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Abstract. If f is a meromorphic function on the plane, let

K(f) = lim sup
r→∞

N(r, 0, f) + N(r,∞, f)
T (r, f)

,

where we use standard functionals from Nevanlinna theory. It has long been conjectured for all
meromorphic functions of finite nonintegral order ρ that K(f) ≥ K(Lρ), where the entire function
Lρ is the canonical product with positive zeros satisfying n(r, 0, Lρ) = [rρ]. This conjecture has
been established only for ρ < 1. We show the existence of ρ0 > 1 such that if 1 < ρ < ρ0 then
K(f) ≥ K(Lρ) for all meromorphic f of order ρ satisfying N(r, 0, f) + N(r,∞, f) ∼ crρ for some
c > 0.

1. Introduction

If f is a nonconstant meromorphic function on the complex plane, let

K(f) = lim sup
r→∞

N(r, 0, f) + N(r,∞, f)

T (r, f)
.

(We assume familiarity with the basic concepts and notation of value distribution
theory.) For 0 ≤ ρ < +∞, let

k(ρ) = inf K(f),

where f varies over all meromorphic functions of order ρ. The example exp(zρ) shows
that k(ρ) = 0 if ρ is a positive integer. In [14], Nevanlinna showed that k(ρ) > 0 for
positive nonintegral ρ and posed the problem of finding the exact value of k(ρ).

For nonintegral ρ > 0, let Lρ denote the Lindelöf function of order ρ, i.e., the
canonical product with positive zeros and n(r, 0, Lρ) = [rρ]. Nevanlinna [14] observed
with q = [ρ] that

K(Lρ) = kL(ρ) :=





|sin πρ|
q + |sin πρ| , q ≤ ρ ≤ q + 1

2
,

|sin πρ|
q + 1

, q + 1
2
≤ ρ ≤ q + 1.

In fact it is known [8] for any nonintegral ρ that if f is entire with positive zeros and
N(r, 0, f) ∼ rρσ(r), where σ(r) is slowly varying in the sense that σ(br)/σ(r) → 1 as
r →∞ for all b ∈ (0, +∞), then

(1.1) K(f) = kL(ρ).

Since Lρ has order ρ, it is evident that k(ρ) ≤ kL(ρ) for ρ > 0. It is generally
presumed that k(ρ) = kL(p).
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The quantity k(ρ) has attracted the attention of many authors. It is known [2]
that

(1.2) k(ρ) = kL(ρ), 0 ≤ ρ ≤ 1;

that [9]
K(f) ≥ kL(ρ), 0 ≤ ρ < ∞,

for entire f of order ρ with positive zeros; and that [11]

k(ρ) ≥ 9 |sin πρ|
10(ρ + 1)

, ρ > 1.

For other results concerning k(ρ), see [1], [3], [4], [5], [6], [7], [8], [10], [12], [15],
and [16].

Denote N(r, 0, f) + N(r,∞, f) by N(r) and n(r, 0, f) + n(r,∞, f) by n(r). For
ρ slightly greater than 1 we show that K(f) ≥ kL(ρ) for meromorphic f of order ρ
for which the growth of N(r) is suitably regular.

Theorem. There exists ρ0 > 1 such that if 1 < ρ < ρ0 and f is meromorphic of
order ρ with N(r) ∼ crρ for some c > 0, then K(f) ≥ kL(ρ).

An important property of meromorphic functions of order less than one is that if

f(z) =

∏
ν

(
1− z

zν

)

∏
ν

(
1− z

wν

)

and

f̂(z) =
∏
ν

(
1− z

|zν |
)
·
∏
ν

(
1− z

|wν |
)

,

then ([5], [9])

(1.3) T (r, f) ≤ T (r, f̂), r > 0,

and hence K(f) ≥ K(f̂). Thus to establish (1.2) it is sufficient to restrict attention
to entire functions with positive zeros.

The greater difficulty in determining k(ρ) for ρ > 1 is in part a result of the fact
that the analogue of (1.3) is not in general valid for ρ > 1; thus the arguments of the
zeros and poles of f play an essential role in the analysis for ρ > 1.

To construct an example where the analogue of (1.3) fails at least for some
r > 0, we consider ρ slightly greater than 1 and for large rν replace a single factor
E1(z/rν) of Lρ(z) by E1(z/rνe

2πi/3), obtaining a function L̃ρ(z). (Here and through-
out E1(z) = (1−z)ez is the Weierstrass factor of genus 1.) It is known ([8], [10], [14])
that, for 1 < ρ < 3/2 and large r,

{
θ : log

∣∣Lρ

(
reiθ

)∣∣ > 0
}
is essentially the inter-

val {θ : |θ| < (π/2)(1 + (ρ− 1)/ρ)}. It is elementary for all r > 0 that log
∣∣Lρ(re

iθ)
∣∣

is an even function of θ, and it is also elementary that log
∣∣Lρ(re

iθ)
∣∣ is decreasing

for π/2 < θ < π (a consequence, for example, of (2.20) below). From these obser-
vations and known properties of Lρ(re

iθ) (see [8, last three lines of page 489]), we
conclude that while there may exist a small set of values of θ near θ = 0 for which
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log
∣∣Lρ(re

iθ)
∣∣ < 0, for all large r there exists a small δ = δr > 0 such that

(1.4) T (r, f) =
1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣Lρ(re

iθ)
∣∣ dθ.

We may use (2.12) below with γ = 0 and δ = δrν/2 to compare the integrals
over

[
−π

2
− δ,

π

2
+ δ

]
of log

∣∣∣Lρ

(rν

2
eiθ

)∣∣∣ and log
∣∣∣L̃ρ

(rν

2
eiθ

)∣∣∣. Since δ > 0 is small it
follows that the terms in (2.12) of the sum on the right corresponding to small even
values of m are negligible and in fact that

(1.5)
1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣∣L̃ρ

(rν

2
eiθ

)∣∣∣ dθ − 1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣∣Lρ

(rν

2
eiθ

)∣∣∣ dθ >
1

4

(
1

52

) (
1

25

)
,

where the dominant contribution to the difference of the integrals arises from the
fifth term of the Fourier series in (2.12). (Note that there is no contribution to the
left side of (1.5) from the third term of the Fourier series (2.12) since the argument
of the newly-introduced zero of L̃ρ is 2π/3.) We conclude from (1.4) and (1.5) that

T
(rν

2
, L̃ρ

)
≥ 1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣∣L̃ρ

(rν

2
eiθ

)∣∣∣ dθ > T
(rν

2
, Lρ

)
,

as desired.
It is worth noting that T (rν/2, Lρ) is increased by changing the argument of one

of the zeros of Lρ by a substantial amount, namely 2π/3. We shall refer to zeros and
poles of a meromorphic function as outliers if their arguments differ by a substantial
amount (specified in (3.24) and (3.38)) from the arguments of the majority of zeros
and poles of comparable modulus. In the proof of the Theorem, we first modify f to
obtain a new meromorphic function F by replacing outlying zeros and poles (such
as rνe

2πi/3 in the case of L̃ρ) by zeros and poles of the same modulus that are not
outliers. The above example shows for the resulting modified function F that we do
not in general have T (r, f) ≤ T (r, F ) for all r > 0; however, we show (see (3.47))
that T (r, f) is dominated to within an acceptably small error by T (r, F ) in a suitable
average sense.

For the function F , which has no outlying zeros or poles, we show (see (3.90))
that the characteristic function is increased for all large r to within a very small error
by replacing all zeros and poles of F by zeros of the same modulus on a single ray
through the origin, completing the proof. This latter argument is based on certain
monotonicity properties of log

∣∣E1(re
iθ)

∣∣, −π ≤ θ ≤ π. (See Lemmas 4 through 9.)
We establish the Theorem for ρ0 = 1+10−9. A refinement of our argument could

well yield a larger ρ0; we make no attempt to determine the best ρ0 our method
can produce. It is clear, however, that our approach cannot succeed unless ρ − 1 >
0 is small. Our argument depends heavily on the fact that if f were a possible
counterexample to the Theorem, then the Fourier series of log

∣∣f(
reiθ

)∣∣ would be
dominated by the two terms c1(r, f)eiθ and c−1(r, f)e−iθ, and a continuous argument
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of c1(r, f) would vary quite slowly with r. (See Lemma 11.) These considerations
apply only when ρ− 1 > 0 is small.

Our proof can be extended to obtain the same conclusion under the more gen-
eral hypothesis that N(r) ∼ rρσ(r) for any slowly varying function σ(r). To avoid
excessive complications in the exposition, we provide complete details only under the
simpler assumption that N(r) ∼ crρ.

2. Preliminaries

We suppose 1 < ρ < ρ0 = 1 + 10−9 and assume, as we may, that c = 1/ρ in the
statement of the Theorem. Routine arguments [3], based only on the monotonicity
of n(r), then show that n(r) ∼ rρ. For ε̃ > 0, let R0 = R0(ε̃) be such that for r > R0,

(2.1)
∣∣∣∣ρ

N(r)

rρ
− 1

∣∣∣∣ < ε̃

and

(2.2)
∣∣∣∣
n(r)

rρ
− 1

∣∣∣∣ < ε̃.

In addition, we assume for later convenience that

(2.3) R0 >

(
2

ε̃

)( 1
ρ−1)

.

Suppose

(2.4) g(z) =

∏
ν

E1

(
z

zν

)

∏
ν

E1

(
z

wν

)

is a quotient of convergent Weierstrass products of genus 1. In the course of our proof
we apply results established below for g to two different functions of the above form,
namely the function f of the Theorem and a modified function F obtained from f
by altering the arguments (but not the moduli) of some of the zeros and poles of f .
Because the counting functions N(r) and n(r) are the same for F as for f , we may
presume the counting functions of g satisfy (2.1) and (2.2), with the same value of
R0 in the two cases g = f and g = F . For r > 0 with |zν | 6= r and |wν | 6= r for all ν,
we have

(2.5) log
∣∣g(

reiθ
)∣∣ =

∞∑
m=−∞

cm(r, g)eimθ,

where [11], since g has genus 1,

c0(r, g) = N(r, 0, g)−N(r,∞, g),

c1(r, g) =
1

2

∑

|zν |<r

(
r

zν

− zν

r

)
− 1

2

∑

|wν |<r

(
r

wν

− wν

r

)
,
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cm(r, g) = − 1

2m

∑

|zν |≤r

(
zν

r

)m

− 1

2m

∑

|zν |>r

(
r

zν

)m

(2.6)

+
1

2m

∑

|wν |≤r

(
wν

r

)m

+
1

2m

∑

|wν |>r

(
r

wν

)m

, m ≥ 2,

and
c−m(r, g) = cm(r, g), m ≥ 1.

We note for each m that cm(r, g) is a continuous function of r. In view of the fact that
the set of values of r for which the Fourier series (2.5) does not converge uniformly is
countable and hence negligible for our purposes, for ease of exposition we treat (2.5)
as valid for all r > 0. Analysis of the logarithm of the modulus of a meromorphic
function via its Fourier series originated with F. Nevanlinna [13].

Lemma 1. Suppose the meromorphic function g is given by (2.4). Suppose for
small ε̃ > 0 there is an associated R0 = R0(ε̃) such that (2.1), (2.2), and (2.3) are
satisfied where N(r) and n(r) are the counting functions of g. Let

R1 =
R0

(ε̃)
1

2+ρ

.

If r > R1, we have

log
∣∣g(

reiθ
)∣∣ =

∞∑
m=−∞

cm(r, g)eimθ = ga

(
reiθ

)
+ gb

(
reiθ

)
,

where

ga

(
reiθ

)
= N(r, 0, g)−N(r,∞, g) + c1(r, g)eiθ + c−1(r, g)e−iθ +

∑

|m|≥2

am(r)eimθ

with a−m(r) = am(r) and

(2.7) |am(r)| ≤ (1 + 3ε̃)
ρ2N(r)

m2 − ρ2
, m ≥ 2,

and
gb

(
reiθ

)
=

∑

|m|≥2

bm(r)eimθ

with b−m(r) = bm(r) and

|bm(r)| ≤ 6ε̃ρN(r)

m
, m ≥ 2.

