
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 36, 2011, 411–421

CONTINUOUSLY PARAMETRIZED
BESICOVITCH SETS IN Rn

Esa Järvenpää, Maarit Järvenpää, Tamás Keleti and András Máthé

University of Oulu, Department of Mathematical Sciences
P.O. Box 3000, 90014 University of Oulu, Finland; Esa.Jarvenpaa@oulu.fi

University of Oulu, Department of Mathematical Sciences
P.O. Box 3000, 90014 University of Oulu, Finland; Maarit.Jarvenpaa@oulu.fi

Eötvös Loránd University, Department of Analysis
Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary; elek@cs.elte.hu

University of Warwick, Department of Mathematics
Coventry CV4 7AL, United Kingdom; A.Mathe@warwick.ac.uk

Abstract. We study continuous 1-dimensional time parametrization and (n− 1)-dimensional
direction parametrization of Besicovitch sets in Rn. In the 1-dimensional case we prove that for
n ≥ 3 one can move a unit line segment (in fact even a full line) continuously in Rn within a set of
measure zero in such a manner that the line segment points in all possible directions. We also show
that in Rn, for any n ≥ 2, one can parametrize unit line segments continuously by their direction
so that all segments are contained in a set of arbitrarily small measure. However, if we parametrize
lines continuously by their direction then the set which is not covered by their union is bounded.

Introduction

In 1917 Kakeya [8] asked the following question.

Kakeya needle problem. What is the least amount of area required to rotate
continuously a unit line segment in the plane by a full rotation (i.e. by 360◦)?

Not knowing about this question, Besicovitch [1] constructed almost at the same
time a planar set of Lebesgue measure zero that contains a unit segment in every
direction. A set containing a unit segment in every direction is called a Besicovitch
set. Later [2] he verified that a modification of his construction gives the following
answer to the Kakeya needle problem: there exists a planar set of arbitrarily small
area within which a unit line segment can be continuously rotated by a full rotation.

Is it possible to rotate a unit line segment continuously within a planar set of
measure zero? It was already mentioned by Besicovitch in a footnote of [2] that this
is impossible but a proof was published only recently by Tao [11]. Then O’Neil [10]
proved that there exists a planar set of Lebesgue measure zero within which a line
segment can be rotated by a map that is of Baire class 1, that is, a pointwise limit
of a sequence of continuous functions.
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In this paper we study the above questions in higher dimension. In Section 1 we
show that in Rn for n ≥ 3 one can do more than in the plane: it is possible to move
a unit line segment (in fact even a full line) continuously within a set of measure zero
in such a way that the line segment points in all possible directions. Hence, if we
consider the time as the parameter of the continuous rotation then the above result
gives a positive answer to the question. This answer leads to the natural question
whether one can construct a continuous map from the set of directions to the set of
unit line segments of Rn (or to the set of lines in Rn) so that one assigns to each
direction a unit line segment (or line) in that direction and all line segments (or lines)
are contained in a small set. In Section 2 we verify that this is not possible for lines:
the union of the lines is the whole Rn if n is odd and it has bounded complement if n
is even. However, as we show in Section 3, for unit line segments such a continuous
parametrization by the direction is possible inside a set of arbitrarily small measure.

The main tools we use are the Besicovitch projection theorem in Section 1, alge-
braic topology in Section 2 and a simply connected construction given by Cunning-
ham [4] to the Kakeya needle problem in Section 3.

Finally, we remark that this work (as the question and the work of Kakeya as
well) has almost nothing to do with the famous “Kakeya conjecture”, which states
that Besicovitch sets in Rn must have Hausdorff dimension n.

1. Time parametrization

We start by giving an explicit construction of a continuously parametrized Besi-
covitch set in Rn for any n ≥ 3.

Theorem 1.1. For any n ≥ 3 one can continuously move a line in a closed subset
of Rn having zero Lebesgue measure so that the line points in every direction. More
precisely, there exists a continuous map L : [0, 1] → {lines of Rn} such that

(i) for every line l of Rn there exists a t ∈ [0, 1] so that L(t) is parallel to l, and
(ii) the set

⋃
t∈[0,1] L(t) is a closed set of Lebesgue measure zero.

Proof. For any given u,w ∈ {1}× [0, 1]n−1 we construct a map L that has all the
required properties but instead of (i) the following holds:

(i’) The lines L(0) and L(1) are parallel to u and w, respectively, and for any
v ∈ {1} × [0, 1]n−1 there exists t ∈ [0, 1] so that L(t) is parallel to v.

