COMPACT EMBDDEMENTS FOR SOBOLEV SPACES OF VARIABLE EXPONENTS AND EXISTENCE OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING THE $p(x)$-LAPLACIAN AND ITS CRITICAL EXPONENT

Yoshihiro Mizuta, Takao Ohno, Tetsu Shimomura and Naoki Shioji

Hiroshima University, Department of Mathematics, Graduate School of Science
Higashi-Hiroshima 739-8521, Japan; mizuta@mis.hiroshima-u.ac.jp

Hiroshima National College of Maritime Technology, General Arts
Higashino Oosakikamijima Toyotagun 725-0231, Japan; ohno@hiroshima-cmt.ac.jp

Hiroshima University, Department of Mathematics, Graduate School of Education
Higashi-Hiroshima 739-8524, Japan; tshimo@hiroshima-u.ac.jp

Yokohama National University, Department of Mathematics
Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; shioji@math.sci.ynu.ac.jp

Abstract. We give a sufficient condition for the compact embedding from $W^{k,p(x)}_0(\Omega)$ to $L^{q(x)}(\Omega)$ in case $\inf_{x \in \Omega} (Np(x)/(N-kp(x)) - q(x)) = 0$, where Ω is a bounded open set in \mathbb{R}^N. As an application, we find a nontrivial nonnegative weak solution of the nonlinear elliptic equation

$$-\text{div} \left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \right) = |u(x)|^{q(x)-2} u(x) \quad \text{in } \Omega, \quad u(x) = 0 \quad \text{on } \partial \Omega.$$

We also consider the existence of a weak solution to the problem above even if the embedding is not compact.

1. Introduction

In recent years, many authors have studied the generalized Lebesgue spaces; see [2, 5, 8–23, 26–29, 32]. First, let us recall some definitions. Following Orlicz [29] and Kováčik and Rákosník [22], for an open set Ω in \mathbb{R}^N with $N \geq 1$ and a measurable function $p(\cdot): \Omega \to [1, \infty)$, we define the $L^{p(\cdot)}(\Omega)$-norm of a measurable function f on Ω by

$$\|f\|_{L^{p(\cdot)}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{f(x)}{\lambda} \right|^{p(x)} dx \leq 1 \right\}$$

and denote by $L^{p(\cdot)}(\Omega)$ the family of all measurable functions whose $L^{p(\cdot)}(\Omega)$-norms are finite. Further we denote by $W^{k,p(\cdot)}(\Omega)$ with $k \in \mathbb{N}$ the family of all measurable functions u on Ω such that

$$\|u\|_{W^{k,p(\cdot)}(\Omega)} = \sum_{0 \leq |\alpha| \leq k} \|D^\alpha u\|_{L^{p(\cdot)}(\Omega)} < \infty$$

and by $W^{k,p(\cdot)}_0(\Omega)$ the closure of $C_0^\infty(\Omega)$ in $W^{k,p(\cdot)}(\Omega)$.

doi:10.5186/aasfm.2010.3507

2000 Mathematics Subject Classification: Primary 35J20, 46B50, 46E30.

Key words: Sobolev spaces of variable exponents, compact embeddings, nonlinear elliptic problems.

The fourth author was supported in part by Grant-in-Aid for Scientific Research (C) (No. 17540149) Japan Society for Promotion of Science.
Recently, Kurata and the fourth author [23] posed the following problem: if a variable exponent \(q(\cdot) \) satisfies \(2 < \text{ess inf}_{x \in \Omega} q(x) \leq \text{ess sup}_{x \in \Omega} q(x) \leq 2N/(N - 2) \) \((N \geq 3)\) and \(q(\cdot) \) is equal to \(2N/(N - 2) \) at a point, then does the problem

\[
(1.1) \quad -\Delta u(x) = |u(x)|^{q(x)-2}u(x) \quad \text{in } \Omega \quad \text{and} \quad u(x) = 0 \quad \text{on } \partial \Omega
\]

have a positive solution? When \(q(\cdot) \) is a constant, problem (1.1) has been studied by many researchers. If \(q(\cdot) \) is a constant smaller than \(2N/(N - 2) \), then the embedding from \(W^{1,2}_0(\Omega) \) to \(L^{q(\cdot)}(\Omega) \) is compact, and hence the existence of a positive solution to (1.1) is easily obtained by the standard mountain pass theorem. When \(q(\cdot) \) is \(2N/(N - 2) \), problem (1.1) is quite interesting. If \(\Omega \) is star-shaped, then Pohozaev [31] showed that there is no solution. If \(\Omega \) has a nontrivial topology in the sense of \(\mathbb{Z}_2 \)-homology, then Bahri and Coron [3] showed that the problem has a positive solution; see also [7]. Even if \(\Omega \) is contractible, then, under some condition on the shape of \(\Omega \), Passaseo [30] obtained a positive solution. In the case when \(q(\cdot) \) is a variable exponent and \(q(\cdot) \) coincides with \(2N/(N - 2) \) at a point in \(\Omega \), since the embedding of \(W^{1,2}_0(\Omega) \) to \(L^{q(\cdot)}(\Omega) \) may not be compact, the existence of positive solution to (1.1) is not trivial. Kurata and the fourth author showed that if there exist \(x_0 \in \Omega \), \(C_0 > 0 \), \(\eta > 0 \) and \(0 < l < 1 \) such that \(\text{ess sup}_{x \in \Omega(\Omega)\setminus B_\eta(x_0)} q(x) < 2N/(N - 2) \) and

\[
(1.2) \quad q(x) \leq \frac{2N}{N - 2} - \frac{C_0}{(\log(1/|x - x_0|))^{\eta}} \quad \text{for almost every } x \in \Omega \cap B_\eta(x_0),
\]

then the embedding from \(W^{1,2}_0(\Omega) \) to \(L^{q(\cdot)}(\Omega) \) is compact; see [23, Theorem 2]. As an application of the compact embedding, they obtained a positive solution to (1.1).

Our first aim in this paper is to establish the compact embedding from \(W^{k,p(\cdot)}_0(\Omega) \) to \(L^{q(\cdot)}(\Omega) \) when \(q(\cdot) \) is an exponent satisfying a condition weaker than (1.2). As an application, we show the existence of a nontrivial nonnegative weak solution to the nonlinear elliptic equation

\[
(1.3) \quad \left\{ \begin{array}{ll}
-\text{div} \left(|\nabla u(x)|^{p(x)-2}\nabla u(x) \right) = |u(x)|^{q(x)-2}u(x) \quad & \text{in } \Omega, \\
|u(x)| = 0 & \text{on } \partial \Omega.
\end{array} \right.
\]

Here \(u \) is called a weak solution of (1.3) if \(u \in W^{1,p(\cdot)}_0(\Omega) \) and

\[
\int_\Omega \left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\nabla v(x) - |u(x)|^{q(x)-2}u(x)v(x) \right) \, dx = 0
\]

for all \(v \in W^{1,p(\cdot)}_0(\Omega) \). Our final goal is to find nontrivial nonnegative weak solutions to (1.3), even if the embedding might not be compact.