In particular,

(2.8) ‖gb‖2 ≤ 12 ε̃N(r).

Proof. We make the following elementary observations:
(i) if t > r, then

(2.9) n(t) < (1 + ε̃) tρ <
1 + ε̃

1− ε̃
n(r)

(
t

r

)ρ

< (1 + 3ε̃) n(r)

(
t

r

)ρ

;
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(ii) if R0 < t < r, then

(2.10) n(t) > (1− ε̃)tρ >
1− ε̃

1 + ε̃
n(r)

(
t

r

)ρ

> (1− 3ε̃) n(r)

(
t

r

)ρ

,

and

(iii)

(2.11) n(r) < (1 + ε̃)rρ <
1 + ε̃

1− ε̃
ρN(r).

Upon applying integration by parts as well as (2.6), (2.9), (2.10), and (2.11), we
have for all m ≥ 2 and all r > R1 that

|cm(r, g)| ≤ 1

2m

∫ r

0

(
t

r

)m

dn(t) +
1

2m

∫ ∞

r

(r

t

)m

dn(t)

= −1

2

∫ R0

0

(
t

r

)m
n(t)

t
dt− 1

2

∫ r

R0

(
t

r

)m
n(t)

t
dt +

1

2

∫ ∞

r

(r

t

)m n(t)

t
dt

<
−(1− 3ε̃) n(r)

2

∫ r

R0

(
t

r

)m+ρ
dt

t
+

(1 + 3ε̃) n(r)

2

∫ ∞

r

(r

t

)m−ρ dt

t

≤ (1− 3ε̃) n(r)

2(m + ρ)

(
R0

r

)m+ρ

+
n(r)

2

(
1

m− ρ
− 1

m + ρ

)

+
3ε̃

2
n(r)

(
1

m + ρ
+

1

m− ρ

)

<
ε̃n(r)

2(m + ρ)
+

ρn(r)

m2 − ρ2
+

3mε̃n(r)

m2 − ρ2
<

ρn(r)

m2 − ρ2
+

5ε̃n(r)

m

<
1 + ε̃

1− ε̃
N(r)

(
ρ2

m2 − ρ2
+

5ε̃ρ

m

)
< (1 + 3ε̃)

ρ2N(r)

m2 − ρ2
+

6ε̃ρN(r)

m
.

Thus for |m| ≥ 2 we may write cm(r, g) = am(r) + bm(r) where am(r) and bm(r)
satisfy the required inequalities. We note that ga and gb are real. ¤

We observe that near a zero or pole of g, log
∣∣g(reiθ)

∣∣ is unbounded and, in view of
(2.7), evidently gb(re

iθ) makes a dominant contribution to log
∣∣g(reiθ)

∣∣; nevertheless,∣∣gb(re
iθ)

∣∣ is small in the sense of (2.8).

Lemma 2. For γ ∈ [−π, π], α ∈ [−π, π], 0 ≤ δ < π
2
, r > 0, and r̃ > 0, let

I(γ, α, δ, r, r̃) =
1

2π

γ+π
2
+δ∫

γ−π
2
−δ

log

∣∣∣∣E1

(
reiθ

r̃eiα

)∣∣∣∣ dθ.

Then for r < r̃

I(γ, α, δ, r, r̃) = − 1

π

∞∑
m=2

1

m2

(r

r̃

)m

cos m(γ − α)
(
sin

mπ

2
cos mδ + cos

mπ

2
sin mδ

)
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=
1

4π

(r

r̃

)2

cos 2(γ − α) sin 2δ +
1

9π

(r

r̃

)3

cos 3(γ − α) cos 3δ(2.12)

− 1

π

∞∑
m=4

1

m2

(r

r̃

)m

cos m(γ − α)
(
sin

mπ

2
cos mδ + cos

mπ

2
sin mδ

)
,

and for r > r̃

I(γ, α, δ, r, r̃) =

(
1

2
+

δ

π

)
log

r

r̃
+

1

π

(r

r̃

)
cos(γ − α) cos δ

− 1

π

∞∑
m=1

1

m2

(
r̃

r

)m

cos m(γ − α)
(
sin

mπ

2
cos mδ + cos

mπ

2
sin mδ

)
.(2.13)

Proof. We apply (2.6) to E1

( z

r̃eiα

)
. If r < r̃, then

log

∣∣∣∣E1

(
reiθ

r̃eiα

)∣∣∣∣ = −
∞∑

m=2

1

m

(r

r̃

)m

cos m(θ − α).

If r > r̃, then

log

∣∣∣∣E1

(
reiθ

r̃eiα

)∣∣∣∣ = log
r

r̃
+

r

r̃
cos(θ − α)−

∞∑
m=1

1

m

(
r̃

r

)m

cos m(θ − α).

Term-by-term integration now establishes the lemma. ¤
Lemma 3. Suppose g, ε̃ > 0, and R0 are as in Lemma 1. Suppose R2 ≥ R0.

For r > R2, set

Qr =
1

2

∑

R2<|zν |<r

∣∣∣∣
r

zν

− zν

r

∣∣∣∣ +
1

2

∑

R2<|wν |<r

∣∣∣∣
r

wν

− wν

r

∣∣∣∣

and

(2.14) Pr =
1

2

∫ r

0

(
r

t
− t

r

)
ρtρ−1 dt =

ρrρ

ρ2 − 1
.

If r > R2, we have

(i) |Qr| < (1 + ε̃)Pr

(
1−

(
R2

r

)ρ−1
)

and

(ii) c1(r, Lρ) >
Pr

1 + ε̃
,

where Lρ is the Lindelöf function of order ρ.
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Proof. We observe for r > R2 that

J :=
1

2

∫ r

R2

(
r

t
− t

r

)
ρtρ−1 dt

=
ρ

2

(
rρ

ρ− 1
− rρ

ρ + 1
− rρ

ρ− 1

(
R2

r

)ρ−1

+
rρ

ρ + 1

(
R2

r

)ρ+1
)

≤ ρ

2

(
rρ

ρ− 1
− rρ

ρ + 1
− rρ

ρ− 1

(
R2

r

)ρ−1

+
rρ

ρ + 1

(
R2

r

)ρ−1
)

= Pr

(
1−

(
R2

r

)ρ−1
)

.

(2.15)

We further observe from integration by parts that

(2.16) J =
1

2

(
R2

r
− r

R2

)
Rρ

2 +
1

2

∫ r

R2

(
r

t
+

t

r

)
tρ

t
dt.

From (2.2), (2.15), and (2.16) we have

|Qr| = 1

2

∫ r

R2

(
r

t
− t

r

)
dn(t)

=
1

2

(
R2

r
− r

R2

)
n(R2) +

1

2

∫ r

R2

(
r

t
+

t

r

)
n(t)

t
dt

≤ 1

2

(
R2

r
− r

R2

)
(n(R2)− (1 + ε̃) Rρ

2)

+
1

2

(
R2

r
− r

R2

)
(1 + ε̃)Rρ

2 +
(1 + ε̃)

2

∫ r

R2

(
r

t
+

t

r

)
tρ

t
dt

< (1 + ε̃)J < (1 + ε̃)Pr

(
1−

(
R2

r

)ρ−1
)

,

establishing (i) for all r > R2.
Using (2.6), integration by parts, and the fact that 0 ≤ tρ − [tρ] < 1 for all t, for

r > 1 we have

Pr − c1(r, Lρ) =
1

2

∫ r

0

(
r

t
− t

r

)
d(tρ − [tρ])

=
1

2

∫ 1

0

(
r

t
− t

r

)
ρtρ−1 dt +

1

2

∫ r

1

(
r

t
− t

r

)
d(tρ − [tρ])

≤ ρr

2(ρ− 1)
+

1

2

∫ r

1

(
r

t
+

t

r

)
dt

t

=
ρr

2(ρ− 1)
+

1

2

(
r − 1

r

)
<

3ε̃Pr

4
,

where the last inequality follows from (2.3) and (2.14). This establishes (ii). ¤
We next prove a sequence of lemmas leading to Lemma 9, a result critical to

our analysis of the characteristic of F , the function obtained from the original f by
replacing the outlying zeros and poles of f by zeros and poles that are not outliers.



On a problem of Nevanlinna 77

Using Lemma 9, we show that because F has no outlying zeros or poles, its char-
acteristic is effectively dominated for all large r by the characteristic of a canonical
product with zeros on a ray through the origin at the moduli of the zeros and poles
of F . (See (3.90).)

Suppose a = |a| eiα 6= 0. Let

ϕ(z) = E1

(z

a

)

and

ψ(z) = 1/E1

(
z

−a

)
.

Note for all r > 0 and all θ that

ψ(rei(θ+π)) = 1/ϕ(reiθ),

and hence

(2.17) log
∣∣ψ(rei(θ+π))

∣∣ = − log
∣∣ϕ(reiθ)

∣∣ .

Lemma 4. If π
4

< |θ − α| < 3π/4, then for all r > 0

log
∣∣ϕ(reiθ)

∣∣ + log
∣∣ϕ(rei(θ+π))

∣∣ > 0.

Proof. Since |cos(θ − α)| < 1√
2
, we have

2 log
∣∣ϕ(reiθ)

∣∣ + 2 log
∣∣ϕ(rei(θ+π))

∣∣ = log

∣∣∣∣1−
r

|a|e
i(θ−α)

∣∣∣∣
2

+ log

∣∣∣∣1 +
r

|a|e
i(θ−α)

∣∣∣∣
2

= log

((
1 +

r2

|a|2
)2

− 4r2

|a|2 cos2(θ − α)

)

≥ log

(
1 +

r4

|a|4
)

> 0. ¤

Lemma 5. For all r > 0,

1

2π

π
2∫

−π
2

log
∣∣ϕ(reiθ)

∣∣ dθ =
1

2π

π
2∫

−π
2

log
∣∣ψ(reiθ)

∣∣ dθ + log+ r

|a| .

Proof. Applying (2.17) and Jensen’s Theorem, we have

1

2π

π
2∫

−π
2

log
∣∣ϕ(reiθ)

∣∣ dθ = − 1

2π

π
2∫

−π
2

log
∣∣ψ(rei(θ+π))

∣∣ dθ

= − 1

2π

3π
2∫

π
2

log
∣∣ψ(reiθ)

∣∣ dθ =
1

2π

π
2∫

−π
2

log
∣∣ψ(reiθ)

∣∣ dθ + log+ r

|a| . ¤
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Lemma 6. Suppose |α| < π
6
and 0 ≤ δ < π

12
. Then for all r > 0

1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣ϕ(reiθ)

∣∣ dθ ≥ 1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣ψ(reiθ)

∣∣ dθ + log+ r

|a| .

Proof. Noting that the δ = 0 case is treated in Lemma 5, we suppose 0 < δ < π
12
.

If π
2

< θ < π
2

+ δ, then

π

4
<

π

2
− α < θ − α <

π

2
+ δ +

π

6
<

3π

4
.

From (2.17) and Lemma 4 we conclude for such θ that

(2.18) log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ = log
∣∣ϕ(reiθ)

∣∣ + log
∣∣ϕ(rei(θ+π))

∣∣ > 0.

If −π
2
− δ < θ < −π

2
, then

−3π

4
< −π

2
− δ − π

6
< θ − α < −π

2
+

π

6
< −π

4
.

From (2.17) and Lemma 4 we conclude that (2.18) holds for such θ as well. Lemma 5
combined with (2.18) now yields Lemma 6. ¤

Lemma 7. Suppose |γ − α| < π
6
and 0 ≤ δ < π

12
. Let A = [γ − π

2
− δ, γ + π

2
+ δ]

and B = [γ − π
2
− δ, γ + 3π

2
− δ]− A. Then for all r > 0

1

2π

∫

A

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ ≥ 1

2π

∫

B

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ.

Proof. Noting that the zero of ϕ(eiγz) has argument α − γ and that ψ(eiγz) =
1/ϕ(−eiγz), we apply Lemma 6 to conclude

1

2π

∫

A

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ =
1

2π

π
2
+δ∫

−π
2
−δ

log
∣∣ϕ(rei(θ+γ))

∣∣− log
∣∣ψ(rei(θ+γ))

∣∣ dθ

≥ log+ r

|a| .