Since every line through the origin hits at least one of the faces of [−1, 1]n, say
V , and therefore at least one translate of the (n − 1)-dimensional unit cube inside
V having a vertex at the center of V , by gluing finitely many such maps and by
rescaling we will get the required map.

The following set will code the lines we take. Let

A =

{( ∞∑
j=1

a
(j)
1

2j , . . . ,

∞∑
j=1

a
(j)
n

2j

)
:

a
(j)
i ∈ {0, 1} and a

(j)
1 + . . . + a

(j)
n is even

for every i and j

}
.

Define A0 = [0, 1]n and

Ak =

{( ∞∑
j=1

a
(j)
1

2j , . . . ,

∞∑
j=1

a
(j)
n

2j

)
:

a
(j)
i ∈ {0, 1} for every i and j and

a
(j)
1 + . . . + a

(j)
n is even for j = 1, . . . , k

}
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for all k = 1, 2, . . . Note that A =
⋂∞

k=0 Ak and Ak is the union of 2(n−1)k closed
cubes of side length 2−k with disjoint interiors that are obtained from the cubes of
Ak−1 by considering a black and white 2× . . .×2 chessboard on each cube of Ak−1 so
that the little cube closest to the origin is always black and by taking the black ones.
Both constructions show that A is a self-similar set. One of the important properties
of A is the following:

Claim 1.2. For any v = (1, a2, . . . , an) ∈ {1} × [0, 1]n−1 there exists a1 ∈ [0, 1]
so that (a1, . . . , an) ∈ A.

Proof. The claim follows easily from the definition of A: Write a2, . . . , an in
binary form as ai =

∑∞
j=1 a

(j)
i 2−j (i = 2, . . . , n) and for each j choose a

(j)
1 ∈ {0, 1} so

that a
(j)
1 + . . .+a

(j)
n is even. Then for a1 =

∑∞
j=1 a

(j)
1 2−j we clearly have (a1, . . . , an) ∈

A. ¤
By this claim, we can choose u′, w′ ∈ A for the given u,w ∈ {1} × [0, 1]n−1 so

that changing the first coordinates of u′ and w′ to 1 (if necessary) we get u and w,
respectively.

Now we construct a Peano type curve with range A that starts from u′ and ends
at w′.

Claim 1.3. There exists a continuous and onto map Γ: [0, 1] → A so that Γ(0) =
u′ and Γ(1) = w′.

Proof. The construction is similar to the classical Peano curve construction. One
can easily check that the intersection of any two cubes of A1 contains at least one
point of A, and so the same holds for the little cubes of Ak that are contained in a
fixed cube of Ak−1.

Let Γ(0) = u′ and Γ(1) = w′. We enumerate the 2n−1 cubes of A1 so that the
first one contains u′ and the last one contains w′. We allow repetition if necessary:
the first one and the last one may be the same. Then we divide [0, 1] into 2n−1 or
2n−1 + 1 intervals of equal length. We match the mth interval to the mth cube of A1

and define Γ(t) at the touching points of the intervals as a point of the intersection
of A and the corresponding two cubes.

We continue by induction. At the kth step, in each cube of Ak−1 we enumerate
the little cubes of Ak again allowing repetition so that the first one contains the
already chosen image of the left endpoint of the corresponding interval defined at the
previous step and the last one contains the image of the right endpoint. Then we
subdivide each interval of the previous step into 2n−1 or 2n−1 + 1 intervals of equal
length, match them to the enumerated little cubes of the corresponding cube of Ak

in the given order and define Γ(t) at the touching points of the new intervals as a
point of the intersection of A and the corresponding two cubes. Finally, we extend
Γ continuously to [0, 1]. ¤

Now we can define the map L as follows. Let

L(t) = l(Γ(t)), where l((a1, . . . , an)) = {(h, a1 + a2h, a3h, . . . , anh) : h ∈ R}.

Then L is clearly a continuous map from [0, 1] to {lines of Rn}.
First we prove (i’). By construction, if Γ(t) = (a1, . . . , an) then L(t) is parallel

to (1, a2, . . . , an). Since L(0) = l(Γ(0)) = l(u′) and L(1) = l(w′), this clearly implies
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that the lines L(0) and L(1) are parallel to u and w, respectively. The other part of
(i’) follows from Claim 1.2.

