to the ε-set E1, we have (56) and hence
F (w1(z)) ∼ F (u1z). Thus there exists a set Un ⊆ Sn ∩ Tn, of angular measure at
least 2πε− o(1), such that for z ∈ Un we have, by (57),

max{log |F (z)|, log |F (w1(z))|} ≤ −εT (sn, G) + O(log rn).

Using (55) and the first fundamental theorem this now gives

TR(rn, f1) + O(log rn) ≥ mR(rn, 1/f1) ≥ ε2

2
T (sn, G),

which contradicts (60) and (61). This disposes of the case where 0 < ρ < 1/m.
Suppose next that ρ = 0 and m ≥ 4 but F has finitely many zeros. Choose small

positive real numbers δ and ε and a polynomial P such that (57) again defines a
transcendental entire function G, this time of order 0. Then (46), [13, Lemma 4] and
the cos πρ theorem [14, Ch. 6] give a set E2 ⊆ [1,∞), of positive upper logarithmic
density, such that

(64) TR(r, f1) ≤ (2 + o(1))T ((1 + o(1))r, f) ≤ (2 + o(1))T (r, f) for r ∈ E2,

and

(65) log |G(z)| ≥ (1− ε/4) log M(r,G) ≥ (1− ε/2)T (r, F ) for |z| = r ∈ E2.

We may assume that for all r ∈ E2 the circle S(0, r) does not meet the ε-set E1 of
(56), and so (41), (45), (56) and (65) give

max{log |F (z)|, log |F (w1(z))|} ≤ −(1− ε)T (r, F )

≤ −(1− ε)(m− 1− δ)T (r, f)

for |z| = r ∈ E2. Using (55) this yields, for r ∈ E2,

TR(r, f1) ≥ m(r, 1/f1)−O(log r) ≥ (1− ε)(m− 1− δ)T (r, f)−O(log r),

which contradicts (64) since m ≥ 4, and completes the proof in this case.
To complete the proof of Theorem 1.4 assume that ρ = 0, m ≥ 2 and that the

equation (9) has finitely many solutions z ∈ C. Then we may assume that

(66) N(r, f) ∼ T (r, f),

since if this is not the case the subsequent argument may be applied with f replaced
by A ◦ f , where A is a Möbius transformation. With these assumptions we again set
F = f [g] − f , and F has finitely many zeros. We then obtain a stronger estimate
for T (r, F ) than (45) as follows. With τ a small positive constant we have, by (48)
and (66),

T (r, F ) ≥ N(r, F ) ≥ N(r, f) + N(r, f [g])−O(log r)

≥ (1 + m− τ)N(r, f)−O(log r) ≥ (3− 2τ)T (r, f)
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as r → ∞. Using the same argument as in the case ρ = 0, m ≥ 4, we obtain this
time

TR(r, f1) ≥ m(r, 1/f1)−O(log r) ≥ (1− ε)(3− 2τ)T (r, f)−O(log r),

for r ∈ E2, which again contradicts (64). ¤
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