From Jensen’s Theorem we have

1

2π

γ+ 3π
2
−δ∫

γ−π
2
−δ

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ = 2 log+ r

|a| .

Subtraction yields
1

2π

∫

B

log
∣∣ϕ(reiθ)

∣∣−log
∣∣ψ(reiθ)

∣∣ dθ ≤ log+ r

|a| ≤
1

2π

∫

A

log
∣∣ϕ(reiθ)

∣∣−log
∣∣ψ(reiθ)

∣∣ dθ,

establishing Lemma 7. ¤
For r > 0, let

ur(θ) = log
∣∣E1(re

iθ)
∣∣ =

1

2

(
log(1− 2r cos θ + r2) + 2r cos θ

)
.
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As we are concerned with the set where the logarithm of the modulus of a quotient
of convergent Weierstrass products of genus 1 is positive, we analyze the behavior of
ur(θ) in considerable detail.

Since

(2.19) u′r(θ) = r2 sin θ

(
2 cos θ − r

1− 2r cos θ + r2

)
,

we observe for all r > 0 that

u′r(θ) < 0,
π

2
< θ < π, and

u′r(θ) > 0, −π < θ < −π

2
.

(2.20)

From (2.19) it is clear that ur(θ) is a decreasing function of θ for 0 < θ < π if
r > 2. Since ur(θ) is even for all r > 0 we conclude that if r > 2, I is an interval of
length less than 2π, and α is any real number, then∫

I

ur(θ − α) dθ ≤
∫

I

ur(θ − γ) dθ

where γ is the midpoint of I. Equivalently, with I as above, s > 0, and 2|zν | < s, for
all real α we have

(2.21)
∫

I

log

∣∣∣∣E1

(
seiθ

|zν |eiα

)∣∣∣∣ dθ ≤
∫

I

log

∣∣∣∣E1

(
seiθ

|zν |eiγ

)∣∣∣∣ dθ

if γ is the midpoint of I.
Set Ur(θ) = ur(θ) − ur(θ + π). We note that Ur

(−π
2

)
= 0 since ur is even. We

have

U ′
r(θ) = u′r(θ)− u′r(θ + π) =

2r3 sin θ (4 cos2 θ − (1 + r2))

(1− 2r cos θ + r2)(1 + 2r cos θ + r2)
.

Thus U ′
r(θ) = 0 if θ = 0 or if cos2 θ = 1+r2

4
. Since U ′

r

(−π
2

)
> 0 and U ′

r(θ) is of
constant sign on

(−2π
3

, −π
3

)
, we conclude that Ur is increasing on

(−2π
3

, −π
3

)
and

thus

Ur(θ) < 0, −2π

3
< θ < −π

2
, and

Ur(θ) > 0, −π

2
< θ < −π

3
.

(2.22)

Lemma 8. Suppose 0 ≤ δ < π
6
. For r > 0, the only solution of

(2.23) ur(θ + π + 2δ) = ur(θ)

in
(−2π

3
− 2δ, −π

3

)
occurs at θ = −π

2
− δ. In fact we have

ur(θ + π + 2δ)− ur(θ) > 0, −2π

3
− 2δ < θ < −π

2
− δ,

and
ur(θ + π + 2δ)− ur(θ) < 0, −π

2
− δ < θ < −π

3
.

Proof. Noting that the case δ = 0 is a restatement of (2.22), we suppose 0 <
δ < π

6
. We first observe that θ = −π

2
− δ is a solution of (2.23) since ur is an even

function.
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We consider the interval −π
2
− δ < θ ≤ −π

2
. We have

π

2
<

π

2
+ δ < θ + π + 2δ ≤ π

2
+ 2δ < π,

and conclude from (2.20) that on this interval ur(θ) is increasing and ur(θ + π + 2δ)
is decreasing, implying

(2.24) ur(θ + π + 2δ)− ur(θ) < 0, −π

2
− δ < θ ≤ −π

2
.

Now suppose −π
2

< θ < −π
3
. From (2.22) we have

ur(θ)− ur(θ + π) = Ur(θ) > 0.

We also have
π

2
< θ + π < θ + π + 2δ <

2π

3
+ 2δ < π,

which in conjunction with (2.20) implies

ur(θ + π) > ur(θ + π + 2δ).

Combining the last two observations with (2.24), we conclude

(2.25) ur(θ + π + 2δ)− ur(θ) < 0, −π

2
− δ < θ < −π

3
.

We next consider θ in
(−2π

3
− 2δ, −π

2
− δ

)
. We have

−π

2
− δ < −θ − π − 2δ < −π

3
.

From (2.25) we conclude

ur(−θ) < ur(−θ − π − 2δ).

Since ur is even we have

ur(θ) < ur(θ + π + 2δ), −2π

3
− 2δ < θ < −π

2
− δ,

which combined with (2.25) yields Lemma 8. ¤
The following lemma plays a central role in establishing inequality (3.90). Sup-

pose I is an interval of length somewhat greater than π and zν = |zν |eiα where α
is close to the midpoint of I. Lemma 9 asserts for any r > 0 that the integral over
I of the logarithm of the modulus on |z| = r of the Weierstrass factor of genus 1
with zero at zν is maximized by choosing α to be the midpoint of I. Note that the
example in the Introduction shows that this conclusion does not hold in general if α
is permitted to stray as far as 2π/3 from the midpoint of I. Note also that (2.21)
asserts that if |zν | < r/2, then choosing α to be the midpoint of I is extremal for all
α, not just for those α close to the midpoint of I.

Lemma 9. Suppose 0 ≤ δ < π
6
, γ ∈ [−π, π], |α− γ| < π

6
+ δ, zν = |zν |eiα, and

r > 0. Let

A(α) =

γ+π
2
+δ∫

γ−π
2
−δ

ur(θ − α) dθ =

γ+π
2
+δ∫

γ−π
2
−δ

log

∣∣∣∣E1

(
r|zν |eiθ

zν

)∣∣∣∣ dθ.

Then A(α) ≤ A(γ).
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Proof. We have

A′(α) = ur

(
γ − π

2
− δ − α

)
− ur

(
γ +

π

2
+ δ − α

)
.

If 0 < α− γ < π
6

+ δ, then

−2π

3
− 2δ < γ − π

2
− δ − α < −π

2
− δ,

and we deduce from the first conclusion of Lemma 8 that A′(α) < 0. If −π
6
− δ <

α− γ < 0, then
−π

2
− δ < γ − π

2
− δ − α < −π

3
,

and the second conclusion of Lemma 8 implies A′(α) > 0. The first derivative test
now establishes Lemma 9. ¤

We conclude this section with the following elementary fact.

Lemma 10. Suppose V and W are integrable real-valued functions on an interval
I,

{θ ∈ I : V (θ) > 0} ⊂ A ⊂ {θ ∈ I : V (θ) ≥ 0} , B = I − A,

and ∫

A

W (θ) dθ ≥
∫

B

W (θ) dθ.

Then ‖V ‖1 ≤ ‖V + W‖1.

Proof. We have∫

I

V +(θ) dθ =

∫

A

V (θ) dθ ≤
∫

A

V (θ) + W (θ) dθ −
∫

B

W (θ) dθ

≤
∫

I

(V (θ) + W (θ))+ dθ −
∫

B

W (θ) dθ,

as well as∫

I

V −(θ) dθ = −
∫

B

V (θ) dθ = −
∫

B

V (θ) + W (θ) dθ +

∫

B

W (θ) dθ

≤
∫

I

(V (θ) + W (θ))− dθ +

∫

B

W (θ) dθ.

Adding these inequalities establishes Lemma 10. ¤

3. Proof of the Theorem

By the Hadamard Factorization Theorem we may suppose f has the form of g
in (2.4). We suppose there exists a small ε > 0 and large r0 such that

(3.1)
N(r)

T (r, f)
<

kL(ρ)

1 + ε
, r > r0,

and seek a contradiction. We suppose, as we may, that

(3.2)
N(r, 0, L)

T (r, L)
>

kL(ρ)

1 + ε
2

, r > r0,
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where L is either the Lindelöf function Lρ of order ρ, or, in view of (1.1),

L(z) =
∏
ν

E1

(
z

|zν | eiγ

)
·
∏
ν

E1

(
z

|wν | eiγ

)

for some real γ. (Here of course zν and wν are the zeros and poles of f .)
Without exception we consider only ε̃ > 0 satisfying

(i) 2ε̃ < kL(ρ) < |sin πρ| < π(ρ− 1) < 10−9π, and

(ii) (1 + 2ε̃)2

(
1 +

9ερ

10
+ 13ε̃(1 + ε̃)ρ

)
< 1 + ε.

(3.3)

To such ε̃ > 0 we associate a quantity R0(ε̃) with (2.1), (2.2), and (2.3) satisfied where
N(r) and n(r) are the counting functions of f , as well as a quantity R1(ε̃) > R0(ε̃)
as in Lemma 1. In the proof we frequently use without comment the fact that kL(ρ)
is small.

It is critical to our argument for the values of ρ under consideration that the
dominant terms of the Fourier series of log

∣∣f(reiθ)
∣∣ are c1(r, f)eiθ and c−1(r, f)e−iθ,

and that a continuous argument of c1(r, f) varies quite slowly. To this end we prove

Lemma 11. Suppose ε̃ > 0. Let β(r, f) be a continuous argument of c1(r, f). If
R3 > max(R1, r0) is such that

1

2

∑

|zν |≤R0

1

|zν | +
1

2

∑

|wν |≤R0

1

|wν | < ε̃Rρ−1
3 ,

then
|β(r, f)− β(Ra, f)| < π

150
if

R3 < Ra ≤ r < Ra

(
10−4

3kL(ρ)

)( 1
ρ−1)

.

Proof. For 1 ≤ p ≤ ∞, let mp(r, f) denote the Lp norm of log
∣∣f(reiθ)

∣∣. For
r > R3 we have by (3.1) that

(3.4)
N(r)

m1(r, f) + N(r)
=

N(r)

2T (r, f)
<

kL(ρ)

2(1 + ε)
,

or

m1(r, f) > N(r)

(
2(1 + ε)

kL(ρ)
− 1

)
.

We write

(3.5) log
∣∣f(reiθ)

∣∣ = c1(r, f)eiθ + c−1(r, f)e−iθ + q(reiθ),

and conclude from Lemma 1 applied with g = f that

(3.6) ‖q‖1 ≤ ‖q‖2 ≤ N(r)

{
1 + 2(1 + 3ε̃)2

∞∑
m=2

(
ρ2

m2 − ρ2

)2
} 1

2

+12ε̃N(r) ≤ 2N(r).

It follows that

‖2c1(r, f) cos(θ + β(r, f))‖1 ≥
∥∥log

∣∣f(reiθ)
∣∣∥∥

1
−

∥∥q(reiθ)
∥∥

1
> N(r)

(
2(1 + ε)

kL(ρ)
− 3

)
,



On a problem of Nevanlinna 83

implying

(3.7) |c1(r, f)| > πN(r)

4

(
2(1 + ε)

kL(ρ)
− 3

)
.

By (3.2) the analogue of (3.4) for Lρ is

N(r, 0, Lρ)

m1(r, Lρ) + N(r, 0, Lρ)
=

N(r, 0, Lρ)

2T (r, Lρ)
>

kL(ρ)

2
(
1 + ε

2

) ,

and the above argument leads to

c1(r, Lρ) <
πN(r, 0, Lρ)

4

(
2
(
1 + ε

2

)

kL(ρ)
+ 1

)
.

Using (2.1) we conclude for r > R3 that

|c1(r, f)|
c1(r, Lρ)

>
N(r)

N(r, 0, Lρ)




2(1 + ε)

kL(ρ)
− 3

2
(
1 + ε

2

)

kL(ρ)
+ 1


 ≥ (1− ε̃) (1− 2kL(ρ)) > 1− 3kL(ρ),

where in the last inequality we have used (3.3i).
Let

M =
1

3kL(ρ)
>

1

3π(ρ− 1)
> 108.

We note that

(3.8)
104

M
= (104) 3kL(ρ) < 3π(104)(ρ− 1) < 3π(10−5) < 10−4.