Now we prove (ii). Let F =
⋃

t∈[0,1] L(t). By definition,

F = {(h, a1 + a2h, a3h, . . . , anh) : (a1, . . . , an) ∈ A, h ∈ R},
which is a closed subset of Rn since A is compact. Define

Aa3,...,an = {(a1, a2) : (a1, . . . , an) ∈ A}.
Claim 1.4. For almost every (a3, . . . , an) ∈ [0, 1]n−2 the set Aa3,...,an is purely

unrectifiable and has finite length.

Proof. For almost every (a3, . . . , an) ∈ [0, 1]n−2 the set Aa3,...,an has finite length
since if a3, . . . , an are irrational then for any k it can be covered by 2k squares of side
length 2−k.

Assume that a3, . . . , an can be written as ai =
∑∞

j=1 a
(j)
i 2−j (i = 3, . . . , n), where

a
(j)
i ∈ {0, 1} for every i and j, and a

(j)
3 + . . . + a

(j)
n is even for infinitely many j

and odd for infinitely many j. Since almost every (a3, . . . , an) ∈ [0, 1]n−2 satisfies
this condition it is enough to prove that Aa3,...,an is purely unrectifiable under this
assumption.

It is a well-known and fairly easy fact (see e.g. [9, 18.10 (4)]) that if a Borel
set in the plane has two projections of zero Lebesgue measure then it is purely
unrectifiable. Hence it is sufficient to show that A+ = {a1 + a2 : (a1, a2) ∈ Aa3,...,an}
and A− = {a1 − a2 : (a1, a2) ∈ Aa3,...,an} have measure zero.

Let e1, e2, . . . be those indices j for which a
(j)
3 + . . .+a

(j)
n is even and let o1, o2, . . .

be those indices j for which a
(j)
3 + . . . + a

(j)
n is odd. Let (a1, a2) ∈ Aa3,...,an . Then,

by the definition of A, a1 and a2 can be written as a1 =
∑∞

j=1 a
(j)
1 2−j and a2 =∑∞

j=1 a
(j)
2 2−j (a(j)

i ∈ {0, 1}), where a
(ek)
1 = a

(ek)
2 and a

(ok)
1 + a

(ok)
2 = 1 for every

k = 1, 2, . . . Thus for any (a1, a2) ∈ Aa3,...,an the number (a1 + a2 −
∑∞

k=1 2−ok)/2
can be written in base 2 so that the digits labelled by o1, o2, . . . are all zeros and the
number (a1− a2 +

∑∞
k=1 2−ok)/2 so that the digits labelled by e1, e2, . . . are all zeros.

This implies that A+ and A− are of measure zero, which completes the proof of the
claim. ¤

By the Besicovitch projection theorem [3] (see also [9, Theorem 18.1]) almost
every projection of a purely unrectifiable Borel subset of the plane with finite length
has zero Lebesgue measure. Thus, by Claim 1.4, for almost every (a3, . . . , an) ∈
[0, 1]n−2 the set

{a1 + a2h : (a1, . . . , an) ∈ A}
has zero measure for almost every h ∈ R. Using Fubini’s theorem, we see that F has
measure zero, which completes the proof of (ii) and also the proof of Theorem 1.1. ¤

Corollary 1.5. For any n ≥ 3 and ε > 0 one can continuously move a unit
line segment in Rn so that the line segment points in all possible directions within a
compact subset of zero Lebesgue measure inside a ball of radius 1

2
+ ε.

Proof. Let L : [0, 1] → {lines of Rn} be a map provided by Theorem 1.1. First
we take a continuous point-selection P : [0, 1] → Rn of L by which we mean that P
is continuous and P (t) ∈ L(t) for every t ∈ [0, 1]. This can be done, for example,
by taking for each t the closest point of L(t) to the origin. Since P is continuous
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P ([0, 1]) is compact, and therefore, it is contained in a ball centered at the origin
with some radius r. By shrinking everything from the origin by ratio ε

r
if necessary

(that is, by taking ε
r
L instead of L), we can guarantee that r ≤ ε. Finally, taking the

unit subsegment of the line L(t) with midpoint P (t) for each t we get a continuous
motion of a unit line segment in a compact subset of zero Lebesgue measure inside a
ball of radius 1

