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Abstract. We show how Wiman–Valiron techniques can be applied to partial differential
equations in two complex variables.

1. Introduction

Wiman–Valiron theory involves the analysis of entire functions by means of the
maximum term and central index. For a function of two variables,

(1) f(z1, z2) =
∞∑

n1=0

∞∑
n2=0

an1,n2z
n1
1 zn2

2 ,

the maximum term is

(2) µ(r1, r2) = max{|an1,n2|rn1
1 rn2

2 : m,n = 0, 1, 2, . . . }, r1, r2 ≥ 0,

and, if N1 = N1(r1, r2) and N2 = N2(r1, r2) are non-negative integers such that

(3) µ(r1, r2) = |aN1,N2|rN1
1 rN2

2 ,

the central index is N = N(r1, r2) = (N1, N2). The central index is not well-defined
(that is, is not unique) for certain values of (r1, r2); for most purposes the central
index for those values may be taken to be any N for which (3) holds.

In [1, 2] the first author developed Wiman–Valiron techniques for entire functions
of two variables. The main theorem of [2] concerns the behaviour of the partial
derivatives at points (z1, z2) for which (|z1|, |z2|) lies in the so-called normal set. We
use the notation

fp1,p2 =
∂p1+p2f

∂zp1

1 ∂zp2

2

.

The main theorem of [2] concerns the behaviour of the partial derivatives of f
at points (z1, z2) for which (|z1|, |z2|) lies in the so-called normal set, that is the set
of points (r1, r2), r1, r2 ≥ 0, for which |an1,n2|rn1

1 rn2
2 /µ(r1, r2) is suitably bounded for

all n1, n2; see [1, pp. 4406-7] for details.

Theorem A. [2, Theorem 3] Suppose that (r1, r2) is normal and that z1 and z2

are such that |z1| = r1, |z2| = r2 and |f(z1, z2)| = M(r1, r2), where

M(r1, r2) = max
|ζ1|=r1,|ζ2|=r2

|f(ζ1, ζ2)|.
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Let

(4) N∗ = max{N1, N2}, N∗ = min{N1, N2}.
For any non-negative integers p1 and p2, there are constants C = C(p1, p2) and
N0 = N0(p1, p2) such that, if N∗ ≥ N0 and

(5) log N∗ ≤ N∗
240(p1 + p2 + 1)(log N∗)2

,

then

(6) fp1,p2(z1, z2) = (1 + σ)

(
N1

z1

)p1
(

N2

z2

)p2

f(z1, z2),

where

(7) |σ| ≤ C

√
log N∗(log N∗)2

N∗
.

An example [1, p. 228] shows that f p1,p2(z1, z2) and (N1/z1)
p1(N2/z2)

p2f(z1, z2)
may bear no significant relationship if (5) just fails. For

f(z1, z2) =
∞∑

n=0

zn
1 + zn−1

1 z2 + · · ·+ z1z
n−1
2 + zn

2

n!
,

the central index is (N1, 0) if |z1| > |z2|, (0, N2) if |z1| < |z2| and is not well-defined
if |z1| = |z2|. Thus (6) may fail for all mixed partial derivatives, and in fact (6) may
hold only for z1 partial derivatives, or only for z2 partial derivatives.

We call the complement of the normal set in the first quadrant the exceptional
set, and denote it by E. Estimates of the exceptional set are given in [1] in terms of
two-dimensional logarithmic measure, r−1

1 r−1
2 dr1dr2. It is shown that, for any entire

function,

(8)
¨

E∩([1,R×[1,R])

dr1dr2

r1r2

< 3 log R,

for all R ≥ 1. But other estimates are possible using the argument of [1]; for example,
for any R1 ≥ 1 and R2 ≥ 1,

¨

E∩([R1,R2
1]×[R2,R2

2])

dr1dr2

r1r2

< 3(log R1 + log R2).