2. Preliminaries

Throughout this paper, we use the symbol \(C \) to denote various positive constants independent of the variables in question. We only use \(N \) as the dimension of the Euclidean space \(\mathbb{R}^N \) and we set \(B_r(x) = \{ y \in \mathbb{R}^N : |y - x| < r \} \) for \(x \in \mathbb{R}^N \) and \(r > 0 \). For a measurable subset \(E \) of \(\mathbb{R}^N \), we denote by \(|E| \) the Lebesgue measure of \(E \). For a measurable function \(u \), we set \(u^+ = \max\{u, 0\} \). Unless otherwise stated, we assume that \(N \geq 2 \) and \(\Omega \) is a bounded open set in \(\mathbb{R}^N \).
Compact embeddings for Sobolev spaces of variable exponents and nonlinear elliptic problems

A measurable function \(p(\cdot) : \Omega \to [1, \infty) \) is called a variable exponent on \(\Omega \). We set

\[
\begin{align*}
p_* &= \text{ess inf}_{x \in \Omega} p(x) \\
p^* &= \text{ess sup}_{x \in \Omega} p(x).
\end{align*}
\]

It is worth noting the next result, which follows readily from the definition of \(L^{p(\cdot)} \)-norm (see [17, Theorem 1.3]).

Lemma 2.1. If \(p(\cdot) \) is a variable exponent on \(\Omega \) satisfying \(1 \leq p_* \leq p^* < \infty \), then

\[
\min \left\{ \| u \|_{L^{p_1}(\Omega)}, \| u \|_{L^{p_2}(\Omega)} \right\} \leq \int_\Omega |u(x)|^{p(x)} dx \leq \max \left\{ \| u \|_{L^{p_1}(\Omega)}, \| u \|_{L^{p_2}(\Omega)} \right\}.
\]

A variable exponent \(p(\cdot) \) is said to satisfy the log-Hölder condition on \(\Omega \) if

\[
|p(x) - p(y)| \leq \frac{C}{\log(1/|x - y|)} \quad \text{for each } x, y \in \Omega \text{ with } |x - y| < \frac{1}{2},
\]

where \(C \) is a positive constant. We set

\[
p^k_p(x) = \begin{cases}
Np(x)/(N - kp(x)) & \text{if } 1 \leq p(x) < N/k, \\
\infty & \text{if } p(x) \geq N/k,
\end{cases}
\]

for each \(k \in \mathbb{N} \).

We know the following Sobolev inequality for functions in \(W^{1,p(\cdot)}_0(\Omega) \); see [20, Proposition 4.2 (1)].

Lemma 2.2. Let \(p(\cdot) \) be a variable exponent on \(\Omega \) satisfying the log-Hölder condition and \(1 \leq p_* \leq p^* < \infty \). If \(p^* < N \), then there exists a constant \(C > 0 \) such that

\[
\| u \|_{L^{p^*_1}(\Omega)} \leq C \| \nabla u \|_{L^{p^*_p}(\Omega)}
\]

for \(u \in W^{1,p(\cdot)}_0(\Omega) \).

Corollary 2.3. Let \(p(\cdot) \) be as in the previous lemma. If \(p^* < N/k \) with \(k \in \mathbb{N} \), then there exists a constant \(C > 0 \) such that

\[
\| u \|_{L^{p^*_1}(\Omega)} \leq C \sum_{|\alpha|=k} \| D^\alpha u \|_{L^{p^*_p}(\Omega)}
\]

for \(u \in W^{k,p(\cdot)}_0(\Omega) \).

Proof. Assume \(p^* < N/k \) with \(k \in \mathbb{N} \). Let \(u \in W^{k,p(\cdot)}_0(\Omega) \) and let \(\ell \) be a positive integer with \(\ell \leq k \). Then we see from Lemma 2.2 that \(u \in W^{k-\ell,p^*_\ell(\cdot)}_0(\Omega) \), so that

\[
\| D^\alpha u \|_{L^{p^*_1}(\Omega)} \leq C \sum_{|\beta|=k-\ell+1} \| D^\beta u \|_{L^{p^*_\ell}(\Omega)}
\]

for \(|\alpha| = k - \ell \), where \(p^*_0(x) = p(x) \). This proves the required result.

\[
3. \text{Compact embeddings}
\]

In this section, we assume that \(p(\cdot) \) is a variable exponent on \(\Omega \) satisfying the log-Hölder condition and \(1 \leq p_* \leq p^* < \infty \). For a set \(K \) in \(\mathbb{R}^N \), we define

\[
K(r) = \{ x \in \mathbb{R}^N : \delta_K(x) \leq r \} \quad \text{for } r > 0,
\]

where \(\delta_K(x) \) denotes the distance of \(x \) to \(K \).
First, as in [23], we show the following noncompact embedding from $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$.

Proposition 3.1. Let $x_{0} \in \Omega$ and $k \in \mathbb{N}$, and let $q(\cdot): \Omega \to [1, \infty)$ be a variable exponent on Ω such that there exist $C > 0$ and $\eta > 0$ satisfying

$$q(x) \geq p_{k}^{+}(x) - \frac{C}{\log(1/|x - x_{0}|)} \quad \text{for almost every } x \in \Omega \cap B_{\eta}(x_{0}).$$

If $p(x_{0}) < N/k$, then the embedding from $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact.

Proof. Assume $p(x_{0}) < N/k$. We may assume that $x_{0} = 0$ and $B_{1}(0) \subset \Omega$. Let $\psi \in C_{0}^{\infty}(\mathbb{R})$ be a function such that $0 \leq \psi(r) \leq 1$, $\psi(r) = 0$ for $r > 1$ and $\psi(r) = 1$ for $0 \leq r < 1/2$. Set

$$\psi_{n}(x) = n^{N/p_{k}^{(0)}} \psi(n|x|)$$

for each $n \in \mathbb{N}$. Then, for $n \geq 2$ and $0 \leq |\alpha| \leq k$, we note

$$\int_{\Omega} |D^{\alpha} \psi_{n}(x)|^{p(x)} dx \leq C \int_{B_{1/n}(0)} n^{(N/p_{k}^{(0)} + |\alpha|)p(0)} dx \leq C n^{(N/p_{k}^{(0)} + |\alpha|)(p(0) + C/\log n)} \int_{B_{1/n}(0)} dx \leq C$$

by the log-Hölder condition on $p(\cdot)$. Using (3.1), we have

$$\int_{\Omega} |\psi_{n}(x)|^{q(x)} dx \geq \int_{B_{1/(2n)}(0)} n^{Nq(x)/p_{k}^{(0)}} |\psi(n|x|)|^{q(x)} dx \geq C n^{N} \int_{B_{1/(2n)}(0)} dx = C > 0,$$

which implies that the embedding from $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact since $\int_{\Omega} |\psi_{n}(x)|^{p(x)} dx \to 0$ as $n \to \infty$. \hfill \Box

As a direct consequence, we have the following result:

Corollary 3.2. Let K be a set in \mathbb{R}^{N}, and let $x_{0} \in K \cap \Omega$ and $k \in \mathbb{N}$. Let $q(\cdot): \Omega \to [1, \infty)$ be a variable exponent on Ω such that there exist $C > 0$ and $r > 0$ satisfying

$$q(x) \geq p_{k}^{+}(x) - \frac{C}{\log(1/\delta_{K}(x))} \quad \text{for almost every } x \in K(r) \cap \Omega.$$

If $p(x_{0}) < N/k$, then the embedding from $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact.

Proof. Assume $p(x_{0}) < N/k$. Since $\delta_{K}(x) \leq |x - x_{0}|$ for each $x \in \mathbb{R}^{N}$, we obtain the conclusion by the previous proposition. \hfill \Box

For the compact embeddings, we first give the following result.

Proposition 3.3. Assume that $p_{\ast} < N/k$ with some $k \in \mathbb{N}$. Let $q(\cdot)$ be a variable exponent on Ω such that $1 \leq q$, and

$$\text{ess inf}_{x \in \Omega} \left(p_{k}^{\ast}(x) - q(x) \right) > 0.$$

Then the following hold.

(i) The embedding of $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.