From above we have

(3.9)
|c1(r, f)|
c1(r, Lρ)

> 1− 3kL(ρ) = 1− 1

M
, r > R3,

and from (3.3i)

(3.10) ε̃ <
1

6M
.

For r and Ra under consideration we further note from (3.8) that

(3.11)
(

Ra

r

)ρ−1

>
104

M
.

We let

Ar =
1

2

∑

|zν |≤Ra

(
r

zν

− zν

r

)
− 1

2

∑

|wν |≤Ra

(
r

wν

− wν

r

)

and

Br =
1

2

∑

Ra<|zν |≤r

(
r

zν

− zν

r

)
− 1

2

∑

Ra<|wν |≤r

(
r

wν

− wν

r

)
.
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Since

Ar =
1

2

∑

|zν |≤R0

(
r

zν

− zν

r

)
− 1

2

∑

|wν |≤R0

(
r

wν

− wν

r

)

+
1

2

∑

R0<|zν |≤Ra

(
r

zν

− zν

r

)
− 1

2

∑

R0<|wν |≤Ra

(
r

wν

− wν

r

)
,

we have by the choice of R3 and conclusion (i) of Lemma 3 applied to f with R2 = R0

that

|Ar + Br| ≤ |Ar|+ |Br| < ε̃r Rρ−1
3 +

1

2

∑

R0<|zν |≤r

∣∣∣∣
r

zν

− zν

r

∣∣∣∣ +
1

2

∑

R0<|wν |≤r

∣∣∣∣
r

wν

− wν

r

∣∣∣∣

< ε̃r Rρ−1
3 + (1 + ε̃)Pr

(
1−

(
R0

r

)ρ−1
)

(3.12)

< ε̃rρ + (1 + ε̃)Pr < (1 + 2ε̃)Pr.

By (3.9), (3.10), and conclusion (ii) of Lemma 3 we have

|Ar + Br| = |c1(r, f)| >
(

1− 1

M

)
c1(r, Lρ)

>

(
1− 1

M

)
Pr

1 + ε̃
>

(
1− 3

2M

)
Pr.

(3.13)

An application of conclusion (i) of Lemma 3 with R2 = Ra yields

(3.14) |Br| < (1 + ε̃)Pr

(
1−

(
Ra

r

)ρ−1
)

.

From (3.10), (3.11), (3.13), and (3.14) we conclude

|Ar| ≥ |Ar + Br| − |Br|

> Pr

(
1− 3

2M

)
− (1 + ε̃)Pr

(
1−

(
Ra

r

)ρ−1
)

> Pr

(
1− 3

2M
− (1 + ε̃)

(
1− 104

M

))

> Pr

(
9998

M

)
.

(3.15)

Let
α(r) = arg (Ar + Br)− arg Ar = β(r, f)− arg Ar

for some continuous arg Ar. We have

|Br|2 = |Ar + Br − Ar|2 = (|Ar + Br| − |Ar|)2 + 2 |Ar| |Ar + Br| (1− cos α(r)) ,

or
(|Br|+ |Ar| − |Ar + Br|)(|Br|+ |Ar + Br| − |Ar|)
= 2 |Ar| |Ar + Br| (1− cos α(r)).

(3.16)
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From (3.10), (3.12), and (3.13) we have

(3.17) |Br|+ |Ar| − |Ar + Br| < (1 + 2ε̃)Pr −
(

1− 3

2M

)
Pr <

2Pr

M
.

By (3.14) we have

(3.18) |Br|+ |Ar + Br| − |Ar| ≤ 2 |Br| < 2(1 + ε̃)Pr.

Inserting (3.13), (3.15), (3.17), and (3.18) into (3.16) yields

4(1 + ε̃)

M
> 2

(
1− 3

2M

)(
9998

M

)
(1− cos α(r)) > 2

(
9997

M

)
(1− cos α(r)).

For an appropriate branch of α(r) we have

(α(r))2

2
− (α(r))4

4!
<

2(1 + ε̃)

9997
,

implying

(3.19) |α(r)| < 2

99
.

We rewrite Ar as

Ar =
r

Ra


1

2

∑

|zν |≤Ra

(
Ra

zν

− zν

Ra

)
− 1

2

∑

|wν |≤Ra

(
Ra

wν

− wν

Ra

)


+
r

Ra


1

2

∑

|zν |≤Ra

(
zν

Ra

− zνRa

r2

)
− 1

2

∑

|wν |≤Ra

(
wν

Ra

− wνRa

r2

)


=
r

Ra

(c1(Ra, f) + X) ,

where by (2.1), (2.2), (3.3i), and (3.7)

|X| ≤ n(Ra)

2
<

(1 + ε̃)Rρ
a

2
<

(1 + ε̃)ρN(Ra)

2(1− ε̃)
< 2(ρ− 1) |c1(Ra, f)| .

From the continuity of β(·, f) at Ra and (3.19), we first conclude for r slightly greater
than Ra that

|arg Ar − β(Ra, f)| < 2/98,

and in turn conclude from the continuity of arg Ar and the above estimate on |X|
that

|arg Ar − β(Ra, f)| ≤ sin−1(2(ρ− 1)) < 3(ρ− 1)

for all r and Ra under consideration. From (3.19) we conclude

|β(r, f)− β(Ra, f)| ≤ 2

99
+ 3(10−9) <

π

150
,

establishing Lemma 11. ¤
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For r > R3 we define the following sets:

Ir =
[
− β(r, f)− π

2
, −β(r, f) +

π

2

)
,

Lr =
[
− β(r, f) +

π

2
, −β(r, f) +

3π

2

)
,

Xr =
{

θ ∈
[
− β(r, f)− π

2
, −β(r, f) +

3π

2

)
: log

∣∣f(reiθ)
∣∣ ≥ 0

}
,

Yr =
{

θ ∈
[
− β(r, f)− π

2
, −β(r, f) +

3π

2

)
: log

∣∣f(reiθ)
∣∣ < 0

}
,

Jr =
[
− β(r, f)− π

2
+ (kL(ρ))2/3,−β(r, f) +

π

2
− (kL(ρ))2/3

]
∩ Yr,

Kr =
[
− β(r, f) +

π

2
+ (kL(ρ))2/3,−β(r, f) +

3π

2
− (kL(ρ))2/3

]
∩Xr,

and

Cr =
[
− β(r, f)− π

2
, −β(r, f)− π

2
+ (kL(ρ))2/3

)

∪
(
− β(r, f) +

π

2
− (kL(ρ))2/3, −β(r, f) +

π

2
+ (kL(ρ))2/3

)

∪
(
− β(r, f) +

3π

2
− (kL(ρ))2/3, −β(r, f) +

3π

2

)
.

Because ρ − 1 is small and consequently the Fourier series of log
∣∣f(reiθ)

∣∣ is
dominated (see Lemma 1 and (3.7)) by c1(r, f)eiθ + c−1(r, f)e−iθ = 2 |c1(r, f)| cos(θ+
β(r, f)), to a first approximation we have Xr = Ir and Yr = Lr. In order to make
precise statements, we study these sets in some detail and in particular obtain upper
bounds on the measure of the symmetric differences Xr4 Ir and Yr4Lr.

We note that
Xr − Ir ⊂ Kr ∪ Cr

and
Ir −Xr ⊂ Jr ∪ Cr,

and thus

(3.20) Xr4 Ir ⊂ Kr ∪ Jr ∪ Cr.

We also note that

(3.21) Yr4Lr = Xr4 Ir.

Suppose θ ∈ Jr. By (3.7)

2 |c1(r, f)| cos (θ + β(r, f)) >
3N(r)

kL(ρ)
(kL(ρ))2/3 =

3N(r)

(kL(ρ))1/3
.

Since θ ε Jr, from (3.5) we have

q(reiθ) = log
∣∣f(reiθ)

∣∣− 2 |c1(r, f)| cos(θ + β(r, f)) < − 3N(r)

(kL(ρ))1/3
.

Applying (3.6) we conclude that

m(Jr)

2π

(
3N(r)

(kL(ρ))1/3

)
≤ 1

2π

∫

Jr

∣∣q(reiθ)
∣∣ dθ ≤ ‖q‖2

(
m(Jr)

2π

)1/2

≤ 2N(r)

(
m(Jr)

2π

)1/2

,



On a problem of Nevanlinna 87

implying

m(Jr) <
8π

9
(kL(ρ))2/3 .

A similar argument yields

m(Kr) <
8π

9
(kL(ρ))2/3.

From (3.8), (3.20), and (3.21) we conclude

m(Xr4 Ir) = m(Yr4Lr) <

(
16π

9
+ 4

)
(kL(ρ))2/3

<

(
16π

9
+ 4

) (
π(10−9)

)2/3
< (2.06)10−5.

(3.22)

Clearly the integral of cos θ over an interval of length π is largest when the interval
is centered at 0. For later use we now express this fact in more quantitative terms.
Suppose |α1| < π

150
and π

36
− π

150
< |α2| < 4π

3
. Elementary calculations yield

1

2π

α1+π
2∫

α1−π
2

cos θ dθ =
cos α1

π
>

cos
(

π
150

)

π
>

.99978

π
,

and

1

2π

α2+π
2∫

α2−π
2

cos θ dθ =
cos α2

π
<

cos
(

π
36
− π

150

)

π
<

.99781

π
.

Thus

(3.23)
1

2π

α1+π
2∫

α1−π
2

cos θ dθ − 1

2π

α2+π
2∫

α2−π
2

cos θ dθ >
.00197

π
.

Suppose that zν is a zero of f such that for a choice of arg zν satisfying | arg zν+
β(|zν |, f)| ≤ π, we in fact have

(3.24) |arg zν + β(|zν | , f)| ≥ π

36
.

For such zν we set
z∗ν = |zν | e−iβ(|zν |,f).

We regard such zeros as outliers and replace them with z∗ν . After a similar replace-
ment of outlying poles (see (3.38)), we obtain a new meromorphic function F whose
characteristic function effectively dominates that of f in a suitable average sense.
(See (3.47).) We now begin a detailed analysis of this replacement process.

Let

G1(z) = log

∣∣∣∣E1

(
z

z∗ν

)∣∣∣∣
and

H1(z) = log

∣∣∣∣E1

(
z

zν

)∣∣∣∣ .
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Suppose r < s = |zν |. If K(z) denotes either G1(z) or H1(z), from (2.6) we have

K(reiθ) =
∑

|m|≥2

dmeimθ

where

|dm| = 1

2m

(r

s

)m

.

Thus

‖K‖2
2 ≤

2

4

(r

s

)4
(

π2

6
− 1

)
<

(r

s

)4

,

or
‖K‖2 ≤

(r

s

)2

.

We conclude

(3.25) max
(∥∥G1(re

iθ)
∥∥

2
, ‖H1(re

iθ)‖2

) ≤
(r

s

)2

.

Now suppose that r > s. We have from (2.6) that

G1(re
iθ) = log

r

s
+

r

s
cos (θ + β(s, f))− Re

∞∑
m=1

1

m

(
z∗ν
r

)m

eimθ.

Set
g1(re

iθ) =
r

s
cos (θ + β(s, f))

and

g2(re
iθ) = −Re

∞∑
m=1

1

m

(
z∗ν
r

)m

eimθ.

Similarly we write

H1(re
iθ) = log

r

s
+

r

s
cos (θ − arg zν)− Re

∞∑
m=1

1

m

(
zν

r

)m

eimθ

= log
r

s
+ h1(re

iθ) + h2(re
iθ).

Trivially we have

(3.26) ‖g1 − h1‖1 ≤ ‖g1 − h1‖∞ ≤ 2r

s

as well as

(3.27) max (‖g2‖2 , ‖h2‖2) ≤
π√
6
.

Thus

(3.28) ‖G1 −H1‖2 ≤ ‖g1 − h1‖2 + ‖g2‖2 + ‖h2‖2 ≤
2r

s
+ π.

For t > 1, define t′′ < t < t′ by

(3.29)
(

t

t′′

)ρ−1

=

(
t′

t

)ρ−1

=
10−4

3kL(ρ)
=

M

104
>

105

3π
> 104,
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where we have used (3.8). Throughout the rest of the proof, for any t > 1 the
quantities t′′ and t′ are specified by (3.29). We note that with this notation the
conclusion of Lemma 11 asserts that if R3 < Ra = s ≤ r < s′, then

(3.30) |β(r, f)− β(s, f)| < π

150
.