Lemma 2 below gives another estimate for the exceptional set.
The analogue of Theorem A in one dimension has had important applications in

determining the existence and estimating the growth of entire solutions of ordinary
differential equations with entire coefficients; see [4, Chapter 4]. For example, entire
solutions of

(9) f ′′(z) + P (z)f(z) = 0,

where P is a polynomial of degree n, satisfy

N(r)2

r2
= (c + o(1))rn,
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where c > 0 is a constant, whence N(r) grows like r(n+2)/2. Since N is comparable to
log M on the normal set, and since the exceptional set is relatively small, this gives
us that the order of every solution to (9) is (n + 2)/2.

In light of Theorem A, it is natural to ask whether we can make similar growth
estimates for entire solutions to linear partial differential equations in two complex
variables when the coefficients are polynomials. One (insurmountable) obstacle is
that, since we can prescribe an initial function of arbitrary growth, the best we can
hope for is a lower bound on the growth of solutions. For example, the general
solution to f 1,0(z1, z2) = f(z1, z2) is f(z1, z2) = Φ(z2)e

z1 , where f(0, z2) = Φ(z2) may
be any entire function.

A second obstacle is that, unlike in the one dimensional case, our solution f must
satisfy (5), which is a priori impossible to check. To get around this, we define in the
next section an associated function F which depends on f and satisfes (5). Given
a partial differential equation in f , we find the associated equation in F and use
(6). A lower bound on the growth of F (and hence f) then follows as in the one
dimensional case. This method is the main content of the paper. We will, however,
also prove a version of Theorem A that does not require the hypothesis (5).

2. An associated function

We define

(10) F (ζ1, ζ2) = f(ζ2
1ζ2, ζ1ζ

2
2 ) =

∞∑
n1=0

∞∑
n2=0

an1,n2ζ
2n1+n2
1 ζ2n2+n1

2 .

For F , the inequality (5) is trivially satisfied whenever its central index, N =
(N1,N2) say, is large, and therefore

(11) F p1,p2(ζ1, ζ2) = (1 + σ)

(
N1

ζ1

)p1
(

N2

ζ2

)p2

F (ζ1, ζ2),

for all (ζ1, ζ2) such that (|ζ1|, |ζ2|) is normal for F , |F (ζ1, ζ2)| = M (|ζ1|, |ζ2|) and
N (|ζ1|, |ζ2|) is large.

The central indices of f and F are connected by the equations:

3N1(r
2
1r2, r1r

2
2) = 2N1(r1, r2)−N2(r1, r2),

3N2(r
2
1r2, r1r

2
2) = 2N2(r1, r2)−N1(r1, r2).

(12)

For, if N1 and N2 are defined by N1 = 2N1 + N2 and N2 = N1 + 2N2, then for all j
and k,

|aN1,N2|rN1
1 rN2

2 ≥ |aj,k|r2j+k
1 rj+2k

2 ,

that is
|aN1,N2|(r2

1r2)
N1(r1r

2
2)

N2 ≥ |aj,k|(r2
1r2)

j(r1r
2
2)

k,

and thus (N1, N2) is the central index of f at (r2
1r2, r1r

2
2). (The same calculation

shows that (r1, r2) is normal for F if and only if (r2
1r2, r1r

2
2) is normal for f ; see [1,

p. 4407].)
We will prove the following theorem.
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Theorem 1. Suppose that ζ1 and ζ2 are such that (|ζ1|, |ζ2|) is normal for F
and |F (ζ1, ζ2)| = M (|ζ1|, |ζ2|). Write z1 = ζ2

1ζ2 and z2 = ζ1ζ
2
2 . For all p1 ≥ 0 and

p2 ≥ 0,

(13) fp1,p2(z1, z2) = (1 + σ)

(
N1

z1

)p1
(

N2

z2

)p2

f(z1, z2),

where

(14) |σ| = O

(
N∗p1+p2−1/2(log N∗)3/2

Np1

1 Np2

2

)
.

Notice that σ may be large, and (13) effectively useless, if N1 and N2 are signif-
icantly different. In view of Theorem A and the remarks following it, this is to be
expected.