(ii) If Ω satisfies the cone condition, then the embedding of $W_{0}^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.
The case (i) in the proposition is essentially a special case of [22, Theorem 3.8]; the case (ii) is a slight generalization of [14, Theorem 1.3] to the case \(1 \leq p_\ast\).

Proof of Proposition 3.3. We only give a proof of (ii), since (i) can be proved similarly. Assume that \(\Omega\) satisfies the cone condition. By (3.2), take \(\varepsilon > 0\) such that \(p_k^\varepsilon(x) - q(x) > 2\varepsilon > 0\) for almost every \(x \in \Omega\). Since \(p(\cdot)\) is uniformly continuous on \(\Omega\), one can find open balls \(\{B_j\}_{j=1}^l\) and \(\{\tilde{B}_j\}_{j=1}^l\) with \(l \in \mathbb{N}\) such that \(\overline{\Omega} \subset \bigcup_{i=1}^l B_i\), \(\overline{B}_j \subset \tilde{B}_j\) and

\[
\inf_{x \in \tilde{B}_j \cap \Omega} p_k^\varepsilon(x) - \varepsilon \geq \sup_{x \in B_j \cap \Omega} p_k^\varepsilon(x) - 2\varepsilon \geq \sup_{x \in B_j \cap \Omega} q(x) \quad \text{for each } j = 1, \ldots, l.
\]

Setting \(P_j = \inf_{x \in \tilde{B}_j \cap \Omega} p(x)\) and \(Q_j = \sup_{x \in \tilde{B}_j \cap \Omega} q(x)\), we see that \(Q_j < Np_j/(N - kp_j)\) and the embedding from \(\{u \in W^{k,p(\cdot)}(\Omega) : u = 0\text{ on } \Omega \setminus \tilde{B}_j\} \rightarrow W^{k,p(\cdot)}(\Omega)\) and the embedding from \(\{u \in L^{q_j}(\Omega) : u = 0\text{ on } \Omega \setminus \tilde{B}_j\} \rightarrow L^{q(\cdot)}(\Omega)\) are continuous. By the Rellich-Kondrachov theorem (see [1, Theorem 6.3]), \(W^{k,p(\cdot)}(\Omega)\) is compactly embedded into \(L^{q(\cdot)}(\Omega)\). Now, take \(\varphi_j \in C^1(\Omega; [0, 1])\) such that \(|\nabla \varphi_j| \leq C\) on \(\Omega\), \(\varphi_j = 1\) on \(\Omega \cap B_j\) and \(\varphi_j = 0\) on \(\Omega \setminus \tilde{B}_j\). It is easy to see that the linear operator \(u \mapsto \varphi_j u\) is continuous on \(W^{k,p(\cdot)}(\Omega)\). Noting \(\varphi_j u = 0\) on \(\Omega \setminus \tilde{B}_j\) for each \(u \in W^{k,p(\cdot)}(\Omega)\), we can infer that \(\{\varphi_j u : u \in W^{k,p(\cdot)}(\Omega)\}\) is compactly embedded into \(L^{q(\cdot)}(\Omega)\). Passing to subsequences repeatedly, we obtain the conclusion.

For a compact set \(K\) in \(\mathbb{R}^N\) and \(s \in [0, N]\), following Mattila [25], we say that the \((N - s)\)-dimensional upper Minkowski content of \(K\) is finite if

\[
|K(r)| \leq Cr^s \quad \text{for small } r > 0.
\]

Now we are concerned with the compact embedding from \(W^{k,p(\cdot)}_0(\Omega)\) to \(L^{q(\cdot)}(\Omega)\) when \(q(\cdot)\) and \(p_k^\varepsilon(\cdot)\) coincides on some part of \(\Omega\).

Theorem 3.4. Let \(\varphi(\cdot) : [1/r_0, \infty) \rightarrow (0, \infty)\) be a continuous function such that

(i) \(\varphi(r)/\log r\) is nonincreasing on \([1/r_0, \infty)\),

(ii) \(\varphi(r) \rightarrow \infty\) as \(r \rightarrow \infty\)

for some \(r_0 \in (0, 1/e)\). Let \(K\) be a compact set in \(\mathbb{R}^N\) whose \((N - s)\)-dimensional upper Minkowski content is finite for some \(s\) with \(0 < s \leq N\). Let \(k \in \mathbb{N}\) and let \(q(\cdot)\) be a variable exponent on \(\Omega\) such that

(iii) \(1 \leq q_\ast \leq q^\ast < \infty\),

(iv) \(\text{ess inf}_{\Omega \setminus K(r_0)} \left(p_k^\varepsilon(x) - q(x)\right) > 0\),

(v) \(q(x) \leq p_k^\varepsilon(x) - \varphi(1/\delta_K(x)) \frac{\log(1/\delta_K(x))}{\log(1/\delta_K(x))}\) for almost every \(x \in K(r_0) \cap \Omega\).

Then the embedding from \(W^{k,p(\cdot)}_0(\Omega)\) to \(L^{q(\cdot)}(\Omega)\) is compact.

Proof. Without loss of generality, we may assume \(\varphi(r)/\log r \rightarrow 0\) as \(r \rightarrow \infty\); otherwise, we have \(\text{ess inf}_{x \in \Omega}(p_k^\varepsilon(x) - q(x)) > 0\), so that the conclusion follows from Proposition 3.3 (i).

First, consider the case \(p^\ast < N/k\). Let us prove that

\[
(3.3) \quad \lim_{\varepsilon \rightarrow +0} \sup_{K(\varepsilon) \cap \Omega} \left\{ \int_{K(\varepsilon) \cap \Omega} |v(x)|^q dx : v \in W^{k,p(\cdot)}_0(\Omega), \|v\|_{W^{k,p(\cdot)}(\Omega)} \leq 1 \right\} = 0.
\]
For this purpose, take β with $0 < \beta < s/(p^*)_k$. Let $\epsilon > 0$ such that $\epsilon^{-1} > 1/r_0$ and $
abla(1/\epsilon) \geq 1$. We set $\eta_n = \epsilon^{-\beta n}$ for each $n \in \mathbb{N}$. Then, by the assumptions on ∇, we have for each $n \in \mathbb{N}$ and $x \in (K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega$,
\[
\frac{\eta_n^{q(x)} - p_k^*(x)}{\eta_n} \leq \frac{\nabla(1/\beta_n(x))}{\log(1/\eta_n^{1+1})} \leq \eta_n = \exp(-\beta n/(n+1))\nabla(1/\epsilon^{n+1}) \equiv A_n.
\]
Since
\[
|K(r) \cap \Omega| \leq Cr^s
\]
for all $r > 0$ by the boundedness of Ω, we have
\[
\int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} \eta_n^{q(x)} dx \leq \eta_n^{(p^*)_k} \int_{K(\epsilon^n) \cap \Omega} dx \leq C\epsilon^{n(s-\beta(p^*)_k)}.
\]
Hence we have
\[
\int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} |v(x)|^{q(x)} dx \\
\leq \int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} |v(x)|^{q(x)} \left(\frac{|v(x)|}{\eta_n} \right)^{p_k^*(x)-q(x)} dx + \int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} \eta_n^{q(x)} dx \\
\leq A_n \int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} |v(x)|^{p_k^*(x)} dx + C\epsilon^{n(s-\beta(p^*)_k)},
\]
so that for each $n_0 \in \mathbb{N}$, we obtain
\[
\int_{K(\epsilon^n) \cap \Omega} |v(x)|^{q(x)} dx = \sum_{n=n_0}^{\infty} \int_{(K(\epsilon^n) \setminus K(\epsilon^{n+1})) \cap \Omega} |v(x)|^{q(x)} dx \\
\leq \left(\sup_{n \geq n_0} A_n \right) \int_{\Omega} |v(x)|^{p_k^*(x)} dx + C \sum_{n=n_0}^{\infty} \epsilon^{n(s-\beta(p^*)_k)}.
\]
Since $A_n \to 0$ as $n \to \infty$, $s - \beta(p^*)_k > 0$ and $\|v\|_{L^{p_k^*(\cdot)}(\Omega)} \leq C\|v\|_{W^{k,p(\cdot)}(\Omega)}$ for all $v \in W^{k,p(\cdot)}_0(\Omega)$ by Corollary 2.3, (3.3) is obtained by letting $n_0 \to \infty$.