2
+ ε. ¤

Remark 1.6. In the proof of Theorem 1.1 we give an explicit construction for
a continuously parametrized Besicovitch set with zero measure. There is a shorter
way to prove the existence of such a set: Take a classical compact Besicovitch set B
with zero measure and with unit segments in Rn. Let X be the metric space of the
unit line segments in Rn equipped with the Hausdorff metric and let K consist of
those segments of X that are contained in B. Then K is a compact subset of X. It
is well known that every compact metric space is a continuous image of the Cantor
set C. Hence we have a continuous map g : C → X so that g(C) = K. All we need
to do is to extend this map continuously to [0, 1] so that the union of the segments of
g([0, 1]) still has measure zero. Let (a, b) be a complementary interval of C. Moving
g(a) smoothly to g(b) in such a way that the diameter of g([a, b]) is at most twice the
distance between g(a) and g(b) gives the desired extension since the union of the new
segments will be a smooth 2-dimensional surface having zero measure. Since there
are only countably many complementary intervals of C we have the claim.

2. Lines parametrized continuously by their direction

In the previous section we constructed lines in every direction in Rn (n ≥ 3)
so that they can be parametrized continuously by time and their union is small. In
this section we parametrize lines continuously by their direction and show, by using
simple algebraic topological arguments, that in this case the union must be huge.
We denote by Sn−1 the unit sphere in Rn.

Theorem 2.1. Let L : Sn−1 → {lines of Rn} (n ≥ 2) be a continuous map such
that for each d ∈ Sn−1 the line L(d) is parallel to d. Then Rn \ ⋃

d∈Sn−1 L(d) is
bounded.

Proof. As in the proof of Corollary 1.5, we take a continuous P : Sn−1 → Rn so
that P (d) ∈ L(d) for every d ∈ Sn−1 and P (Sn−1) is contained in a ball B. Let O be
the center of B.

We will verify that
⋃

d∈Sn−1 L(d) ⊃ Rn \ B. For this it is enough to show that
for any sphere S centered at O and having at least as big radius as B we have
S ⊂ ⋃

d∈Sn−1 L(d).
For any d ∈ Sn−1 the point P (d) is surrounded by S, and therefore the halfline in

direction d starting from P (d) intersects S in a unique point Q(d). Let F (d) ∈ Sn−1

be the direction of the vector from O to Q(d). Since Q(d) ∈ L(d), all we have to
show is that F is onto.

The continuity of P implies that F : Sn−1 → Sn−1 is continuous. Since P (d) and
O are surrounded by S and Q(d) ∈ S, we cannot have F (d) = −d. This gives (see
e.g. [6, XV, 1.2 (1)]) that F and the identity map on Sn−1 are homotopic. Note that
any continuous self-map of Sn−1 which is not onto, is null-homotopic (see e.g. [6, XV,
1.2 (1)]). On the other hand, by Brouwer’s Theorem (see e.g. [6, XVI, Theorem 2.1]),
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the identity map on Sn−1 is not null-homotopic. Hence F must be surjective, which
completes the proof. ¤

If n is odd then we can say even more: the lines cover the whole Rn.

Theorem 2.2. Let L : Sn−1 → {lines of Rn} (n ≥ 2) be a continuous map such
that for each d ∈ Sn−1 the line L(d) is parallel to d. If n is odd then

⋃
d∈Sn−1 L(d) =

Rn.

Proof. Again we take a continuous P : Sn−1 → Rn so that P (d) ∈ L(d) for every
d ∈ Sn−1. We will prove that for an arbitrary q ∈ Rn we find d ∈ Sn−1 so that
q ∈ L(d). If q ∈ P (Sn−1) then there is nothing to prove. Thus we may suppose
that q 6∈ P (Sn−1). We define a continuous map f : Sn−1 → Sn−1 by setting f(d) as
the direction of the vector from q to P (d) for every d ∈ Sn−1. By a classical result
(which follows easily from the famous theorem of Poincaré and Brouwer stating that
there is no continuous non-vanishing tangent vector field on any S2k (see for example
[6, XVI, Theorem 3.3 and Corollary 3.4])), every continuous g : Sn−1 → Sn−1 has a
fixed point or sends a point to its antipode provided that n is odd. This implies the
existence of d ∈ Sn−1 so that either f(d) = d or f(d) = −d. Since both imply that
q ∈ L(d), the proof is complete. ¤

The following example shows that for every even n Theorem 2.2 is false and we
cannot say more than Theorem 2.1 in this case.