To prove Theorem 1, we first note that, for all p1 ≥ 0 and p2 ≥ 0,

(15) zp1

1 zp2

2 f p1,p2(z1, z2) =

p1+p2∑

k1+k2=0

α(k1, k2, p1, p2)ζ
k1
1 ζk2

2 F k1,k2(ζ1, ζ2),

where α(k1, k2, p1, p2) is a real constant for each k1, k2, p1, p2.
Certainly (15) is true if p1 = 0 and p2 = 0, and differentiating (15) partially with

respect to ζ1 and using
∂ζ1

∂z1

=
2ζ1

3z1

,
∂ζ2

∂z1

= − ζ2

3z1

,

we obtain

p1z
p1

1 zp2

2 fp1,p2(z1, z2) + zp1+1
1 zp2

2 f p1+1,p2(z1, z2)

=

p1+p2∑

k1+k2=0

α(k1, k2, p1, p2)

(
2

3
k1ζ

k1
1 ζk2

2 − 1

3
k2ζ

k1
1 ζk2

2

)
F k1,k2(ζ1, ζ2)

+

p1+p2∑

k1+k2=0

α(k1, k2, p1, p2)

(
2

3
ζk1+1
1 ζk2

2 F k1+1,k2(ζ1, ζ2)− 1

3
ζk1
1 ζk2+1

2 F k1,k2+1(ζ1, ζ2)

)
,

and (15) follows with p1 replaced by p1 + 1. A similar result is obtained on differen-
tiating (15) partially with respect to z2, and (15) follows by induction.

Next we show that the terms on the right hand side of (15) that involve derivatives
of F of highest order—that is, derivatives of order p1 + p2—are

(16)
p1∑
i=0

p2∑
j=0

B(i, j, p1, p2)ζ
i+j
1 ζp1+p2−i−j

2 F i+j,p1+p2−i−j(ζ1, ζ2),

where

(17) B(i, j, p1, p2) = Cp1

i Cp2

j

(
−1

3

)p1−i+j (
2

3

)p2+i−j

and Cp
i is the usual binomial coefficient. This is clearly true if p1 = 0 and p2 = 0.

Also, if the terms of highest order are given by (16) and (17) for certain values of
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p1 and p2 then, differentiating (15) partially with respect to z1, the terms involving
derivatives of highest order for the values p1 + 1 and p2 are

Cp1

i Cp2

j

(
−1

3

)p1−i+j (
2

3

)p2+i−j+1

ζ i+j+1
1 ζp1+p2−i−j

2 F i+j+1,p1+p2−i−j(ζ1, ζ2)

and

Cp1

i Cp2

j

(
−1

3

)p1−i+j+1 (
2

3

)p2+i−j

ζ i+j
1 ζp1+p2−i−j+1

2 F i+j,p1+p2−i−j+1(ζ1, ζ2),

for 0 ≤ i ≤ p1 and 0 ≤ j ≤ p2. Writing i + 1 = i′ in the first of these expressions
(and then dropping the ′), combining it with the second expression when 1 ≤ i ≤ p1

and 0 ≤ j ≤ p2, and using the fact that Cp1

i−1 +Cp1

i = Cp1+1
i , we obtain (16) and (17),

with p1 replaced by p1 + 1. The outcome is similar if we differentiate partially with
respect to z2, and (16) and (17) follow by induction.

Now, if (|ζ1|, |ζ2|) is normal for F , then

ζ i+j
1 ζp1+p2−i−j

2 F i+j,p1+p2−i−j(ζ1, ζ2) = (1 + σ)N i+j
1 N p1+p2−i−j

2 F (ζ1, ζ2),

from (11), and thus (16) becomes

F (ζ1, ζ2)

p1∑
i=0

p2∑
j=0

Cp1

i Cp2

j

(
2

3

)p2+i−j (
−1

3

)p1−i+j

(1 + σ)N i+j
1 N p1+p2−i−j

2 .

Rearranging the sum, and using (12) and (7), we obtain
p1∑
i=0

Cp1

i

(
2N1

3

)i (
−N2

3

)p1−i p2∑
j=0

Cp2

j

(
−N1

3

)j (
2N2

3

)p2−j

+ O
(
N ∗p1+p2−1/2(log N ∗)3/2

)

=

(
2N1

3
− N2

3

)p1
(

2N2

3
− N1

3

)p2

+ O
(
N ∗p1+p2−1/2(log N ∗)3/2

)

= Np1

1 Np2

2 + O
(
N∗p1+p2−1/2(log N∗)3/2

)
.