Let $\{v_j\}$ be a bounded sequence in $W^{k,p(\cdot)}_0(\Omega)$. We may assume that it converges weakly to some $v \in W^{k,p(\cdot)}_0(\Omega)$. By Proposition 3.3 (ii), the embedding from $W^{k,p(\cdot)}(B)$ to $L^{q(\cdot)}(B)$ is compact for each ball $B \subset \Omega$ such that $\text{ess inf}_{x \in B} (p_k^*(x) - q(x)) > 0$. Let $n \in \mathbb{N}$. Since $\Omega \setminus K(2^{-n})$ is a bounded open set in \mathbb{R}^N, there exists a finite family of balls contained in $\mathbb{R}^N \setminus K(2^{-n-1})$ whose union contains $\Omega \setminus K(2^{-n})$. Since $\text{ess inf}_{x \in \Omega \setminus K(2^{-n-1})} (p_k^*(x) - q(x)) > 0$, we can find a subsequence $\{v_{jn,n}\}$ of $\{v_j\}$ such that $v_{jn,n} \to v$ in $L^{q(\cdot)}(\Omega \setminus K(2^{-n}))$ as well as almost everywhere on $\Omega \setminus K(2^{-n})$. Using the diagonal method, we can find a subsequence $\{v_{jn}\}$ such that $v_{jn} \to v$ in $L^{q(\cdot)}(\Omega \setminus K(\epsilon))$ for each small $\epsilon > 0$ and $v_{jn} \to v$ almost everywhere on Ω. It follows that
\[
\lim_{n \to \infty} \int_{\Omega} |v_{jn}(x) - v(x)|^{q(x)} dx \\
= \lim_{n \to \infty} \left(\int_{K(\epsilon) \cap \Omega} |v_{jn}(x) - v(x)|^{q(x)} dx + \int_{\Omega \setminus K(\epsilon)} |v_{jn}(x) - v(x)|^{q(x)} dx \right) \\
= \lim_{n \to \infty} \int_{K(\epsilon) \cap \Omega} |v_{jn}(x) - v(x)|^{q(x)} dx,
\]
for each small $\varepsilon > 0$, which together with (3.3) implies that \(\|v_{j_n} - v\|_{L^{q}(\Omega)} \to 0 \) as \(n \to \infty \).

Next consider the general case. We choose $\varepsilon_0 > 0$ such that
\[
q^* \leq N(N/k - \varepsilon_0)/(k\varepsilon_0) - \varphi(1/r_0)/\log(1/r_0).
\]

We set $p_{\varepsilon_0}(x) = \min\{p(x), N/k - \varepsilon_0\}$. Since the embedding from $W^{k,p(\cdot)}_0(\Omega)$ to $W^{k,p_{\varepsilon_0}(\cdot)}_0(\Omega)$ is bounded, we can apply the first considerations to obtain the required result. \(\Box \)

As a special case of Theorem 3.4, we have the following corollary, which gives an extension of [23, Theorem 2]. We put $\log^r r = \log r$ and $\log^{n+1} r = \log(\log^n r)$, inductively.

Corollary 3.5. Let $k \in \mathbb{N}$ and let $q(\cdot)$ be a variable exponent on Ω such that $1 \leq q_r \leq q^* < \infty$. Suppose there exist $x_0 \in \Omega$, $C > 0$, $n \in \mathbb{N}$ and small $r_0 > 0$ such that
\[
\text{ess inf}_{x \in \Omega \cap B_{r_0}(x_0)} \left(p^*_{k}(x) - q(x) \right) > 0
\]
and
\[
q(x) \leq p^*_{k}(x) - C \frac{\log^n(1/|x - x_0|)}{\log(1/|x - x_0|)} \quad \text{for almost every } x \in B_{r_0}(x_0).
\]

Then the embedding from $W^{k,p(\cdot)}_0(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.

4. Existence of a solution to (1.3): compact embedding case

In this section, we assume that $p(\cdot)$ is a variable exponent on Ω satisfying the log-Hölder condition and $1 < p_\ast \leq p^* < N$. Further let $q(\cdot)$ be a variable exponent on Ω such that $p^* < q_r \leq q(\cdot) \leq p^*_r(\cdot)$ for almost every $x \in \Omega$.

As an application of Theorem 3.4, we show an existence result of nontrivial nonnegative weak solutions to (1.3) as follows.

Theorem 4.1. Assume that the embedding from $W^{1,p(\cdot)}_0(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. Then there exists a nontrivial nonnegative weak solution of (1.3).

In the case of $\text{ess inf}_{x \in \Omega}(p^*_1(x) - q(x)) > 0$, Fan and Zhang obtained such a result in [15, Theorem 4.7]. Although $q(\cdot)$ can be equal to $p^*_1(\cdot)$ at some points, the proof in [15] also works in our case with minor changes since we consider the case that the embedding from $W^{1,p(\cdot)}_0(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. However, for the reader’s convenience, we give a proof of our theorem.

Let X be a Banach space. We say that $u \in X$ is a critical point of $I \in C^1(X; \mathbb{R})$ if the Fréchet derivative $I'(u)$ of I at u is zero. We say that $\{u_n\} \subset X$ is a Palais–Smale sequence for I if $\{I(u_n)\}$ is bounded and $I'(u_n) \to 0$ as $n \to \infty$ in the dual space of X. We also say that I satisfies the Palais–Smale condition if every Palais–Smale sequence for I has a convergent subsequence.

We consider a functional $I : W^{1,p(\cdot)}_0(\Omega) \to \mathbb{R}$ defined by
\[
I(u) = \int_\Omega \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{q(x)} u_+(x)^{q(x)} \right) \, dx \quad \text{for } u \in W^{1,p(\cdot)}_0(\Omega).
\]
The Gâteaux derivative $I'(u)$ of I at $u \in W^{1,p_(\cdot)}_0(\Omega)$ is given by
\[
\langle I'(u), v \rangle = \lim_{t \to 0} \frac{I(u + tv) - I(u)}{t} = \int_\Omega \left(|\nabla u(x)|^{p(x) - 2} \nabla u(x) \nabla v(x) - u^+(x)^{q(x) - 1} v(x) \right) \, dx
\]
for each $v \in W^{1,p_(\cdot)}_0(\Omega)$. By the Vitali convergence theorem, we see that I' is continuous from $W^{1,p_(\cdot)}_0(\Omega)$ to its dual space $(W^{1,p_(\cdot)}_0(\Omega))^\prime$, and hence $I \in C^1(W^{1,p_(\cdot)}_0(\Omega); \mathbb{R})$.

The following is essentially due to Boccardo and Murat [4, Theorem 2.1].

Proposition 4.2. Let $\{u_n\} \subset W^{1,p_(\cdot)}_0(\Omega)$ be a Palais–Smale sequence for I. Then $\{u_n\}$ is bounded in $W^{1,p_(\cdot)}_0(\Omega)$. Further there exist a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ and $u \in W^{1,p_(\cdot)}_0(\Omega)$ such that $\nabla u_{n_k}(x)$ converges to $\nabla u(x)$ for almost every $x \in \Omega$.