Example 2.3. Let n be a positive even number and for any d = (d1, . . . , dn) ∈
Sn−1 let L(d) be the line through (dn

2
+1, . . . , dn,−d1, . . . ,−dn

2
) in direction d. Clearly,

L is continuous and L(d) is a tangent line of the open unit ball B(0, 1) centered
at the origin. Hence we find a continuous map L : Sn−1 → {lines of Rn} so that
for each d ∈ Sn−1 the line L(d) is parallel to d and

⋃
d∈Sn−1 L(d) is disjoint from

B(0, 1). (Applying the argument of Theorem 2.1 gives that
⋃

d∈Sn−1 L(d) covers the
complement of B(0, 1), and therefore we have

⋃
d∈Sn−1 L(d) = Rn \B(0, 1).)

In the proofs of Theorems 2.1 and 2.2 we heavily used the fact that L is defined on
the whole Sn−1, which caused topological obstacles to obtaining a small union. One
might hope to obtain a small union if L is defined only on an open subset of Sn−1.
The following theorem shows that even in this case the union of lines is large. For
that we need a topological lemma, which is surely well known but for completeness
we present a proof.

Notation 2.4. For any a ∈ Sn−1 and angle r > 0 let

V (a, r) = {d ∈ Sn−1 : ∠(d, a) ≤ r} and W (a, r) = {d ∈ Sn−1 : ∠(d, a) = r},

where the angle between d and a is denoted by ∠(d, a).

Lemma 2.5. Let a ∈ Sn−1 and 0 < ε < r < π
2
. Suppose that f : V (a, r) → Sn−1

is a continuous map for which ∠(d, f(d)) < ε for any d ∈ V (a, r). Then f(V (a, r)) ⊃
V (a, r − ε).

Proof. Suppose that b ∈ V (a, r − ε) but b 6∈ f(V (a, r)). Let X = Sn−1 \ {b,−b}.
For x ∈ V (a, r + ε) \V (a, r− ε) let g(x) be the closest point of W (a, r) to x. Extend
g to a continuous retraction X → W (a, r). Then for any d ∈ W (a, r) we have

∠(d, g(f(d))) ≤ ∠(d, f(d)) + ∠(f(d), g(f(d)) < ε + ε < 2r.
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This implies that g ◦ f |W (a,r) is homotopic to the identity of W (a, r). Since W (a, r)
is an (n − 2)-dimensional sphere we see that g ◦ f |W (a,r) is not null-homotopic. On
the other hand, g ◦ f is a continuous extension of g ◦ f |W (a,r) to V (a, r). The fact
that V (a, r) is homeomorphic to an (n− 1)-dimensional ball implies that g ◦ f |W (a,r)

is null-homotopic, which is a contradiction. ¤

Theorem 2.6. Suppose that U ⊂ Sn−1 has non-empty interior and L : U →
{lines of Rn} (n ≥ 2) is a continuous map such that for each d ∈ U the line L(d) is
parallel to d. Then

⋃
d∈U L(d) contains an unbounded open set.

Proof. By taking a compact subset of U with non-empty interior if necessary, we
may suppose that U is compact. The proof starts as that of Theorem 2.1. We choose
a continuous map P : U → Rn so that P (d) ∈ L(d) for every d ∈ U and select a ball
B ⊃ P (U) and a sphere S centered at the center O of B having radius at least as
large as that of B. For any d ∈ U , we define f(d) as the direction of the vector from
O to the unique intersection Q(d) of S and the halfline in direction d starting from
P (d). Note that Q(d) ∈ L(d) for any d ∈ U .

Pick a ∈ U and 0 < ε < r < π
2
so that V (a, r) ⊂ U . It is easy to see that if

the radius of S is larger than some R, which depends only on ε and the radius of B,
then ∠(d, f(d)) < ε for any d ∈ U . By Lemma 2.5, this implies that f(V (a, r)) ⊃
V (a, r− ε). So any x ∈ Rn with |x−O| ≥ R and ∠(x, a) ≤ r− ε is covered by a line
L(d) for some d ∈ U , which completes the proof. ¤

In all of the above results the direction of a line of Rn is represented as a point of
Sn−1. Since lines with opposite directions are the same, it is also natural to represent
the directions of the lines of Rn as the points of the real projective space RPn−1,
which is the same as the set of lines of Rn going through the origin. A map on RPn−1

can be also considered as an even map on Sn−1, that is, a map whose values agree
on opposite points of Sn−1. This means that Theorems 2.1, 2.2 and 2.6 also hold
on RPn−1. The only question is whether Example 2.3 is valid for a map defined on
RPn−1. The following theorem shows that the answer is negative: in this case both
for odd and even n the lines cover the whole Rn.