(18)

This proves the theorem, since, from (11) and (7), all other terms on the right hand
side of (15) have order at most N∗p1+p2−1.

3. Applications to PDEs

To elucidate our method, we consider some specific examples. It will be useful
in what follows to have the following simple cases of (15) to hand:

3z1f
1,0(z1, z2) = 2ζ1F

1,0(ζ1, ζ2)− ζ2F
0,1(ζ1, ζ2),(19)

3z2f
0,1(z1, z2) = 2ζ2F

0,1(ζ1, ζ2),−ζ1F
1,0(ζ1, ζ2).(20)

The order of an entire function f is

ρ(f) = lim sup
r→∞

log log M(r, r)

log r
,

so that ρ(F ) = 3ρ(f).

Example 3.1. Consider the differential equation

(21) f 1,0 + f 0,1 = 2f.
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We will show that ρ(f) ≥ 1. (We remark that this can be done directly since the
general solution to (21) is Φ(z1,−z2)e

z1+z2 , where Φ is any one dimensional entire
function.)

If (|ζ1|, |ζ2|) is normal for F and |F (ζ1, ζ2)| = M (|ζ1|, |ζ2|), then by (21), (19),
(20) and (11),

2N1 − (1 + o(1))N2

3ζ2
1ζ2

+
2N2 − (1 + o(1))N1

3ζ1ζ2
2

= 2 + o(1).

It follows that
N ∗ ≥ (2 + o(1)) min{|ζ1|2|ζ2|, |ζ1||ζ2|2}.

By equation (4.7) in [1] we have

(22) Nj ≤ log M (log log M )2, j = 1, 2,

and thus

(23) log M (log log M )2 ≥ (2 + o(1)) min{|ζ1|2|ζ2|, |ζ1||ζ2|2}.
Now the set

TK(R) = {(r1, r2) : 1 ≤
√

r2
1 + r2

2 ≤ R and K−1 ≤ r1/r2 ≤ K}
has logarithmic measure 2 log K log R. Thus, in view of (8), there are arbitrarily
large normal values (r1, r2) for which K−1 ≤ r1/r2 ≤ K if K > e3/2. From this and
(23), then, ρ(F ) ≥ 3, and hence ρ(f) ≥ 1.

Example 3.2. Consider the n-th order linear PDE

(24) fn,0 =
n∑

j=0

n−1∑
i=0

Pi,jf
i,j,

where the Pi,j are polynomials in two complex variables. A simple application of the
Cauchy–Kovalevskaya Theorem [7] shows that all solutions of (24) are entire and, as
in Example 3.1, every solution is transcendental.

To the best of our knowledge there have been no order estimates of entire solutions
of (24). Our method can often obtain such results. To simplify matters, let us take
the second order equation

(25) f 2,0 = Pf,

where P is a polynomial, and proceed as in Example 3.1. Using (15), (25) becomes

Aζ1F
1,0 + Bζ2F

0,1 + Cζ2
1F

2,0 + Dζ1ζ2F
1,1 + Eζ2

2F
0,2 = ζ4

1ζ
2
2P (ζ2

1ζ2, ζ1ζ
2
2 )F ,

where A, B, C, D and E are constants. Using (11), we obtain

(26) AN1 + BN2 + CN 2
1 + DN1N2 + EN 2

2 = (1 + o(1))ζ4
1ζ

2
2P (ζ2

1ζ2, ζ1ζ
2
2 ),

and therefore

(27) N ∗2 ≥ (c + o(1))|ζ1|4|ζ2|2|P (ζ2
1ζ2, ζ1ζ

2
2 )|,

where c is a positive constant. As in Example 3.1, this implies that ρ(F ) ≥ 3 + 3d,
where d is the degree of P , and thus ρ(f) ≥ 1 + d.
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As we have mentioned before, the primary reason to define F and transform the
equation (24) is to be able to apply Theorem 1 with σ → 0 as (r1, r2) → ∞ and
obtain asyptotically, as in (26), an equation of the form

(28) P(N1, N2) = 0,

where P is a polynomial in N1 and N2 with polynomial coefficients. This parallels
the situation in one variable where (24) is an ordinary differential equation and P(N)
is a polynomial in the central index N . In such a situation, the possible orders of
growth of N can be obtained by inspection or more generally by appealing to the
Newton–Puiseux diagram (see e.g. [3]) where it is found that these orders depend
only on the degrees of the polynomial coefficients of P(N).