Proof. Setting $\beta = \sup_{n \in \mathbb{N}} I(u_n)$, we have
\[
\int_\Omega \left(\frac{1}{p^+} |\nabla u_n(x)|^{p(x)} - \frac{1}{q_*} u_n^+(x)^{q(x)} \right) \, dx \leq I(u_n) \leq \beta \quad \text{for all } n \in \mathbb{N}.
\]
Since $I'(u_n) \to 0$ as $n \to \infty$ in $(W^{1,p_(\cdot)}_0(\Omega))^\prime$, we have
\[
\int_\Omega \left(|\nabla u_n(x)|^{p(x)} - u_n^+(x)^{q(x)} \right) \, dx = \langle I'(u_n), u_n \rangle \geq -\|u_n\|_{W^{1,p_(\cdot)}_0(\Omega)}
\]
for each large positive integer n. Subtracting (4.2) divided by q_* from (4.1) gives
\[
\left(\frac{1}{p^+} - \frac{1}{q_*} \right) \int_\Omega |\nabla u_n(x)|^{p(x)} \, dx \leq \beta + \frac{1}{q_*} \|u_n\|_{W^{1,p_(\cdot)}_0(\Omega)} \leq C(\|\nabla u_n\|_{L^p(\Omega)} + 1);
\]
we used Lemma 2.2 in the second inequality. Thus Lemma 2.1 gives
\[
\|\nabla u_n\|_{L^p(\Omega)} + 1 \geq C \min \left\{ \|\nabla u_n\|_{L^p(\Omega)}^{p^-}, \|\nabla u_n\|_{L^p(\Omega)}^{p^+} \right\},
\]
so that $\{u_n\}$ is bounded in $W^{1,p_(\cdot)}_0(\Omega)$. Hence, passing to a subsequence, we may assume that $\{u_{n_k}\}$ converges weakly to some $u \in W^{1,p_(\cdot)}_0(\Omega)$ and $\{u_{n_k}(x)\}$ converges to $u(x)$ for almost every $x \in \Omega$. For $\eta > 0$, let $T_\eta : \mathbb{R} \to \mathbb{R}$ be a function such that
\[
T_\eta(t) = \begin{cases}
0 & \text{for } |t| \leq \eta, \\
\eta t/|t| & \text{for } |t| > \eta.
\end{cases}
\]
Since $\{T_\eta(u_n - u)\}$ converges weakly to 0 in $W^{1,p_(\cdot)}_0(\Omega)$ and $\{u_n\}$ is bounded in $L^{q(\cdot)}(\Omega)$ by Lemma 2.2, we have
\[
\lim_{n \to \infty} \int_\Omega \left(|\nabla u_n(x)|^{p(x)} - |\nabla u(x)|^{p(x)} \right) \nabla \left(T_\eta(u_n(x) - u(x)) \right) \, dx = \lim_{n \to \infty} \int_\Omega u_n^+(x)^{q(x) - 1} T_\eta(u_n(x) - u(x)) \, dx \leq C\eta,
\]
where $C > 0$ is a constant which is independent of $\eta > 0$. We set
\[
\rho_n(x) = \left(|\nabla u_n(x)|^{p(x)} - |\nabla u(x)|^{p(x)} \right) \nabla (u_n(x) - \nabla u(x)).
\]
We note that $\rho_n \geq 0$ almost everywhere for each $n \in \mathbb{N}$. Further we set
\[
E_n = \{ x \in \Omega : |u_n(x) - u(x)| \leq \eta \}, \quad F_n = \{ x \in \Omega : |u_n(x) - u(x)| > \eta \}.
\]
for each $n \in \mathbb{N}$. We fix $\theta \in (0, 1)$. Since
\[
\int_\Omega \rho_n(x)^\theta \, dx \leq \left(\int_{E_n} \rho_n(x) \, dx \right)^\theta |E_n|^{1-\theta} + \left(\int_{F_n} \rho_n(x) \, dx \right)^\theta |F_n|^{1-\theta}
\] for each $n \in \mathbb{N}$, $|F_n| \to 0$ and $\{\rho_n\}$ is bounded in $L^1(\Omega)$, we have
\[
\lim_{n \to \infty} \int_\Omega \rho_n(x)^\theta \, dx \leq (C\eta)^\theta |\Omega|^{1-\theta}.
\]
Letting $\eta \to 0$, we have $\int_\Omega \rho_n(x)^\theta \, dx \to 0$. Thus we may assume $\{\rho_n(x)\}$ converges to 0 for almost every $x \in \Omega$. Since $p_\ast > 1$, we see that a subsequence of $\{\nabla u_n(x)\}$ converges to $\nabla u(x)$ for almost every $x \in \Omega$. \hfill \Box

Lemma 4.3. Suppose the embedding from $W^{1,p(\cdot)}_0(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. Then the functional I satisfies the Palais-Smale condition.

Proof. Let $\{u_n\} \subset W^{1,p(\cdot)}_0(\Omega)$ be a Palais–Smale sequence for I. By the previous proposition, we may assume that $\{u_n\}$ converges weakly to some $u \in W^{1,p(\cdot)}_0(\Omega)$, and $\{\nabla u_n(x)\}$ and $\{\nabla u_n(x)\}$ converge to $u(x)$ and $\nabla u(x)$ almost every $x \in \Omega$, respectively. Since $\langle I'(u_n), u \rangle \to 0$, the Vitali convergence theorem implies that
\[
\int_\Omega |\nabla u(x)|^{p(x)} \, dx = \int_\Omega u^+(x)^{q(x)} \, dx.
\]
This equality together with $\langle I'(u_n), u_n \rangle \to 0$ and the compact embedding assumption give
\[
\lim_{n \to \infty} \int_\Omega |\nabla u_n(x)|^{p(x)} \, dx = \lim_{n \to \infty} \int_\Omega u_n^+(x)^{q(x)} \, dx = \int_\Omega \nabla u(x)^{p(x)} \, dx.
\]
(4.3)
Now, we consider the function
\[
w_n(x) = 2^{p_\ast - 1} \left(|\nabla u_n(x)|^{p(x)} + |\nabla u(x)|^{p(x)} \right) - |\nabla u_n(x) - \nabla u(x)|^{p(x)}.
\]
Since $w_n(x) \geq 0$ for almost every $x \in \Omega$, we see from Fatou’s lemma and (4.3) that
\[
2^{p_\ast} \int_\Omega |\nabla u(x)|^{p(x)} \, dx \geq \lim_{n \to \infty} \int_\Omega |\nabla u_n(x) - \nabla u(x)|^{p(x)} \, dx
\]
so that
\[
\lim_{n \to \infty} \int_\Omega |\nabla u_n(x) - \nabla u(x)|^{p(x)} \, dx = 0.
\]
Hence we see that $\{u_n\}$ converges strongly to u in $W^{1,p(\cdot)}_0(\Omega)$. \hfill \Box

We recall the following variant of the mountain pass theorem; see e.g., [34].