Theorem 2.7. If F : {lines of Rn through the origin} → {lines of Rn}, where
n ≥ 2, is a continuous map such that for every line l through the origin the line F (l)
is parallel to l, then

⋃
l F (l) = Rn.

Proof. For any d ∈ Sn−1, let l(d) be the line in direction d through the origin
and let L(d) = F (l(d)). Then L : Sn−1 → {lines of Rn} is a continuous map such
that for each d ∈ Sn−1 the line L(d) is parallel to d. Moreover, L is even, that is,
L(d) = L(−d) for any d.

In the same way as in the proof of Theorem 2.2 we define a continuous map
f : Sn−1 → Sn−1 and we need to prove that f(d) = d or −d for some d. The fact
that L is even implies that f is also even. Thus all we need is the well-known fact in
algebraic topology that for any k any even map f : Sk → Sk has a fixed point, which
can be proved, for example, as follows: If f is even and does not have a fixed point
then f(d) 6= −d for any d. This implies (see e.g. [6, XV, 1.2 (1)]) that f is homotopic
to the identity map on Sn−1, and therefore its degree is 1 (for definition and basic
properties see e.g. [6, 7]). On the other hand, the degree of an even continuous map
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Sk → Sk is always even (see e.g. [7, Theorem 23.24]). This contradiction completes
the proof. ¤

3. Segments parametrized continuously by their direction

In this section we show that if, instead of lines, we parametrize unit line segments
continuously by their direction then the union of the segments can be small. Our
construction is based on a construction of Cunningham [4].

Definition 3.1. By an ε-Cunningham set we mean a simply connected subset
C of the plane with Lebesgue measure less than ε in which a unit line segment can
be continuously turned around so that its angle is non-decreasing and it returns to
its original position with its ends reversed.

Cunningham [4] proved that ε-Cunningham sets exist for any ε > 0. The mono-
tonicity of the angle is not stated in [4] but it follows from the construction in which
the segment is always either turned by a positive angle or slid along the line contain-
ing the segment.

Notation 3.2. Let Nδ(H) be the open δ-neighborhood of a set H ⊂ R2, that is,

Nδ(H) = {x ∈ R2 : |x− y| < δ for some y ∈ H}.
We denote by s(c, d) the unit line segment in Rn with midpoint c ∈ Rn and direction
d ∈ Rn \ {0}. For n = 2 an angle α ∈ R is sometimes used as the second variable of
s instead of d ∈ R2 \ {0}.

The main result of this section is the following theorem, which provides a Besicov-
itch set with arbitrarily small measure in Rn parametrized continuously by direction
of its unit segments.

Theorem 3.3. For every n ≥ 2 and ε > 0 there exists a continuous map

F : Sn−1 → {unit line segments of Rn}
so that for any d ∈ Sn−1 the segment F (d) is parallel to d and it is the same as F (−d)
with reversed ends and

⋃
d∈Sn−1 F (d) is contained in a compact set B of Lebesgue

measure less than ε.

Proof. It is enough to find a continuous even map f : Sn−1 → Rn so that⋃
d∈Sn−1 s(f(d), d) has measure less than ε.
Let C be an ε

2
-Cunningham set and let c : [0, 1] → C and α : [0, 1] → [0, π]

be continuous functions that parametrize the midpoint and the angle of the segment
while it is turned around, respectively. We know that c(0) = c(1), α(0) = 0, α(1) = π
and α is non-decreasing.

Fix 0 < δ < π. In order to prove the n = 2 case, we replace α by a strictly
increasing function. Let t0 ∈ [0, 1] be such that α(t0) = π − δ and let

β(t) =

{
α(t) + δt if t ≤ t0,

π − δ + δt if t > t0.

It is easy to check that β(0) = 0, β(1) = π, β is strictly increasing and |β(t) −
α(t)| < δ for any t ∈ [0, 1]. This last property implies that s(c(t), β(t)) is in the
δ
2
-neighborhood of s(c(t), α(t)). Since β : [0, 1] → [0, π] is a continuous bijection, its

inverse β−1 : [0, π] → [0, 1] is also a continuous bijection. For any φ ∈ [0, π) and
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k ∈ Z, define g(kπ + φ) = c(β−1(φ)). Then g : R → C ⊂ R2 is π-periodic and
continuous (since c(β−1(0)) = c(0) = c(1) = c(β−1(π)), and we have

(3.1)
⋃

φ∈R

s(g(φ), φ) =
⋃

t∈[0,1]

s (c(t), β(t)) ⊂ N δ
2

( ⋃

t∈[0,1]

s(c(t), α(t))
)
⊂ N δ

2
(C).