In many situations the equation (28) allows us to find a minimum growth for
max(N1,N2) and hence a minimum order for a solution to (25). In general, however,
there may be significant cancelation among terms of like degree in (28) and, in the
extreme, this equation may give us no information at all. Indeed, suppose we take
n = 2 in (25) and transform the equation as before using F . Then provided the
degree of the polynomial Q is at least 6, P could well have the form

(29) P(N1,N2) = N 2
1 − 1

2
N 2

2 − 1

2
N1N2 + N1Q−N2(Q− 3/2) + Q− 1.

Except for the fact that the form of F forces 1/2 ≤ N1/N2 ≤ 2, we have no
prior knowledge of the relationship between N1 and N2. Conceding the possibility
that N2 = N1 + 1, we find that (29) is identically 0 regardless of the growth of
max(N1,N2).

Example 3.3 One dimensional Wiman–Valiron theory has been successful in
showing that certain nonlinear equations cannot have entire solutions. We offer a
two dimensional example. Let P (z1, z2) be a polynomial and consider the equation

(30) f 1,0f 0,1 = Pfn, n ≥ 3.

It is easy to check that there is no polynomial solution. We assume that this equation
has a transcendental entire solution and proceed as in Example 3.1 to obtain

2N1 − (1 + o(1))N2

3ζ2
1ζ2

2N2 − (1 + o(1))N1

3ζ1ζ2
2

= (1 + o(1))M (ζ1, ζ2)
n−2.

This clearly contradicts (22) proving that (30) has no entire solution.
When n = 2, (30) may have entire solutions. Indeed f(z1, z2) = ez1z2 is a solution

with P (z1, z2) = z1z2. Determining which choices of P allow entire solutions is beyond
the scope of our method.

Example 3.4. Consider the differential equation

(31) f 1,0 = Cfm f 0,1,

where C is a non-zero constant and m is a positive integer. It is easily checked
that there are no entire solutions of (31) that are polynomial in one or the other
variable, and Li [5] showed that there are no transcendental entire solutions. Li’s
proof depends on characterizing common right factors of partial derivatives. We will
prove the result using (11) and the following lemma, the proof of which we defer for
a moment.
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Lemma 2. There are arbitrarily large positive values of λ such that the set

(32) Sλ := {r2 : r2 ≥ 1 and (
√

λ/r2, r2) is normal}
has infinite logarithmic measure.

Assume that f is a transcendental solution to (31). We apply the chain rule to
F and use (11) as in the previous examples, evaluating (31) at

(33) Z1 = Z 2
1 Z2, Z2 = Z1Z

2
2 ,

where (Z1,Z2) is such that

(34) |F (Z1,Z2)| = M (|Z1|, |Z2|)
and (|Z1|, |Z2|) is normal for F . In view of Lemma 2 and the fact that |Z1| =√
|Z1|/|Z2|, we can choose values of |Z1| (in fact arbitrarily large values, although

we do not use that here) such that (|Z1|, |Z2|) is normal for arbitrarily large values
of |Z2|. Let us choose and fix such a value of |Z1|.

We first refine the choice of Z1 and Z2. It follows from a result of Hayman [6]
that for given Z1 and with fZ1(z) := f(Z1, z), it is possible to choose Z2,0 such that
|Z2,0| = |Z2|, |fZ1(Z2,0)| = |fZ1(Z2)| and

(35)
Z2,0f

′
Z1

(Z2,0)

fZ1(Z2,0)
≥ |Z2,0|M ′+(|Z2,0|, fZ1)

M(|Z2,0|, fZ1)
,

the left hand side being real. Here ′+ represents the right hand derivative. We replace
our original Z2 by Z2,0, and solve (33) for Z1 and Z2. The upshot is that we may
assume that (35) holds at Z2.