Theorem 4.4. Let X be a Banach space and let I be a C^1 functional on X such that $I(0) = 0$,
\[
(i) \quad \text{there exist positive constants } \kappa, r > 0 \text{ such that } I(u) \geq \kappa \text{ for all } u \in X \text{ with } \|u\| = r, \text{ and}
\]
\[
(ii) \quad \text{there exists an element } v \in X \text{ such that } I(v) < 0 \text{ and } \|v\| > r.
\]
Define
\[c = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t)), \]
where
\[(4.4) \quad \Gamma = \{ \gamma \in C([0, 1]; X) : \gamma(0) = 0, I(\gamma(1)) < 0, \|\gamma(1)\| > r \}. \]

Then \(c > 0 \) and for each \(\varepsilon > 0 \), there exists \(u \in X \) such that \(|I(u) - c| \leq \varepsilon \) and \(\|I'(u)\| \leq \varepsilon \).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we find \(r > 0 \) such that
\[(4.5) \inf\{ I(u) : u \in W^{1,p} \Gamma(\Omega), \|u\|_{W^{1,p}(\Omega)} = r \} > 0. \]

Taking \(r > 0 \) so small, by Lemma 2.2, we have \(\|\nabla u\|_{L^p(\Omega)} \leq 1 \) and \(\|u\|_{L^q(\Omega)} \leq 1 \) for all \(u \in W^{1,p} \Gamma(\Omega) \) with \(\|u\|_{W^{1,p}(\Omega)} = r \). Then for each \(u \in W^{1,p} \Gamma(\Omega) \) with \(\|u\|_{W^{1,p}(\Omega)} = r \), we have
\[\int_\Omega u^+(x)^q(x) dx \leq \|u\|_{L^q(\Omega)}^q \leq C\|\nabla u\|_{L^p(\Omega)}^q \leq C\|\nabla u\|_{L^p(\Omega)}^q \]
by Lemmas 2.1 and 2.2, so that
\[I(u) \geq \frac{1}{p^*} \|\nabla u\|_{L^p(\Omega)}^{p^*} - \frac{C}{q^*} \|\nabla u\|_{L^p(\Omega)}^{q^*}. \]

Since \(p^* < q^* \), we have (4.5) if \(r > 0 \) is small.

Next we prove \(I(tu) \to -\infty \) as \(t \to \infty \) for \(u \in W^{1,p} \Gamma(\Omega) \) with \(u^+ \neq 0 \). In fact, if \(u \in W^{1,p} \Gamma(\Omega) \) such that \(u^+ \neq 0 \), then we see that
\[I(tu) \leq t^{p^*} \int_\Omega \frac{1}{p(x)} \|\nabla u(x)\|_{L^p(\Omega)}^{p(x)} dx - t^{q^*} \int_\Omega \frac{1}{q(x)} u^+(x)^q(x) dx \to -\infty \]
as \(t \to \infty \), since \(p^* < q^* \).

Now the required result follows from Lemma 4.3 and Theorem 4.4. \(\square \)

As a direct consequence of Theorem 4.1, we have the following:

Corollary 4.5. Suppose all hypotheses in Theorem 3.4 hold for \(k = 1 \). Then there exists a nontrivial nonnegative weak solution of (1.3).

5. Existence of a solution to (1.3): noncompact embedding case

Our final aim is to deal with the existence result of a nontrivial nonnegative weak solution to (1.3) in the case that the embedding may not be compact.

For real sequences \(\{a_n\} \) and \(\{b_n\} \), we write \(a_n = b_n + o(1) \) or \(a_n \leq b_n + o(1) \) if \(\lim_n (a_n - b_n) = 0 \) or \(\lim_n (a_n - b_n) \leq 0 \), respectively.

Proposition 5.1. Let \(p(\cdot) \) be a log-Hölder continuous function on \(\Omega \) with \(1 < p_\# \leq p^* < N \) and let \(q(\cdot) \) be a measurable function on \(\Omega \) such that \(p^* < q_\# \leq q(x) \leq N \).
\(p_1^+(x) \) for almost every \(x \in \Omega \). Assume \(\inf_{u \in \mathcal{N}_f} I(u) < \inf_{u \in \mathcal{N}_f} J(u) \), where

\[
I(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{q(x)} u^+(x)^{q(x)} \right) \, dx \quad \text{for } u \in W^{1,p_1}(\Omega),
\]

\[
J(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{p_1^+(x)} u^+(x)^{p_1^+(x)} \right) \, dx \quad \text{for } u \in W^{1,p_1}(\Omega),
\]

\[
\mathcal{N}_f = \left\{ u \in W^{1,p_1}(\Omega) \setminus \{0\} : \int_{\Omega} |\nabla u(x)|^{p(x)} \, dx = \int_{\Omega} u^+(x)^{q(x)} \, dx \right\},
\]

\[
\mathcal{N}_f = \left\{ u \in W^{1,p_1}(\Omega) \setminus \{0\} : \int_{\Omega} |\nabla u(x)|^{p(x)} \, dx = \int_{\Omega} u^+(x)^{p_1^+(x)} \, dx \right\}.
\]

Then problem \((1.3)\) has a nontrivial nonnegative weak solution.

Proof. We set \(c = \inf_{u \in \mathcal{N}_f} I(u) \), and define \(\Gamma \) by \((4.4)\) with \(X = W^{1,p_1}(\Omega) \). Along the similar lines as those in the proof of Theorem 4.1, we can easily see that \(\Gamma \neq \emptyset \), \(\mathcal{N}_f \neq \emptyset \), \(\mathcal{N}_f \neq \emptyset \) and \((4.5)\) holds for small \(r > 0 \).

First we show

\[
(5.1) \quad c = \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t)).
\]

Let \(u \in \mathcal{N}_f \). For \(\alpha_a > 1 \) large enough, consider the path \(\gamma_a \in \Gamma \) defined by \(\gamma_a(t) = t\alpha_a u \) for \(t \in [0,1] \). Since \(I(u) = \max_{0 \leq t \leq 1} I(\gamma_a(t)) \), we have

\[
c \geq \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t)).
\]

On the other hand, let \(\gamma \in \Gamma \). Then

\[
\int_{\Omega} (|\nabla \gamma(1)|^{p(x)} - (\gamma(1))^+ q(x)) \, dx < 0.
\]

As in the proof of Theorem 4.1, we find a small \(t > 0 \) satisfying

\[
\int_{\Omega} (|\nabla \gamma(t)|^{p(x)} - (\gamma(t))^+ q(x)) \, dx > 0.
\]

By the intermediate value theorem, there exists \(t \in (0,1) \) such that \(\gamma(t) \in \mathcal{N}_f \), which implies \(c \leq \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t)) \). Thus \((5.1)\) holds.

Now, in view of Theorem 4.4, \(c > 0 \). Moreover there exists \(\{u_n\} \subset W^{1,p_1}(\Omega) \) such that \(I(u_n) \to c \) and \(I'(u_n) \to 0 \) in \((W^{1,p_1}(\Omega))'\). By Proposition 4.2 and \(c > 0 \), we find a constant \(C > 0 \) such that

\[
(5.2) \quad \frac{1}{C} \leq \int_{\Omega} |\nabla u_n(x)|^{p(x)} \, dx \leq C \quad \text{for large } n \in \mathbb{N}.
\]

Here we may assume that \(\{u_n\} \) converges weakly to some \(u \in W^{1,p_1}(\Omega) \); further \(\{u_n(x)\} \) and \(\{\nabla u_n(x)\} \) converge to \(u(x) \) and \(\nabla u(x) \) for almost every \(x \in \Omega \), respectively. Then it follows that \(I'(u) = 0 \). If we show that \(u \neq 0 \), then \(u \) is a nontrivial nonnegative weak solution of \((1.3)\).