We now suppose RA > R3 and consider zν satisfying (3.24) with |zν | = s where
RA < s < s′ ≤ RB, with RB > R′

A yet to be specified. We set

I =

RB∫

RA

{
1

2π

∫

Xr

G1(re
iθ)−H1(re

iθ) dθ − 1

2π

∫

Yr

G1(re
iθ)−H1(re

iθ) dθ

}
dr

rρ+1

=

s∫

RA

+

s′∫

s

+

RB∫

s′

= II + III + IV.

Our first goal is to show that I > 0. To this end we show that |II| and |IV| are
relatively small and that III is positive and relatively large because for s < 2r the
dominant term g1(re

iθ)− h1(re
iθ) of G1(re

iθ)−H1(re
iθ) makes a significant positive

contribution to III in view of (3.22), (3.23), and (3.30).
Clearly

(3.31) |II| ≤
s∫

RA

∥∥G1(re
iθ)−H1(re

iθ)
∥∥

1

dr

rρ+1
≤ 2

(2− ρ)sρ

by (3.25). Likewise by (3.8) and (3.28)

|IV| ≤
RB∫

s′

(
2r

s
+ π

)
dr

rρ+1
≤ 104

Msρ

(
2

ρ− 1
+

π

ρ

)

<
3π

(105)sρ

(
2

ρ− 1
+

π

ρ

)
<

2(10−4)

(ρ− 1)sρ
.

(3.32)

We write

III =

s′∫

s

{
1

2π

∫

Xr

g1(re
iθ)− h1(re

iθ) dθ − 1

2π

∫

Yr

g1(re
iθ)− h1(re

iθ) dθ

}
dr

rρ+1

+

s′∫

s

{
1

2π

∫

Xr

g2(re
iθ)− h2(re

iθ) dθ − 1

2π

∫

Yr

g2(re
iθ)− h2(re

iθ) dθ

}
dr

rρ+1

= IIIA + IIIB.

By (3.27) we have

(3.33) |IIIB| ≤
s′∫

s

∥∥g2(re
iθ)− h2(re

iθ)
∥∥

1

dr

rρ+1
≤ π

ρsρ
.
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Let

IIIC =

s′∫

s

{
1

2π

∫

Ir

g1(re
iθ)− h1(re

iθ) dθ − 1

2π

∫

Lr

g1(re
iθ)− h1(re

iθ) dθ

}
dr

rρ+1
.

From (3.22), (3.26), and (3.29) we conclude

|IIIA − IIIC | ≤ 1

2π

s′∫

s

{ ∫

Xr4Ir

∣∣g1(re
iθ)− h1(re

iθ)
∣∣ dθ

+

∫

Yr4Lr

∣∣g1(re
iθ)− h1(re

iθ)
∣∣ dθ

}
dr

rρ+1

≤
(

4.12

π

) (
10−5

) s′∫

s

(r

s

) dr

rρ+1

=

(
4.12

π

) (
10−5

) (
1

ρ− 1

)(
1

sρ

)(
1− 104

M

)
.

(3.34)

We note that

∫

Ir

g1(re
iθ) dθ =

(r

s

) −β(r,f)+π
2∫

−β(r,f)−π
2

cos(θ + β(s, f)) dθ =
(r

s

) β(s,f)−β(r,f)−π
2∫

β(s,f)−β(r,f)−π
2

cos θ dθ

and

∫

Ir

h1(re
iθ) dθ =

(r

s

) −β(r,f)+π
2∫

−β(r,f)−π
2

cos(θ − arg zν) dθ =
(r

s

) − arg zν−β(r,f)+π
2∫

− arg zν−β(r,f)−π
2

cos θ dθ.

For s < r < s′ and a choice of arg zν satisfying |arg zν + β (|zν |, f)| ≤ π, we have
from (3.24) and (3.30)

4π

3
> π +

π

150
≥ |− arg zν − β(s, f)|+ |β(s, f)− β(r, f)|

≥ |− arg zν − β(r, f)| ≥ |− arg zν − β(s, f)| − |β(s, f)− β(r, f)|
>

π

36
− π

150
.

Combining this inequality with (3.23) and (3.30) we obtain

1

2π

∫

Ir

g1(re
iθ)− h1(re

iθ) dθ >
.00197

π

(r

s

)
.

Since

− 1

2π

∫

Lr

g1(re
iθ)− h1(re

iθ) dθ =
1

2π

∫

Ir

g1(re
iθ)− h1(re

iθ) dθ,
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we conclude using (3.29) that

(3.35) IIIC >
2(.00197)

π

s′∫

s

(r

s

) dr

rρ+1
=

2(.00197)

πsρ

(
1

ρ− 1

)(
1− 104

M

)
.

Combining (3.33), (3.34), and (3.35) we have
III = IIIC + IIIA − IIIC + IIIB
≥ IIIC − |IIIA − IIIC | − |IIIB|

>

(
1

ρ− 1

)(
1

sρ

)(
1− 104

M

)
(.00125− .00002)− π

ρsρ

>
.00122

(ρ− 1)sρ
.

(3.36)

The combination of (3.31), (3.32), and (3.36) yields

(3.37) I > III− |II| − |IV| > 0.

Now suppose wν is a pole of f such that for a choice of arg wν satisfying

|arg wν + β(|wν |, f) + π| ≤ π,

we in fact have

(3.38) |arg wν + β(|wν |, f) + π| ≥ π

36
.

For such wν , set
w∗

ν = |wν | e−i(β(|wν |,f)+π).

Such poles wν are considered outliers and are replaced by poles w∗
ν . If RA < |wν | <

|wν |′ ≤ RB, write

G2(z) = − log

∣∣∣∣E1

(
z

w∗
ν

)∣∣∣∣
and

H2(z) = − log

∣∣∣∣E1

(
z

wν

)∣∣∣∣ .

If

Ĩ =

RB∫

RA

{
1

2π

∫

Xr

G2(re
iθ)−H2(re

iθ) dθ − 1

2π

∫

Yr

G2(re
iθ)−H2(re

iθ) dθ

}
dr

rρ+1
,

minor modifications of the above argument show that

(3.39) Ĩ > 0.

(The modifications involve the minus signs in the definitions of G2 and H2, and the
fact that the intervals of integration in the analogue of (3.23) are each translated by
π. These effects cancel one another, and we apply the modified (3.23) to obtain the
analogue of (3.35) with the sense of the inequality preserved.)

For zν not satisfying (3.24) and wν not satisfying (3.38), we now define z∗ν = zν

and w∗
ν = wν . Let F̃ be the meromorphic function obtained from f by replacing the

Weierstrass factor E1(z/zν) by E1(z/z
∗
ν) for each zero zν of f satisfying RA < |zν | <

|zν |′ ≤ RB and replacing each Weierstrass factor E1(z/wν) of f by E1(z/w
∗
ν) for each
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pole wν of f such that RA < |wν | < |wν |′ ≤ RB. The combination of (3.37) and
(3.39) yields

RB∫

RA

∥∥log
∣∣f(reiθ)

∣∣∥∥
1

rρ+1
dr =

RB∫

RA

{
1

2π

∫

Xr

log
∣∣f(reiθ)

∣∣dθ − 1

2π

∫

Yr

log
∣∣f(reiθ)

∣∣dθ

}
dr

rρ+1

≤
RB∫

RA

{
1

2π

∫

Xr

log
∣∣F̃ (reiθ)

∣∣dθ − 1

2π

∫

Yr

log
∣∣F̃ (reiθ)

∣∣dθ

}
dr

rρ+1

≤
RB∫

RA

∥∥∥log |F̃ (reiθ)|
∥∥∥

1

rρ+1
dr.

Since f and F̃ have zeros and poles of the same modulus, we conclude from the first
fundamental theorem that

(3.40)

RB∫

RA

T (r, f)

rρ+1
dr ≤

RB∫

RA

T (r, F̃ )

rρ+1
dr.

Our next task is to show that if all outlying zeros zν and outlying poles wν are
replaced by z∗ν and w∗

ν as above (and not just those of modulus s where RA < s <
s′ ≤ RB) to obtain a new function F , then a version of (3.40) holds for F with a
small error term (see (3.47)). We begin by letting

fA(z) =

∏
|zν |≤RA

E1

(
z

zν

)

∏
|wν |≤RA

E1

(
z

wν

) ,

f̃A(z) =

∏
|zν |≤RA

E1

(
z

z∗ν

)

∏
|wν |≤RA

E1

(
z

w∗
ν

) ,

and

f̂A(z) =
∏

|zν |≤RA

E1

(
z

|zν |
)
·

∏

|wν |≤RA

E1

(
z

|wν |
)

.

It is elementary from (2.6) or from [11, page 380] that |cm(r, fA)| ≤ |cm(r, f̂A)|
for all m and all r > 0 and consequently, by Parseval’s identity, that m2(r, fA) ≤
m2(r, f̂A) as well. For r > eRA we have

N(r,∞, fA) = N(RA,∞, fA) + n(RA,∞, fA) log
r

RA

≤ N(eRA,∞, f)

(
1 + log

r

RA

)
<

r

RA

N(eRA,∞, fA).
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For such r and all m we in fact have

(3.41)
∣∣∣cm(r, f̂A)

∣∣∣ ≤ r

RA

∣∣∣cm(eRA, f̂A)
∣∣∣ .

For m = 0, (3.41) is established as above with ∞ replaced by 0 and fA by f̂A. For
|m| ≥ 2, (3.41) is a routine consequence of (2.6). To establish (3.41) for |m| = 1, for
|zν | ≤ RA set

κ(r) =
r

|zν | −
|zν |
r

and

η(r) =
r

RA

(
eRA

|zν | −
|zν |
eRA

)
.

Straightforward calculations yield κ(eRA) < η(eRA) and κ′(r) < η′(r) for r > eRA,
implying κ(r) < η(r) for r > eRA and establishing (3.41) for |m| = 1. Combining
the above observations, we have

RB∫

RA

T (r, fA)

rρ+1
dr ≤

RB∫

RA

N(r,∞, fA) + m2(r, fA)

rρ+1
dr

≤
RB∫

RA

N(r,∞, fA) + m2(r, f̂A)

rρ+1
dr

≤
eRA∫

RA

N(r,∞, fA) + m2(r, f̂A)

rρ+1
dr

+

∞∫

eRA

r

RA

(
N(eRA,∞, fA) + m2(eRA, f̂A)

) dr

rρ+1

<
ε

10kL(ρ)
log

RB

RA

for a sufficiently large choice of RB since the last integral above is convergent. Iden-
tical reasoning shows that this inequality holds with fA replaced by f̃A. We conclude
that

(3.42)

RB∫

RA

T (r, fA/f̃A)

rρ+1
dr ≤

RB∫

RA

T (r, fA) + T (r, f̃A)

rρ+1
dr <

ε

5kL(ρ)
log

RB

RA

if RB is sufficiently large.
Let

fB(z) =

∏
|zν |>R′′B

E1

(
z

zν

)

∏
|wν |>R′′B

E1

(
z

wν

) ,
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f̃B(z) =

∏
|zν |>R′′B

E1

(
z

z∗ν

)

∏
|wν |>R′′B

E1

(
z

w∗
ν

) ,

and

f̂B(z) =
∏

|zν |>R′′B

E1

(
z

|zν |
)
·

∏

|wν |>R′′B

E1

(
z

|wν |
)

.

It follows from [11, second paragraph of page 381] (or alternatively from (2.6), (2.7),
(2.8), and part (i) of Lemma 3 applied with R2 = R′′

B) that m2(r, f̂B) ≤ 3rρ/kL(ρ)
for R′′

B ≤ r ≤ RB. Thus we have from (2.6) and (3.29)
RB∫

R′′B

T (r, fB)

rρ+1
dr ≤

RB∫

R′′B

N(r,∞, fB) + m2(r, fB)

rρ+1
dr

≤ 2

RB∫

R′′B

m2(r, f̂B)

rρ+1
dr ≤ 6

kL(ρ)
log

RB

R′′
B

=
6(log M − log 104)

(ρ− 1)kL(ρ)
.