From (31), (19) and (20), we obtain

(36) (2N1 − (1 + o(1))N2) = (C + o(1))(2N2 − (1 + o(1)N1) (Z1/Z2)F
m,

and from this and (22) it follows that 2N2 = (1 + o(1))N1. Returning to (31), and
now using (11) to rewrite only the left hand side, we have

(3C−1 + o(1))
Z2N2

Z1Fm(Z1,Z2)
=

Z2f
0,1(Z1, Z2)

f(Z1, Z2)
=

Z2f
′
Z1

(Z2)

fZ1(Z2)

≥ |Z2|M ′+(|Z2|, fZ1)

M(|Z2|, fZ1)
.

(37)

Since M(|Z2|, fZ1) = M(|Z1|, |Z2|) and M(1, fZ1) ≤ M(|Z1|, 1), we have

|Z2|M ′+(|Z2|, fZ1)

M(|Z2|, fZ1)
≥ log M(|Z2|, fZ1)− log M(1, fZ1)

log |Z2|
≥ log M(|Z1|, |Z2|)− log M(|Z1|, 1)

log |Z2| .

(38)

As we have observed, the left hand side of (37) tends to zero as (Z1, Z2) → ∞.
On the other hand, since |Z1| is fixed, the right hand side of (38) tends to ∞, a
contradiction.

Turning to the proof of Lemma 2, let us recall the way in which the normal
set in two dimensional Wiman–Valiron theory arises. The method of [1] defines a
tiling of the (log r1, log r2) plane by a collection of non-overlapping, convex polygons.
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Each polygon is assigned, in a certain way, an ordered pair of non-negative integers
(N1, N2). A sequence of numbers, ρN (N = 0, 1, 2 . . . ), is given, satisfying

(39) 1 ≤ ρN ≤ e2 and ρN → e2 as N →∞,

and the polygon to which (N1, N2) is assigned is translated by the vector (log ρN1 , log
ρN2). The translated polygons are non-overlapping, but the translation introduces
gaps between them. The normal points (r1, r2) are those for which (log r1, log r2)
lies in the interior of the translated polygons. Also, if (r1, r2) is normal, the pair
(N1, N2) assigned to the polygon to which (log r1, log r2) belongs is the central index
at (r1, r2).

To prove Lemma 2, consider, for m, n ∈ N,

Pm,n =
{

(
√

λ/r2, r2) : λ ∈ [e8m, e8m+8] and r2 ∈ [e8n, e8n+8]
}

.

This set corresponds to a parallelogram Qm,n in the (log r1, log r2) plane, with ver-
tices (4m − 4n, 8n), (4m − 4n + 4, 8n), (4m − 4n − 4, 8n + 8) and (4m − 4n, 8n +
8). From the preceding remarks, the part of Qm,n that corresponds to excep-
tional points is no larger than the set of points that are translated out of Qm,n

by the vector (log ρN1 , log ρN2). Both components of (log ρN1 , log ρN2) are positive
and |(log ρN1 , log ρN2)| ≤ 2

√
2, from (39). Also, the shortest distance from the bot-

tom left hand corner of Qm,n to the right hand sloping side is 8/
√

5 > 2
√

2. There is
thus a small parallelogram Rm,n in the bottom left hand corner of Qm,n, similar to
Qm,n and having the same dimensions for all m and n, that is not translated outside
Qm,n. If the area of Rm,n is C say, then the logarithmic measure of the normal set
in Pm,n is at least C. Thus, making the change of variables (r1, r2) → (λ, r2), where
λ = r2

1r2, so that
dλ dr2

λ r2

= 2
dr1 dr2

r1 r2

,

and defining

Sλ,n = {r2 : e8n+8 ≥ r2 ≥ e8n and (
√

λ/r2, r2) is normal},
and also

In(λ) =

ˆ

Sλ,n

dr2

r2

,

we have

(40)
ˆ e8m+8

e8m

In(λ)

λ
dλ ≥ 2C.

On the other hand, if the set (32) has finite logarithmic measure for all λ ∈ [e8m, e8m+8],
then In(λ) → 0 as n → ∞ for every λ ∈ [e8m, e8m+8], and therefore the integral on
the left hand side of (40) tends to 0 as n →∞, a contradiction.
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