On the contrary, suppose \(u = 0 \). Since \(I(u_n) \to c > 0 \) and \(I'(u_n) \to 0 \), taking a subsequence if necessary, we may assume \(u_n^+ \neq 0 \) for all \(n \in \mathbb{N} \). Then for each \(n \in \mathbb{N} \), there exists a unique \(t_n \in (0,\infty) \) such that

\[
\int_{\Omega} |\nabla (t_n u_n(x))|^{p(x)} \, dx = \int_{\Omega} (t_n u_n(x)^{p_1^{+}(x)}) \, dx,
\]
i.e., \(t_n u_n \in \mathcal{N} \). We will show \(t_n \leq 1 + o(1) \). On the contrary, if there exists \(\varepsilon > 0 \) such that \(t_n \geq 1 + \varepsilon \) for all \(n \in \mathbb{N} \), then
\[
t_n^{q^*} \int \Omega |\nabla u_n(x)|^{p(x)} dx \geq \int \Omega |\nabla (t_n u_n(x))|^{p(x)} dx = \int \Omega (t_n u_n^+ (x))^{p_1^*(x)} dx \geq t_n^{q^*} \int \Omega u_n^+ (x)^{p_1^*(x)} dx
\]
for all \(n \in \mathbb{N} \). Using Lebesgue’s convergence theorem, we have
\[
\int \Omega |\nabla u_n(x)|^{p(x)} dx = \int \Omega u_n^+ (x)^{q(x)} dx + o(1)
\]
\[
= \int \{x \in \Omega : u_n(x) \leq 1\} u_n^+ (x)^{q(x)} dx + \int \{x \in \Omega : u_n(x) > 1\} u_n^+ (x)^{q(x)} dx + o(1)
\]
\[
\leq \int \Omega \min\{u_n^+ (x), 1\} dx + \int \Omega u_n^+ (x)^{p_1^*(x)} dx + o(1)
\]
\[
\leq \int \Omega u_n^+ (x)^{p_1^*(x)} dx + o(1).
\]
Hence it follows that
\[
\int \Omega |\nabla u_n(x)|^{p(x)} dx \geq t_n^{q^*} \int \Omega u_n^+ (x)^{p_1^*(x)} dx \geq (1 + \varepsilon)^{q^* - p^*} \int \Omega u_n^+ (x)^{p_1^*(x)} dx \geq (1 + \varepsilon)^{q^* - p^*} \left(\int \Omega |\nabla u_n(x)|^{p(x)} dx + o(1) \right),
\]
which together with (5.2) yields a contradiction. Thus we have shown \(t_n \leq 1 + o(1) \).

On the other hand, for each \(n \in \mathbb{N} \), take a unique number \(s_n > 0 \) such that
\[
\int t_n u_n(x) = \int (s_n u_n(x))^q dx = \int (s_n u_n^+ (x))^q dx
\]
i.e., \(s_n u_n \in \mathcal{N} \). We see easily that \(I(s_n u_n) = \max_{s > 0} I(s u_n) \) for each \(n \in \mathbb{N} \). By (5.2), (5.3) and \(\langle I'(u_n), u_n \rangle = o(1) \), we infer that \(s_n = 1 + o(1) \), so that
\[
I(u_n) = I(s_n u_n) + o(1) = \max_{s \geq 0} I(s u_n) + o(1) \geq I(t_n u_n) + o(1).
\]
Let \(\varepsilon \in (0, 1) \). Then, noting
\[
\int_{\{x \in \Omega : q(x) \leq p_1^*(x) - \varepsilon\}} (t_n u_n^+ (x))^q dx \leq \int \Omega \min\{t_n u_n^+ (x), 1\} dx + \int \Omega (t_n u_n^+ (x))^{p_1^*(x) - \varepsilon} dx
\]
we obtain
\[
c = I(u_n) + o(1) \geq I(t_n u_n) + o(1)
\]
\[
\geq \int \Omega \left(\frac{1}{p(x)} |\nabla (t_n u_n(x))|^{p(x)} - \frac{1}{p_1^*(x) - \varepsilon} (t_n u_n^+ (x))^{p_1^*(x)} \right) dx + o(1)
\]
\[
= J(t_n u_n) + \int \Omega \left(\frac{1}{p_1^*(x) - \varepsilon} - \frac{1}{p_1^*(x) - \varepsilon} \right) (t_n u_n^+ (x))^{p_1^*(x)} dx + o(1) \geq \inf_{v \in \mathcal{N}_J} J(v) - C \varepsilon,
\]
where \(C \) is a constant which is independent of \(\varepsilon \in (0, 1) \). Since \(\varepsilon \in (0, 1) \) is arbitrary, we conclude that \(c \geq \inf_{v \in \mathcal{N}_J} J(v) \), which contradicts our assumption. Hence it follows that \(u \neq 0 \), as required. \(\square \)
We denote by $\mathcal{D}^{1,p}(\mathbb{R}^N)$ the completion of $C_0^\infty(\mathbb{R}^N)$ by the norm $\|\nabla u\|_{L^p(\mathbb{R}^N)}$ in $C_0^\infty(\mathbb{R}^N)$.

Theorem 5.2. Let $p(\cdot): \mathbb{R}^N \to \mathbb{R}$ be a log-Hölder continuous function with $1 < p_* \leq p^* < N$, and let $q(\cdot): \mathbb{R}^N \to \mathbb{R}$ be a measurable function such that $p^* < q_* \leq q(x) \leq p^*(x)$ for almost every $x \in \mathbb{R}^N$. Assume that $\mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N)$ is continuously embedded into $L^{p^*}(\mathbb{R}^N)$, i.e., there exists a constant $C > 0$ such that

$$\|u\|_{L^{p^*}(\mathbb{R}^N)} \leq C \|\nabla u\|_{L^p(\mathbb{R}^N)} \quad \text{for all } u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N).$$

Assume also that there exist a measurable subset D of \mathbb{R}^N and a number q_0 such that

$$\lim_{R \to \infty} \left| \{ x \in B_1(0) : R x \in D \} \right| < \left| B_1(0) \right|,$$

and $p/(N + p_* - p) < q_0 < Np/(N - p)$, and $\text{ess sup}_{x \in \mathbb{R}^N \setminus D} q(x) \leq q_0$, where $p = \lim_{x \to -\infty} p(x)$. Then there exists $R > 0$ such that for each bounded open set Ω in \mathbb{R}^N which contains $B_R(0)$, problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set

$$J_{\mathbb{R}^N}(u) = \int_{\mathbb{R}^N} \left(\frac{1}{p(x)}|\nabla u(x)|^{p(x)} - \frac{1}{p^*_1(x)}u^+(x)^{p^*_1(x)} \right) \, dx \quad \text{for } u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N),$$

$$\mathcal{N}_{\mathbb{R}^N} = \left\{ u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N) \setminus \{0\} : \int_{\mathbb{R}^N} |\nabla u(x)|^{p(x)} \, dx = \int_{\mathbb{R}^N} u^+(x)^{p^*_1(x)} \, dx \right\}.$$

By Lemma 2.1 we have for $u \in \mathcal{N}_{\mathbb{R}^N}$

$$\min \left\{ \|\nabla u\|_{L^p(\mathbb{R}^N)}^{p_*}, \|\nabla u\|_{L^{p^*}(\mathbb{R}^N)}^{p^*} \right\} \leq \int_{\mathbb{R}^N} |\nabla u(x)|^{p(x)} \, dx$$

$$= \int_{\mathbb{R}^N} u^+(x)^{p^*_1(x)} \, dx \leq \max \left\{ \|u^+\|_{L^{p^*_1}(\mathbb{R}^N)}^{p^*_1}, \|u^+\|_{L^{p^*_1}(\mathbb{R}^N)}^{p^*_1} \right\},$$

which together with (5.4) implies that

$$\inf_{u \in \mathcal{N}_{\mathbb{R}^N}} \|\nabla u\|_{L^p(\mathbb{R}^N)} > 0.$$