(3.43)

For r < R′′
B and m ≥ 2, we have from (2.2) and (2.6)

|cm(r, fB)| ≤
∣∣∣cm(r, f̂B)

∣∣∣ =
1

2m

∞∫

R′′B

(r

s

)m

dn(s) <
(1 + ε̃)rm

2(m− ρ)(R′′
B)m−ρ

.

Thus
R′′B∫

RA

T (r, fB)

rρ+1
dr ≤

R′′B∫

0

m∞(r, fB)

rρ+1
dr

< (1 + ε̃)
∞∑

m=2

(
1

m− ρ

)(
1

R′′
B

)m−ρ
R′′B∫

0

rm−ρ−1 dr

= (1 + ε̃)
∞∑

m=2

(
1

m− ρ

)2

≤ 2.

(3.44)

The estimates establishing (3.43) and (3.44) do not depend on the arguments of
the zeros and poles of fB, and thus hold for f̃B as well. We choose RB so large that

(3.45) 2 +
6 (log M − log 104)

(ρ− 1)kL(ρ)
<

ε

10kL(ρ)
log

RB

RA

,

and conclude from (3.43) and (3.44) that

(3.46)

RB∫

RA

T (r, fB/f̃B)

rρ+1
dr ≤

RB∫

RA

T (r, fB) + T (r, f̃B)

rρ+1
dr <

ε

5kL(ρ)
log

RB

RA

.
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We let F be the meromorphic function obtained from f by replacing every factor
E1(z/zν) of f by E1(z/z

∗
ν) and every factor E1(z/wν) of f by E1(z/w

∗
ν). We note that

F̃ = fAfBF/f̃Af̃B. We further note that the quantities R0, R1, R3, and r0 depend
only on ε̃ > 0 and the moduli of the zeros and poles of f , and hence can be taken
to have the same values for the function F as for f . Combining (3.40), (3.42), and
(3.46) we conclude

(3.47)

RB∫

RA

T (r, f)

rρ+1
dr ≤

RB∫

RA

T (r, F )

rρ+1
dr +

2ε

5kL(ρ)
log

RB

RA

for RA > R3 provided that RB/RA is large enough that (3.42) and (3.45) are satisfied.
Having removed the outlying zeros and poles of f from further consideration by

replacing f by F , we simplify the notation by henceforth denoting the zeros of F by
zν and the poles of F by wν . We next show for all large r that

{
θ : log

∣∣F (reiθ)
∣∣ > 0

}
is effectively an interval.

Lemma 12. Suppose ε̃ > 0 and R3 is associated with ε̃ and F as in Lemma 11.
Let b > 0 be the modulus of the zero or pole of F of smallest modulus. For

(3.48) r > R4 = max

(
R′

3,

(
Rρ

0

b ε̃

)( 1
ρ−1

)
)

there exist

θ1 ∈
(
−β(r, f)− π

2
−

( π

36
+

π

120

)
, −β(r, f)− π

2
+

( π

36
+

π

120

))

and
θ2 ∈

(
−β(r, f) +

π

2
−

( π

36
+

π

120

)
, −β(r, f) +

π

2
+

( π

36
+

π

120

))

such that
(i) log

∣∣F (reiθj)
∣∣ = 0, j = 1, 2, and

(ii) there are no other solutions of log
∣∣F (reiθ)

∣∣ = 0 in
(
−β(r, f)− 2π

3
, −β(r, f)− π

3

)
∪

(
−β(r, f) +

π

3
, −β(r, f) +

2π

3

)
.

Furthermore, if

Y (reiθ) =

{
log+

∣∣F (reiθ)
∣∣ , θ1 ≤ θ ≤ θ2,

− log−
∣∣F (reiθ)

∣∣ , θ2 ≤ θ < θ1 + 2π,

then ∥∥log
∣∣F (reiθ)

∣∣− Y (reiθ)
∥∥

1
≤ 12 ε̃N(r).

Proof. From Lemma 11, (3.24), and (3.38) we conclude that if r′′ < |zν | < r′ or
r′′ < |wν | < r′, then for appropriate choices of the arguments we have

(3.49) |arg zν + β(r, f)| < π

36
+

π

150

and

(3.50) |arg wν + π + β(r, f)| < π

36
+

π

150
.



96 Joseph Miles

We write F = GH where

G(z) =

∏
r
2
<|zν |≤2r

E1

(
z

zν

)

∏
r
2
<|wν |≤2r

E1

(
z

wν

) .

For m ≥ 2, using (2.2) and integration by parts we have with obvious notation

1

2m

∞∫

2r

(r

t

)m

dnH(t) ≤ − 1

2m

(
1

2

)m

nH(2r) +
(1 + ε̃)

2(m− ρ)
2ρ−mrρ.

For m ≥ 1 we have

(3.51)
1

2m

r/2∫

0

(
t

r

)m

dnH(t) =
1

2m

(
1

2

)m

nH

(r

2

)
− 1

2

r/2∫

0

(
t

r

)m
nH(t)

t
dt.

Since nH

(
r
2

)
= nH(2r), from (2.6) we conclude for m ≥ 2 that

(3.52) |cm(r,H)| ≤ 1

2m

r/2∫

0

(
t

r

)m

dnH(t) +
1

2m

∞∫

2r

(r

t

)m

dnH(t) ≤ 1 + ε̃

2(m− ρ)
2ρ−mrρ.

We have from (2.1) and (3.29)

1

2

r′′∫

0

(r

t

)
dnH(t) =

1

2

( r

r′′

)
nH(r′′) +

1

2

R0∫

0

(r

t

) nH(t)

t
dt +

1

2

r′′∫

R0

(r

t

) nH(t)

t
dt

<
(1 + ε̃)

2
r(r′′)ρ−1 +

n(R0)r

2b
+

(1 + ε̃)

2(ρ− 1)
r(r′′)ρ−1

<
(1 + ε̃)

2
rρ

((
r′′

r

)ρ−1

+
Rρ

0

brρ−1
+

(
1

ρ− 1

)(
r′′

r

)ρ−1
)

<
(1 + ε̃)

2
rρ

(
104

M

(
ρ

ρ− 1

)
+ ε̃

)
,

(3.53)

where we have also used (3.48).
We note from (2.1) and (3.29) that

1

2

r/2∫

r′′

(r

t

)
dnH(t) >

(−r

2r′′

)
nH(r′′) +

(1− ε̃)

2(ρ− 1)
rρ

((
1

2

)ρ−1

−
(

r′′

r

)ρ−1
)

> rρ

(
−(1 + ε̃)

2

(
104

M

)
+

(1− ε̃)

2(ρ− 1)

((
1

2

)ρ−1

− 104

M

))
.

(3.54)
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Combining (3.49), (3.50), (3.51), (3.53), and (3.54), we have

|c1(r,H)| ≥
∣∣∣∣∣∣
1

2

∑

r′′<|zν |≤ r
2

r

zν

− 1

2

∑

r′′<|wν |≤ r
2

r

wν

∣∣∣∣∣∣

−
∣∣∣∣∣∣
1

2

∑

|zν |≤r′′

r

zν

− 1

2

∑

|wν |≤r′′

r

wν

∣∣∣∣∣∣
−

∣∣∣∣∣∣
1

2

∑

|zν |≤ r
2

zν

r
− 1

2

∑

|wν |≤ r
2

wν

r

∣∣∣∣∣∣

≥ cos
(

π
36

+ π
150

)

(2.02)(ρ− 1)
rρ − (10−4)rρ

2(ρ− 1)
− (1 + ε̃)

4

(r

2

)ρ

>

(
.49

ρ− 1

)
rρ.

(3.55)

Trivially we have

(3.56) |c1(r,G)| ≤ 1

2

(
2− 1

2

)
n(r) <

3

4
(1 + ε̃)rρ,

and thus

(3.57) |c1(r, F )| ≥ |c1(r,H)| − |c1(r,G)| > .48

ρ− 1
rρ.

We write c1(r, F ) = cA
1 (r, F ) + cB

1 (r, F ), where

cA
1 (r, F ) =

1

2

∑

|zν |≤r′′

(
r

zν

− zν

r

)
− 1

2

∑

|wν |≤r′′

(
r

wν

− wν

r

)
.

From (3.29), (3.53), and (3.57) we conclude that
∣∣cA

1 (r, F )
∣∣ ≤ (1 + ε̃)

2
rρ

(
104

M

(
ρ

ρ− 1

)
+ ε̃

)

<

(
1

1.99

)(
3π

105

)(
rρ

ρ− 1

)
< (9.88)(10−5) |c1(r, F )| .

From Lemma 11, (3.24), and (3.38), we conclude there exists a continuous argu-
ment of cB

1 (r, F ) such that
∣∣arg cB

1 (r, F )− β(r, f)
∣∣ <

π

36
+

π

150
.

The above estimate on |cA
1 (r, F )| implies there exists a continuous argument β(r, F )

of c1(r, F ) such that∣∣arg cB
1 (r, F )− β(r, F )

∣∣ < sin−1
(
(9.98)(10−5)

)
< 10−4.

We conclude that

(3.58) |β(r, f)− β(r, F )| < π

36
+

π

150
+ 10−4 <

π

36
+

π

135
.

Let α̃(r) be an argument of c1(r,H). By (3.56) we have

(|c1(r,H)| − |c1(r, F )|)2 + 2 |c1(r,H)| |c1(r, F )| (1− cos(α̃(r)− β(r, F )))

= |c1(r,G)|2 <

(
3

4
(1 + ε̃)rρ

)2

,
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implying

1− cos(α̃(r)− β(r, F )) <
9(1 + ε̃)2r2ρ

32 |c1(r,H)| |c1(r, F )| .
From (3.55) and (3.57) we conclude

1− cos(α̃(r)− β(r, F )) <
9(ρ− 1)2

32(.48)2
<

3(ρ− 1)2

2
,

and hence

(3.59) |α̃(r)− β(r, F )| < 2(ρ− 1)

for an appropriate choice of α̃(r).
We define Q(reiθ) by

log
∣∣H(reiθ)

∣∣ = N(r, 0, H)−N(r,∞, H) + 2 |c1(r,H)| cos(θ + α̃(r)) + Q(reiθ).

From (3.59) we have

(3.60)
d

dθ
(2 |c1(r,H)| cos(θ + α̃(r)))

{
< − |c1(r,H)| ,

∣∣θ + β(r, F )− π
2

∣∣ < π
4
,

> |c1(r,H)| ,
∣∣θ + β(r, F ) + π

2

∣∣ < π
4
.

From (3.52) we have for all θ that
∣∣∣∣

d

dθ
Q(reiθ)

∣∣∣∣ < (1 + ε̃)
∞∑

m=2

m

m− ρ
2ρ−mrρ < 4rρ,

which combined with (3.55) and (3.60) yields

(3.61)
d

dθ
log

∣∣H(reiθ)
∣∣

{
< − |c1(r,H)| /2,

∣∣θ + β(r, F )− π
2

∣∣ < π
4
,

> |c1(r,H)| /2,
∣∣θ + β(r, F ) + π

2

∣∣ < π
4
.

Consider a factor E1

(
z

zν

)
of G(z), where of course

r

2
< |zν | ≤ 2r and

|arg zν + β(|zν | , f)| < π

36
.

If
∣∣∣θ + β(r, F )± π

2

∣∣∣ <
π

4
, then

π

4
< |θ + β(r, F )| < 3π

4
.

We have by Lemma 11 and (3.58)

|θ − arg zν | ≥ |θ + β(r, F )| − |β(r, f)− β(r, F )|
− |β(|zν | , f)− β(r, f)| − |β(|zν | , f) + arg zν |

≥ π

4
−

( π

36
+

π

135

)
− π

150
− π

36
>

π

6

and similarly
|θ − arg zν | < π.

Thus ∣∣reiθ − zν

∣∣ ≥ r

2

(
2 sin

π

12

)
>

r

4
.
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We conclude for the two intervals of θ in question that
∣∣∣∣

d

dθ
log

∣∣∣∣E1

(
reiθ

zν

)∣∣∣∣
∣∣∣∣ =

∣∣∣∣Im
(reiθ)2

zν(reiθ − zν)

∣∣∣∣ ≤ 8.