Thus, for n = 2, letting ϕ(d) be the angle between d and a fixed vector and taking δ
small enough, f(d) = g(ϕ(d)) gives the desired map.

Now let n ≥ 3. Since g : R → C is continuous and π-periodic and C is simply
connected, there exists a continuous map H : [0, δ] ×R → C such that H(0, ·) = c0

for some c0 ∈ C, H(δ, ·) = g and H(t, ·) is π-periodic for any t ∈ [0, δ].
Let P ⊂ Rn be a fixed 2-dimensional plane through the origin. If we identify R2

with P then C ⊂ P ⊂ Rn. We denote by projP the orthogonal projection onto P .
For any d ∈ Sn−1, let r(d) = | projP d|. If r(d) 6= 0 denote by ϕ(d) the angle between
projP d and a fixed non-zero vector of P .

The function g(ϕ(d)) has most of the required properties but it is not defined
when r(d) = 0. This is why we define f(d) = g(ϕ(d)) only when r(d) ≥ δ and extend
f to the rest of Sn−1 using the homotopy H. More precisely, we claim that

f(d) =





g(ϕ(d)) if r(d) ≥ δ

H(r(d), ϕ(d)) if 0 < r(d) < δ

c0 if r(d) = 0

(d ∈ Sn−1)

has all the required properties. The function f is continuous since H(δ, ·) = g and
H(0, ·) = c0. It is an even function since ϕ(−d) = ϕ(d) + π, r(d) = r(−d) and both
g and H(t, ·) are π-periodic. It remains to prove that

⋃
d∈Sn−1 s(f(d), d) has measure

less than ε. The fact that C has measure less than ε
2
implies that the set N δ

2
(C) has

measure less than ε if δ is small enough. Hence it is enough to prove that

(3.2)
⋃

d∈Sn−1

s(f(d), d) ⊂ N δ
2
(C)× [−1

2
, 1

2

]n−2
.

Moreover, recalling that the midpoints of the unit segments are in C ⊂ P , it is
enough to show that

(3.3) projP s(f(d), d) ⊂ N δ
2
(C) (d ∈ Sn−1).

Since projP s(f(d), d) is a segment of length r(d) with midpoint f(d) ∈ C, the in-
clusion (3.3) is clear if r(d) < δ. Otherwise, using (3.1), the inclusion (3.3) follows
as

projP s(f(d), d) ⊂ s(f(d), projP d) = s(g(ϕ(d)), ϕ(d)) ⊂ N δ
2
(C). ¤

With some extra effort we can get a bit more.

Proposition 3.4. We can also guarantee in Theorem 3.3 that B is simply con-
nected and it is contained in a ball of radius 1 + ε.

To prove this result, we need some additional properties of Cunningham’s con-
struction and also a slight technical improvement.

Notation 3.5. We denote by Bn(r) and Bn(r) the n-dimensional open and
closed ball centered at the origin with radius r, respectively.

Theorem 3.6. (Cunningham [4]) For any ε > 0 there exists an ε-Cunningham
set C ⊂ B2(1) such that C is a finite union of polygons.
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Here by a polygon we mean the closed body of a non-self-intersecting closed
polygonal chain. Note that a finite union of polygons does not have to be a polygon
even if the union is simply connected—this may happen if two polygons meet in a
single point.

Lemma 3.7. For any ε > 0 there exists an open ε-Cunningham set C ⊂ B2(1+ε)
and δ0 > 0 such that Nδ(C) is simply connected for any δ < δ0.

Proof. Let C0 ⊂ B2(1) be an ε-Cunningham set such that C0 is a finite union
of polygons. By adding small polygons around the finitely many points where two
polygons meet in a singleton, we can make sure that C0 is a polygon. Let d < ε
be less than the smallest distance between disjoint edges of C0. Then one can check
that Nδ(C0) is simply connected for any δ < d

2
. For small enough d the set N d

4
(C0)

has measure less than ε. This implies that we can take C = N d
4
(C0) and δ0 = d

4
. ¤

Proof of Proposition 3.4. By Lemma 3.7 there exists an open ε
2
-Cunningham

set C ⊂ B2(1+ ε
2
) such that Nδ(C) is simply connected if δ is small enough. Starting

from this C we use the argument and the notation of the proof of Theorem 3.3. First
we claim that by choosing δ small enough and the homotopy map H properly we can
guarantee that

(3.4)
⋃

d∈Sn−1

s(f(d), d) ⊂ Bn(1 + ε).