Hence we infer that

$$\inf_{u \in \mathcal{N}_{\mathbb{R}^N}} J_{\mathbb{R}^N}(u) > 0.$$

Choose any p_0 such that

$$1 < p_0 < \frac{Np_0}{N + p_* - p_0} < q_0 < \frac{Np_0}{N - p_0}.$$

Let $\bar{u}_1 \in W_0^{1,p_0}(B_1(0))$ be a weak solution of the problem

$$\begin{cases}
-\text{div} \left(|\nabla u(x)|^{p_0-2} \nabla u(x) \right) = u(x)^{q_0-1} & \text{in } B_1(0), \\
u(x) > 0 & \text{in } B_1(0), \\
u(x) = 0 & \text{on } \partial B_1(0).
\end{cases}$$

According to [24, Theorem 1] or [33, Proposition 2.1], we see that $\bar{u}_1 \in C^{1,\beta}(\overline{B_1(0)})$ for some $\beta \in (0, 1)$. Hence, for each $R > 0$, $\bar{u}_R(x) = R^{-p_0/(q_0-p_0)}\bar{u}_1(x/R)$ is a weak
solution of (5.7). Take $R_1 > 0$ such that $\max_{|x| \leq R} \tilde{u}_R(x) \leq 1$ for $R \geq R_1$. For each $R > 0$, there exists a unique $t_R \in (0, \infty)$ such that

$$\int_{B_R(0)} |\nabla (t_R \tilde{u}_R(x))|^{p(x)} \, dx = \int_{B_R(0)} |t_R \tilde{u}_R(x)|^{q(x)} \, dx.$$

From (5.5), we find $\delta > 0$ and $R_2 \geq R_1$ such that

$$\{x \in B_1(0) : Rx \in D\} \leq |B_1(0)| - \delta \quad \text{for each } R \geq R_2.$$

We will show $\{t_R : R \geq R_2\}$ is bounded. If $t_R > 1$ with $R \geq R_2$, then we have

$$t_R^{p^*} \int_{B_R(0)} |\tilde{u}_R(x)|^{p(x)} \, dx \geq t_R \int_{B_R(0) \setminus D} |\tilde{u}_R(x)|^{q_0} \, dx \geq t_R^{p^*} \int_{B_R(0) \setminus D} |\tilde{u}_R(x)|^{q_0} \, dx$$

$$= t_R^{p^*} \left(\int_{B_R(0)} |\tilde{u}_R(x)|^{q_0} \, dx - \int_{B_R(0) \cap D} |\tilde{u}_R(x)|^{q_0} \, dx \right),$$

which implies

$$t_R^{p^* - p^*} \leq \frac{\int_{B_1(0)} R^{\frac{q_0(p_0 - p(R_x))}{q_0 - p_0}} |\tilde{u}_1(x)|^{p(R_x)} \, dx}{\int_{B_1(0)} |\tilde{u}_1(x)|^{q_0} \, dx - \sup \{ \int_A |\tilde{u}_1(x)|^{q_0} \, dx : A \subset B_1(0), |A| \leq |B_1(0)| - \delta \}}.$$

Let $r_0 > 0$ such that $p(x) > p_0$ for all $x \in \mathbb{R}^N$ with $|x| \geq r_0$. By (5.6) and the boundedness of $|\nabla \tilde{u}_1|$, we have for $R \geq r_0$,

$$\int_{B_1(0)} R^{\frac{q_0(p_0 - p(R_x))}{q_0 - p_0}} |\nabla \tilde{u}_1(x)|^{p(R_x)} \, dx \leq C \left(\int_{|x| < r_0 / R} R^{\frac{q_0(p_0 - p(R_x))}{q_0 - p_0}} \, dx \right.$$

$$\left. + \int_{r_0 / R \leq |x| \leq 1} R^{\frac{q_0(p_0 - p(R_x))}{q_0 - p_0}} \, dx \right) \leq C \left(R^{\frac{q_0(p_0 - p_0)}{q_0 - p_0}} \left(\frac{r_0}{R} \right)^N + 1 \right) \leq C,$$

where each C is a positive constant which is independent of R. Hence we insist that $\{t_R : R \geq R_2\}$ is bounded. Then we have

$$\int_{B_R(0)} \left(\frac{1}{p(x)} |\nabla (t_R \tilde{u}_R(x))|^{p(x)} - \frac{1}{q(x)} |t_R \tilde{u}_R(x)|^{q(x)} \right) \, dx \leq C \int_{B_R(0)} |\nabla \tilde{u}_R(x)|^{p(x)} \, dx$$

$$= C \int_{B_1(0)} R^{\frac{q_0(p_0 + q_0 - p(R_x))}{q_0 - p_0}} |\nabla \tilde{u}_1(x)|^{p(R_x)} \, dx \leq C \left(R^{-\frac{q_0 p_0}{q_0 - p_0}} r_0^N + R^{-\frac{q_0 p_0}{q_0 - p_0} + N} \right) \to 0$$

as $R \to \infty$. Hence we can find $R \geq R_2$ satisfying

$$\int_{B_R(0)} \left(\frac{1}{p(x)} |\nabla (t_R \tilde{u}_R(x))|^{p(x)} - \frac{1}{q(x)} |t_R \tilde{u}_R(x)|^{q(x)} \right) \, dx < \inf_{v \in \mathcal{A}_{R_N}} J_{R_N}(v).$$

Now, let Ω be any bounded open set which contains $B_R(0)$. Extending \tilde{u}_R on Ω with $\tilde{u}_R(x) = 0$ for $x \in \Omega \setminus B_R(0)$, we have $\tilde{u}_R \in W_0^{1,p}(\Omega)$. Letting I, J, \mathcal{A}_I and \mathcal{A}_J be as in the previous proposition, we have

$$\inf_{v \in \mathcal{A}_J} I(v) \leq \inf_{v \in \mathcal{A}_J} J_{R_N}(v) \leq \inf_{v \in \mathcal{A}_J} J(v).$$

Hence problem (1.3) has a nontrivial nonnegative weak solution on Ω by the proposition.

Finally, we give a sufficient condition for (5.4). We recall the following result, which is a special case of [6, Theorem 1.8].
Lemma 5.3. Let \(p(\cdot) : \mathbb{R}^N \to \mathbb{R} \) be a log-Hölder continuous function which satisfies \(1 < p_\ast \leq p^\ast < N \) and
\[
|p(x) - p(y)| \leq \frac{C}{\log(e + |x|)}
\]
for each \(x, y \in \mathbb{R}^N \) with \(|y| \geq |x| \).
Then the fractional integral operator
\[
u \mapsto \int_{\mathbb{R}^N} \frac{u(y)}{|x-y|^{N-1}} \, dy
\]
is bounded from \(L^{p(\cdot)}(\mathbb{R}^N) \) to \(L^{p^\ast(\cdot)}(\mathbb{R}^N) \).

Corollary 5.4. Let \(p(\cdot) : \mathbb{R}^N \to \mathbb{R} \) be as in the previous lemma, and let \(D, q_0 \) and \(q(\cdot) \) be as in Theorem 5.2. Then there exists \(R > 0 \) such that for each bounded open set \(\Omega \) in \(\mathbb{R}^N \) which contains \(B_R(0) \), problem (1.3) has a nontrivial nonnegative weak solution.

Proof. Using the previous lemma, we can show that \(\mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N) \) is continuously embedded into \(L^{p^\ast(\cdot)}(\mathbb{R}^N) \) by similar lines as those in [35, p. 88]. Hence we obtain the conclusion by Theorem 5.2. \(\square \)

References

[33] Pohozaev, S.: Eigenfunctions of the equation \(\Delta u + \lambda f(u) = 0 \). - Soviet Math. Dokl. 6, 1965, 1408–1411.

Received 25 August 2008