Applying a similar analysis to the poles of G, we conclude that∣∣∣∣
d

dθ
log

∣∣G(reiθ)
∣∣
∣∣∣∣ ≤ 8n(2r) < 8(1 + ε̃)2ρrρ

if
∣∣θ + β(r, F )± π

2

∣∣ < π
4
. From (3.55) and (3.61) we conclude

(3.62)
d

dθ
log

∣∣F (reiθ)
∣∣

{
< − |c1(r,H)| /4,

∣∣θ + β(r, F )− π
2

∣∣ < π
4
,

> |c1(r,H)| /4,
∣∣θ + β(r, F ) + π

2

∣∣ < π
4
.

We now apply Lemma 1 with g = F . Let

Sb(r) =
{

θ ∈
[
− β(r, f)− π

2
, −β(r, f) +

3π

2

)
:
∣∣Fb(re

iθ)
∣∣ > rρ

}
.

(Here the meaning of Fb is that specified in Lemma 1.) We have from (2.1) and (2.8)
that

m(Sb(r))

2π
rρ ≤ 1

2π

∫

Sb(r)

∣∣Fb(re
iθ)

∣∣ dθ ≤
(

m(Sb(r))

2π

)1/2

12 ε̃(1 + ε̃)rρ,

implying

(3.63) m(Sb(r)) < 300π(ε̃)2.

By Lemma 1 for all θ we have
∣∣Fa(re

iθ)− 2 |c1(r, F )| cos(θ + β(r, F ))
∣∣ < 3N(r),

and thus from (3.57) and (3.58) we conclude for every

θ ∈
(
−β(r, f)− π

2
−

( π

36
+

π

120

)
, −β(r, f)− π

2
−

( π

36
+

π

130

))
− Sb(r)

that log
∣∣F (reiθ)

∣∣ < 0 and for every

θ ∈
(
−β(r, f)− π

2
+

( π

36
+

π

130

)
, −β(r, f)− π

2
+

( π

36
+

π

120

))
− Sb(r)

that log
∣∣F (reiθ)

∣∣ > 0. Combined with (3.63), these inequalities establish the exis-
tence of the required θ1. The existence of θ2 is established similarly. The uniqueness
of solutions of log

∣∣F (reiθ)
∣∣ = 0 in the specified intervals follows from (3.58) and

(3.62).
We now turn our attention to the second conclusion of Lemma 12. Let D1

r =[
θ1, θ2

)
, D2

r =
[
θ2, θ1+2π

)
, and D3

r =
{
θ ∈ [θ1, θ1 + 2π) : log

∣∣F (reiθ)
∣∣ > 0

}
. Suppose

θ ∈ D1
r −D3

r . In view of the monotonicity of log
∣∣F (reiθ)

∣∣ implied by (3.62), we have

cos (θ + β(r, F )) ≥
√

2

2
.

From Lemma 1 applied with g = F and (3.57) we deduce

Fa(re
iθ) ≥ 2 |c1(r, F )| cos(θ + β(r, F ))− 3N(r) >

√
2 |c1(r, F )| − 3 N(r) > 0.
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Since θ /∈ D3
r , we evidently have

∣∣Fb(re
iθ)

∣∣ >
∣∣log

∣∣F (reiθ)
∣∣∣∣ ,

implying

(3.64)
1

2π

∫

D1
r−D3

r

∣∣log
∣∣F (reiθ)

∣∣∣∣ dθ ≤ 1

2π

∫

D1
r−D3

r

∣∣Fb(re
iθ)

∣∣ dθ.

Now suppose θ ∈ D2
r ∩D3

r . As above we have

cos(θ + β(r, F )) ≤ −
√

2

2
.

We conclude

Fa

(
reiθ

) ≤ 2 |c1(r, F )| cos(θ + β(r, F )) + 3N(r) < −
√

2 |c1(r, F )|+ 3 N(r) < 0.

Since θ ∈ D3
r , we have ∣∣Fb(re

iθ)
∣∣ >

∣∣log
∣∣F (reiθ)

∣∣∣∣ ,

and

(3.65)
1

2π

∫

D2
r∩D3

r

∣∣log
∣∣F (reiθ)

∣∣∣∣ dθ ≤ 1

2π

∫

D2
r∩D3

r

∣∣Fb(re
iθ)

∣∣ dθ.

Finally we have from Lemma 1, (3.64), and (3.65) that
∥∥log

∣∣F (reiθ)
∣∣− Y (reiθ)

∥∥
1

=
1

2π

∫

D1
r

∣∣log
∣∣F (reiθ)

∣∣− log+
∣∣F (reiθ)

∣∣∣∣ dθ

+
1

2π

∫

D2
r

∣∣log
∣∣F (reiθ)

∣∣ + log−
∣∣F (reiθ)

∣∣∣∣ dθ

=
1

2π

∫

D1
r−D3

r

∣∣log
∣∣F (reiθ)

∣∣∣∣ dθ +
1

2π

∫

D2
r∩D3

r

∣∣log
∣∣F (reiθ)

∣∣∣∣ dθ

≤ ∥∥Fb(re
iθ)

∥∥
1
≤ ∥∥Fb(re

iθ)
∥∥

2
< 12 ε̃N(r),

finishing the proof of Lemma 12. ¤
For simplicity of notation for r > R4 we let Dr = D1

r and D̃r = D2
r . Let γ(r)

denote the midpoint of Dr. Evidently from Lemma 12

(3.66) |β(r, f) + γ(r)| < π

36
+

π

120
.

We next establish a suitable analogue of (1.3), with F playing the role of f in
that inequality. We outline the argument before presenting the details. We initially

suppose m(Dr) ≥ π. In view of Lemma 12, the contribution of a factor E1

(
z

zν

)

or 1/E1

(
z

wν

)
to T (r, F ) is essentially the integral over Dr of the logarithm of the

modulus of that factor evaluated at z = reiθ. For the purpose of this overview, we
identify the contribution of such a Weierstrass factor to T (r, F ) with this integral
over Dr. For all zeros zν = |zν |eiαν of F with |αν−γ(r)| small, Lemma 9 implies that
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the choice of αν maximizing the contribution of E1

(
z

zν

)
to T (r, F ) is αν = γ(r).

Using Lemma 7 we show below that a pole wν = |wν |eiβν with |βν + π − γ(r)|
small makes a smaller contribution to T (r, F ) than would a zero zν = |wν |ei(βν+π),
whose contribution by the above remarks is in turn dominated by that of a zero
at |wν |eiγ(r). By Lemma 11 and (3.66), since F has no outlying zeros or poles, the
above discussion accounts for all zeros and poles of F with modulus between r′′ and
r′. Once the contribution to T (r, F ) of the Weierstrass factors associated with the
remaining zeros and poles of F is taken into account by relatively routine methods,
we obtain (3.90), an inequality asserting that T (r, F ) is effectively dominated by the
characteristic of a canonical product with zeros of argument γ(r) at the moduli of
the zeros and poles of F .

Let

(3.67) R5 = R′
4

(
106

ε̃

)( 1
ρ−1)

.

Suppose r > R5. (Recall in particular this implies r > r0, where r0 is specified in
(3.1) and (3.2).) Suppose temporarily that

(3.68) m(Dr) ≥ π.

We note by Lemma 12 that

(3.69) m(Dr) < π + 2
( π

36
+

π

120

)
.

If {
R′

4 < t < r : |β(t, f)− β(r, f)| ≥ π

12

}
= ∅,

let t1 = R′
4. Otherwise let

(3.70) t1 = sup
{

R′
4 < t < r : |β(t, f)− β(r, f)| ≥ π

12

}
.

Let

(3.71) t2 = inf
{

t > r : |β(t, f)− β(r, f)| ≥ π

12

}
,

where we interpret inf ∅ = +∞. From Lemma 11 and (3.29) it is evident that t1 <
r′′ < r′ < t2. Define intervals I1 = (0, t′′1 ], I2 = (t′′1 , t1], I3 = (t1, t2 ], I4 = (t2, t

′
2 ],

and I5 = (t′2, +∞), where I4 and I5 are empty if t2 = +∞. For 1 ≤ j ≤ 5, let Zj be
the set of zeros zν of F for which |zν | ∈ Ij, and let Wj be the set of poles of F for
which |wν | ∈ Ij.

For 1 ≤ j ≤ 5, define

Fj(z) =

∏
zν∈Zj

E1

(
z

zν

)

∏
wν∈Wj

E1

(
z

wν

)

and

Lj(z) =
∏

zν∈Zj

E1

(
z

|zν | eiγ(r)

)
·

∏
wν∈Wj

E1

(
z

|wν | eiγ(r)

)
.
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We also define

G3(z) =
∏

zν∈Z3

E1

(
z

zν

)
·

∏
wν∈W3

E1

(
− z

wν

)
.

If any of the sets Zj or Wj is empty, the corresponding product is interpreted to be 1.
Suppose wν ∈ W3. From (3.38), (3.66), (3.70), and (3.71) we have for an appro-

priate choice of the argument that

|arg wν + π − γ(r)| ≤ |arg wν + π + β(|wν | , f)|
+ |β(r, f)− β(|wν | , f)|+ |β(r, f) + γ(r)|

≤ π/36 + π/12 + π/36 + π/120 < π/6.

(3.72)

Set ϕ(z) = E1

(
− z

wν

)
and ψ(z) = 1/E1

(
z

wν

)
. In view of (3.66), (3.69), and

(3.72), we may apply Lemma 7 with a = −wν to conclude that

1

2π

∫

Dr

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ ≥ 1

2π

∫

D̃r

log
∣∣ϕ(reiθ)

∣∣− log
∣∣ψ(reiθ)

∣∣ dθ.

Summing over all wν ∈ W3, we conclude that
1

2π

∫

Dr

log
∣∣G3(re

iθ)
∣∣− log

∣∣F3(re
iθ)

∣∣ dθ

≥ 1

2π

∫

D̃r

log
∣∣G3(re

iθ)
∣∣− log

∣∣F3(re
iθ)

∣∣ dθ.
(3.73)

If zν is a zero of G3, i.e., if either zν ∈ Z3 or −zν ∈ W3, by the argument
establishing (3.72) we have

|arg zν − γ(r)| < π/6,

and from Lemma 9 and Jensen’s Theorem we conclude by summing over all zeros zν

of G3 that
1

2π

∫

Dr

log
∣∣L3(re

iθ)
∣∣− log

∣∣G3(re
iθ)

∣∣ dθ − 1

2π

∫

D̃r

log
∣∣L3(re

iθ)
∣∣− log

∣∣G3(re
iθ)

∣∣ dθ

=
1

π

∫

Dr

log
∣∣L3(re

iθ)
∣∣− log

∣∣G3(re
iθ)

∣∣ dθ ≥ 0.

Combined with (3.73), this implies

1

2π

∫

Dr

log
∣∣L3(re

iθ)
∣∣− log

∣∣F3(re
iθ)

∣∣ dθ

≥ 1

2π

∫

D̃r

log
∣∣L3(re

iθ)
∣∣− log

∣∣F3(re
iθ)

∣∣ dθ.
(3.74)

We now suppose t2 < +∞ and consider zν = rνe
iαν in Z4. By (3.66), (3.71),

Lemma 11, and the definition of F we have for an appropriate choice of arg zv that
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|arg zν − γ(r)| = |arg zν + β(|zν | , f)

−β(|zν | , f) + β(t2, f)− β(t2, f) + β(r, f)− β(r, f)− γ(r)|
≥ |β(t2, f)− β(r, f)| − (|arg zν + β(|zν | , f)|

+ |β(|zν | , f)− β(t2, f)|+ |β(r, f) + γ(r)|)
>

π

12
−

( π

36
+

π

150
+

π

36
+

π

120

)
>

π

80
.

(3.75)

Evidently
| arg zv − γ(r)| < π

12
+

π

36
+

π

150
+

π

36
+

π

120
<

π

6
.