Note that if a unit segment is contained in C ⊂ B2(1+ ε
2
) then its midpoint must

be in B2(ρ), where

(3.5) ρ2 = (1 + ε
2
)2 − (1

2
)2.

This implies that both c and g are maps into C ∩ B2(ρ). It is well known (see e.g.
[5, Ap. to Ch. IX, Problem 4 (h)]) that any connected component of the intersection
of two simply connected open subsets of the plane is simply connected. Hence every
component of C ∩ B2(ρ) is simply connected. Since the range of c is connected this
implies that we can choose the homotopy map H so that it is a map into C ∩B2(ρ).
Then clearly f is also a map into C ∩ B2(ρ). We consider two cases, r(d) < δ and
r(d) ≥ δ.

First suppose that r(d) < δ. Using the fact that projP s(f(d), d) is a segment
of length r(d) < δ with midpoint f(d) ∈ C ∩ B2(ρ), we get that projP s(f(d), d) ⊂
B2(ρ + δ

2
). Since the points of s(f(d), d) have distance at most 1

2
from the plane P ,

this implies that their distance from the origin is at most
√

(ρ + δ
2
)2 + (1

2
)2. By (3.5)

this distance is less than 1 + ε if δ is small enough. Thus s(f(d), d) ⊂ Bn(1 + ε) in
this case.

Now suppose that r(d) ≥ δ. Then f(d) = g(ϕ(d)). Assuming that s(f(d), d) =
s(f(d), projP d), the inclusion s(f(d), d) ⊂ Bn(1+ε) is clear. Otherwise, let Q be the
2-dimensional plane that contains the segments s(f(d), projP d) and s(f(d), d). Then
D = Q ∩Bn(1 + ε) is a two dimensional disc that contains s(f(d), projP d). Since Q
contains a vector orthogonal to P and f(d) ∈ P , s(f(d), projP d) is on the diagonal
of D. Hence, in the plane Q the disc centered at f(d) with radius 1

2
is contained in

D. Using the fact that s(f(d), d) is in this disc, we have s(f(d), d) ⊂ D ⊂ Bn(1 + ε),
which completes the proof of (3.4).
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Let
B =

(
N δ

2
(C)× [−1

2
, 1

2

]n−2
)
∩Bn(1 + ε).

We claim that (for small enough δ) the set B has all the required properties. The
projection projP is clearly a continuous retraction of B to N δ

2
(C). Since N δ

2
(C) is

simply connected, B is also simply connected. Finally, (3.2) and (3.4) imply that⋃
d∈Sn−1 s(f(d), d) ⊂ B, which completes the proof. ¤
The following observation shows that B cannot be inside a much smaller ball.

Proposition 3.8. Let B ⊂ Rn be a Besicovitch set parametrized continuously
by the directions of its unit line segments as in Theorem 3.3. Assume that B ⊂
Bn(1− r) for some 0 < r < 1. Then B ⊃ Bn(r). Thus in this case the measure of B
must be at least the volume of an n-dimensional ball of radius r.

Proof. We generalize an argument of Cunningham [4]. Suppose that B ⊂ Rn is
the set given by Theorem 3.3, B ⊂ Bn(1− r) and p ∈ Bn(r) \ B. By extending the
segments F (d) to full lines, we get a map like in Theorem 2.7. In particular, we find
d ∈ Sn−1 so that the line of the segment F (d) contains p. Since p 6∈ B, F (d) ⊂ B
and F (d) is a unit segment, this implies that for one of the endpoints q of F (d) we
have |p− q| > 1. This is a contradiction since |p| ≤ r and |q| ≤ 1− r. ¤

It would be interesting to know how small the set in Theorem 3.3 can be. We do
not know the answers to the following questions for any n ≥ 3.

Questions 3.9. Let B ⊂ Rn be a Besicovitch set parametrized continuously by
the directions of its unit line segments as in Theorem 3.3. Is the interior of B non-
empty? Does B have positive Lebesgue measure or at least full Hausdorff dimension?
What can we say if the function F is defined only on a subset of Sn−1 with non-empty
relative interior?
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