Recall that zν εZ4 and thus rν is much larger than r. Upon setting δ = (m(Dr)−
π)/2 < π

36
+ π

120
in (2.12), we obtain

1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

rνeiγ(r)

)∣∣∣∣− log

∣∣∣∣E1

(
reiθ

rνeiαν

)∣∣∣∣ dθ

≥ 1

4π

(
r

rν

)2 (
1− cos

2π

80

)
sin 2δ +

1

9π

(
r

rν

)3 (
1− cos

3π

80

)
cos 3δ

− 2

π

∞∑
m=4

1

m2

(
r

rν

)m

>
1− cos 3π

80

10π

(
r

rν

)3

,

where in the last step we use r/rν < r/r′ < 10−4/(ρ−1).
Suppose wν = sνe

iην ∈ W4. As in (3.75) and the observation immediately there-
after, we have for an appropriate choice of the argument

(3.76)
π

80
< |arg wν + π − γ(r)| < π

6
,

and we conclude as before from (2.12) that

1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

sνeiγ(r)

)∣∣∣∣ + log

∣∣∣∣E1

(
reiθ

sνeiην

)∣∣∣∣ dθ ≥
(
1− cos 3π

80

)

10π

(
r

sν

)3

.

Summing over all zν ∈ Z4 and wν ∈ W4 we conclude
1

2π

∫

Dr

log
∣∣L4(re

iθ)
∣∣− log

∣∣F4(re
iθ)

∣∣ dθ

≥
(
1− cos 3π

80

)

10π

t′2∫

t2

(r

t

)3

dn(t) >

(
1− cos 3π

80

)

30π
rρ

(
t2
r

)ρ−3

>

(
.006

30π

)
rρ

(
t2
r

)ρ−3

.

(3.77)

Suppose zν = rνe
iαν ∈ Z5 and wν = sνe

iην ∈ W5. From (2.12) we have

1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

rνeiγ(r)

)∣∣∣∣− log

∣∣∣∣E1

(
reiθ

rνeiαν

)∣∣∣∣ dθ
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≥ 1

4π

(
r

rν

)2

(1− cos 2(γ(r)− αν)) sin 2δ(3.78)

+
1

9π

(
r

rν

)3

(1− cos 3 (γ(r)− αν)) cos 3δ

− 2

π

∞∑
m=4

1

m2

(
r

rν

)m

> − 1

4π

(
r

rν

)4

.

Likewise we have

(3.79)
1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

sνeiγ(r)

)∣∣∣∣ + log

∣∣∣∣E1

(
reiθ

sνeiην

)∣∣∣∣ dθ > − 1

4π

(
r

sν

)4

.

From (3.78) and (3.79) we deduce that

1

2π

∫

Dr

log
∣∣L5(re

iθ)
∣∣− log

∣∣F5(re
iθ)

∣∣ dθ ≥ − 1

4π

∞∫

t′2

(r

t

)4

dn(t)

> − (1 + ε̃)

π(4− ρ)
rρ

(
t′2
r

)ρ−4

.

(3.80)

From (3.77), (3.80), the fact that t2/t
′
2 < 10−4/(ρ−1), and Jensen’s Theorem we con-

clude
1

2π

∫

Dr

∣∣(L4L5)(re
iθ)

∣∣− log
∣∣(F4F5)(re

iθ)
∣∣ dθ > 0

>
1

2π

∫

D̃r

log
∣∣(L4L5)(re

iθ)
∣∣− log

∣∣(F4F5)(re
iθ)

∣∣ dθ.
(3.81)

We now suppose t1 > R′
4, i.e., there exists t ∈ (R′

4, r) with |β(t, f)− β(r, f)| ≥ π
12
.

As observed immediately after (3.71), we must have t1 < r′′ or, equivalently, t′1 < r.
For zν = rνe

iαν ∈ Z2, the argument establishing (3.75) holds in this case as well, and
(2.13) yields

1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

rνeiγ(r)

)∣∣∣∣− log

∣∣∣∣E1

(
reiθ

rνeiαν

)∣∣∣∣ dθ

≥ 1

π

(
r

rν

) (
1− cos

π

80

)
cos δ − 2

π

∞∑
m=1

1

m2

(rν

r

)m

> (.00024)
r

rν

,

where we have used rν/r ≤ t1/r < t1/t
′
1 < 10−4/(ρ−1). For wν = sνe

iην in W2, (3.76)
holds as before and from (2.13) we have

1

2π

∫

Dr

log

∣∣∣∣E1

(
reiθ

sνeiγ(r)

)∣∣∣∣ + log

∣∣∣∣E1

(
reiθ

sνeiην

)∣∣∣∣ dθ > (.00024)
r

sν

.

Thus
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1

2π

∫

Dr

log
∣∣L2(re

iθ)
∣∣− log

∣∣F2(re
iθ)

∣∣ dθ > (.00024)

t1∫

t′′1

(r

t

)
dn(t)

> (.00023)

(
rρ

ρ− 1

) (
t1
r

)ρ−1

.

(3.82)

The moduli of the zeros and poles of F1 (equivalently the zeros of L1) are much
smaller than r. Applying rough estimates from (2.6) to the Fourier coefficients
cm(r, F1) and cm(r, L1) and noting that t′′1 > R4 ≥ R0, we have as in (3.53)

1

2π

∫

Dr

∣∣log
∣∣L1(re

iθ)
∣∣− log

∣∣F1(re
iθ)

∣∣∣∣ dθ

≤
∥∥log

∣∣L1(re
iθ)

∣∣− log
∣∣F1(re

iθ)
∣∣∥∥
∞ ≤ (2.1)

t′′1∫

b

r

t
dn(t)

< (2.1)(1 + ε̃)rρ

((
t′′1
r

)ρ−1

+
Rρ

0

brρ−1
+

(
1

ρ− 1

)(
t′′1
r

)ρ−1
)

< (2.1)(1 + ε̃)rρ

(
t1
r

)ρ−1 (
104

M

)(
ρ

ρ− 1
+ ε̃

)

< (.00021)

(
rρ

ρ− 1

)(
t1
r

)ρ−1

.

(3.83)

The combination of (3.82) and (3.83) yields

1

2π

∫

Dr

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ

> 2(10−5)

(
1

ρ− 1

)(
r

t1

)
tρ1

> 2 (N(r, 0, F1F2) + N(r,∞, F1F2)) ≥ 2N (r,∞, F1F2) ,

where we have used r/t1 > r/r′′ > 104/(ρ−1).
From Jensen’s Theorem we have

1

2π

∫

Dr

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ

+
1

2π

∫

D̃r

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ = 2N(r,∞, F1F2).

Rearranging, we obtain in the case t1 > R′
4 that

1

2π

∫

Dr

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ
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− 1

2π

∫

D̃r

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ(3.84)

=
1

π

∫

Dr

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ − 2N(r,∞, F1F2)

≥ 2N(r,∞, F1F2) ≥ 0.

Now suppose t1 = R′
4, i.e., |β(t, f)− β(r, f)| < π

12
for R′

4 < t < r. If zν ∈ Z2 and
wν ∈ W2, then as in (3.72)

|arg wν + π − γ(r)| ≤ |arg wν + π + β(|wν | , f)|
+ |β(t1, f)− β(|wν | , f)|+ |β(r, f)− β(t1, f)|+ |β(r, f) + γ(r)|

<
π

36
+

π

150
+

π

12
+

π

36
+

π

120
<

π

6
,

and
|arg zν − γ(r)| < π

6
by similar reasoning. We may thus repeat the argument leading from (3.72) to (3.74)
to conclude

1

2π

∫

Dr

log
∣∣L2(re

iθ)
∣∣− log

∣∣F2(re
iθ)

∣∣ dθ

≥ 1

2π

∫

D̃r

log
∣∣L2(re

iθ)
∣∣− log

∣∣F2(re
iθ)

∣∣ dθ.
(3.85)

Estimate (3.83) holds just as before, and we have

∥∥log
∣∣L1(re

iθ)
∣∣− log

∣∣F1(re
iθ)

∣∣∥∥
∞ ≤ (2.1)

t′′1∫

b

r

t
dn(t)

< (2.1)(1 + ε̃)rρ

(
R′

4

r

)ρ−1 (
104

M

)(
ρ

ρ− 1
+ ε̃

)
< ε̃rρ,

(3.86)

where we have used (3.67).
From (3.85) and (3.86) we conclude in the case t1 = R′

4 that

1

2π

∫

Dr

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ

≥ 1

2π

∫

D̃r

log
∣∣(L1L2)(re

iθ)
∣∣− log

∣∣(F1F2)(re
iθ)

∣∣ dθ − ε̃rρ.
(3.87)

The combination of (3.74), (3.81), (3.84), and (3.87) yields in all cases that

1

2π

∫

Dr

log
∣∣L(reiθ)

∣∣− log
∣∣F (reiθ)

∣∣ dθ



On a problem of Nevanlinna 107

(3.88) ≥ 1

2π

∫

D̃r

log
∣∣L(reiθ)

∣∣− log
∣∣F (reiθ)

∣∣ dθ − ε̃rρ,

where L = L1L2L3L4L5. This is a preliminary form of the desired analogue of (1.3),
with L and F in (3.88) playing the roles of f̂ and f respectively in (1.3).

Let

h̃(reiθ) =

{
log

∣∣L(reiθ)
∣∣− log

∣∣F (reiθ)
∣∣ + 2 ε̃rρ, θ ∈ Dr,

log
∣∣L(reiθ)

∣∣− log
∣∣F (reiθ)

∣∣ , θ ∈ D̃r.

We note from (3.88) that

(3.89)
1

2π

∫

Dr

h̃(reiθ) dθ ≥ 1

2π

∫

D̃r

h̃(reiθ) dθ.

We now combine Lemma 10 and Lemma 12 with V = Y , W = h̃, A = Dr =
[θ1, θ2), and B = [θ2, θ1+2π). We are permitted to apply Lemma 10 in view of (3.89),
and we conclude

‖log |F |‖1 − 12ε̃(1 + ε̃)rρ ≤ ‖log |F |‖1 − ‖Y − log |F |‖1

≤ ‖Y ‖1 ≤
∥∥Y + h̃

∥∥
1

< 2ε̃rρ + ‖Y + log |L| − log |F |‖1

≤ ‖log |L|‖1 + ‖Y − log |F |‖1 + 2 ε̃rρ

≤ ‖log |L|‖1 + 14 ε̃(1 + ε̃)rρ.

Thus we have

2T (r, F )−N(r) = ‖log |F |‖1 ≤ ‖log |L|‖1 + 26 ε̃(1 + ε̃)rρ

= 2T (r, L)−N(r) + 26 ε̃(1 + ε̃)rρ,

or

(3.90) T (r, F ) ≤ T (r, L) + 13 ε̃(1 + ε̃)rρ.

If (3.68) fails, i.e., if m(D̃r) > π, we repeat the above argument starting with
(3.68), replacing Dr by D̃r, F (z) by 1/F (z), and L(z) by L(−z). Instead of (3.90),
we obtain the inequality

T (r, 1/F (z)) ≤ T (r, L(−z)) + 13 ε̃(1 + ε̃)rρ,

which is equivalent to (3.90) by the first fundamental theorem. Thus (3.90) holds in
all cases, and is the desired analogue of (1.3).

We apply (3.90) for all r in an interval [RA, RB] where RA > R5 and RB/RA is
large enough that (3.42) and (3.45) are satisfied. In view of (2.1), (3.1), (3.2), (3.3ii),
(3.47), and (3.90), we have

1 + ε

kL(ρ)
log

RB

RA

<

RB∫

RA

T (r, f)

N(r)

dr

r
< (1 + 2ε̃)ρ




RB∫

RA

T (r, F )

rρ+1
dr +

2 ε

5kL(ρ)
log

RB

RA



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< (1 + 2ε̃)




RB∫

RA

ρ
T (r, L)

rρ+1
dr +

(
2 ερ

5kL(ρ)
+ 13 ε̃(1 + ε̃)ρ

)
log

RB

RA




< (1 + 2ε̃)2

(
1 + ε

2

kL(ρ)
+

2ερ

5kL(ρ)
+ 13 ε̃(1 + ε̃)ρ

)
log

RB

RA

<
1 + ε

kL(ρ)
log

RB

RA

.

This is the desired contradiction.
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