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Abstract. We show that, for many parameters a ∈ C, the set I(fa) of points that converge
to infinity under iteration of the exponential map fa(z) = ez + a is connected. This includes all
parameters for which the singular value a escapes to infinity under iteration of fa.

1. Introduction

If f : C → C is a transcendental entire function (that is, a non-polynomial holo-
morphic self-map of the complex plane), the escaping set of f is defined as

I(f) := {z ∈ C : fn(z) →∞}.
(Here fn = f ◦ · · · ◦ f︸ ︷︷ ︸

n times

denotes the n-th iterate of f , as usual.)

This set has recently received much attention in the study of transcendental dy-
namics, due to the structure it provides to the dynamical plane of such functions.
It is neither an open nor a closed subset of the complex plane and tends to have
interesting topological properties. In the simplest cases (see [DK, B, R3S, R4]), the
set I(f) is homeomorphic to a subset of a “Cantor Bouquet” (a certain uncountable
disjoint union of curves to ∞), and in particular I(f) is disconnected for these func-
tions. It has recently come to light that there are many situations where I(f) is
in fact connected. Rippon and Stallard showed that this is the case for any entire
function having a multiply-connected wandering domain [RS1] and also for many
entire functions of small order of growth [RS2]. These examples have infinitely many
critical values. The latter condition is not necessary, as there are even examples of
connected escaping sets in the family

fa : C → C; z 7→ exp(z) + a

of exponential maps, which may be considered the simplest parameter space of tran-
scendental entire functions. (These maps have no critical points, and exactly one
asymptotic value, namely the omitted value a.) Indeed, it was shown in [R5] that
the escaping set is connected for the standard exponential map f0, while all path-
connected components of I(f0) are relatively closed and nowhere dense. The proof
uses previously known results about this particular function, thus leaving open the
possibility of the connectedness of I(f0) being a rather unusual phenomenon.

Motivated by this result, Jarque [J] showed that I(fa) is connected whenever a
is a Misiurewicz parameter, i.e., when the singular value a is preperiodic. In this

doi:10.5186/aasfm.2011.3604
2010 Mathematics Subject Classification: 37F10, 30D05.
Key words: Julia set, exponential map, Eremenko’s Conjecture.
Supported by EPSRC Grant EP/E017886/1 and Fellowship EP/E052851/1.



72 Lasse Rempe

note, we extend his proof to a wider class of parameters. Our results suggest that
connectedness of the escaping set is in fact true for “most” parameters for which the
singular value belongs to the Julia set J(fa) = I(fa).1 If a /∈ J(fa), then fa has an
attracting or parabolic periodic orbit, and it is well-known that the Julia set, and
hence the escaping set, is a disconnected subset of C.

The main condition used in our paper is the following combinatorial notion, first
introduced in [R3].

1.1. Definition. We say that the singular value a of an exponential map f = fa

is accessible if a ∈ J(f) and there is an injective curve γ : [0,∞) → J(f) with
γ(0) = a, γ(t) ∈ I(f) for t > 0 and Re γ(t) →∞ as t →∞.

Remark 1. It follows from [FRS, Corollary 4.3] that this definition is indeed
equivalent to the one given in [R3]. In particular, the requirement Re γ(t) → ∞
could be omitted.

Remark 2. It is not known whether the condition that the singular value a
is accessible is always satisfied when a belongs to the Julia set (as far as we know,
this is an open question even for quadratic polynomials). Known cases include all
Misiurewicz parameters, all parameters for which the singular value escapes and a
number of others. Compare [R3, Remark 2 after Definition 2.2].

If γ is as in this definition, then every component of f−1(γ) is a curve tending
to ∞ in both directions. The set C \ f−1(γ) consists of countably many “strips” Sk

(k ∈ Z), which we will assume are labelled such that Sk = S0+2πik for all k. For our
purposes, it does not matter which strip is labelled as S0, although it is customary to
use one of two conventions: either S0 is the strip that contains the points r + πi for
sufficiently large r, or alternatively the strip containing the singular value a (provided
that f(a) /∈ γ).

For any point z ∈ C \ I(f), there is a sequence u = u0u1u2 . . . of integers, called
the itinerary with respect to this partition, such that f j(z) ∈ Suj

for all j ≥ 0. Every
escaping point whose orbit does not intersect the curve γ also has such an itinerary.
The itinerary of the singular value (if it exists) is called the kneading sequence of f .

1.2. Theorem. Let f(z) = exp(z) + a be an exponential map. If
(a) the singular value a belongs to the escaping set, or
(b) the singular value a belongs to J(f)\ I(f) and is accessible with non-periodic

kneading sequence,
then I(f) is a connected subset of C.

Remark 1. All path-connected component of I(f) are nowhere dense under the
hypotheses of the theorem [R3, Lemma 4.2].

Remark 2. The theorem applies, in particular, to the exponential map f = exp;
this gives an alternative proof of the main result of [R5].

Conjecturally, if fa has a Siegel disk with bounded-type rotation number, then
the singular value a is accessible in our sense, and furthermore accessible from the
Siegel disk. In this case, the kneading sequence would be periodic and the Julia set
(and hence the escaping set) disconnected. On the other hand, it is plausible that

1The Julia set of f is defined as the set of non-normality of the family of iterates of f . For certain
entire functions, including all exponential maps, it coincides with the closure of I(f) by [E, EL].
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the escaping set of fa is connected whenever fa does not have a nonrepelling periodic
orbit.

The second half of Theorem 1.2 does not have a straightforward generalization
to other families. Indeed, our proof relies on the fact that f−1(γ) ⊂ I(f) (because
the singular value a is omitted), and that connected sets of nonescaping points there-
fore cannot cross the partition boundaries. In fact, Mihaljević–Brandt [M-B] has
shown that for many postcritically preperiodic entire functions, including those in
the complex cosine family z 7→ a exp(z)+b exp(−z), the escaping set is disconnected.
On the other hand, the proof of the first part of our theorem should apply to much
more general functions; in particular, to all cosine maps for which both critical values
escape.

We recall that Eremenko’s conjecture [E] states that every connected component
of the escaping set of a transcendental entire function is unbounded. This is true
for all exponential maps [SZ] and indeed for much larger classes of entire functions
[R3S, R2]. Despite progress, the question remains open in general, while it is now
known that some related but stronger properties may fail (compare, e.g., [R3S]). The
connectivity of the escaping set for a wide variety of exponential maps illustrates
some of the counterintuitive properties one may encounter in the study of connected
components of a planar set that is neither open nor closed (and exposes the difficulties
of constructing a counterexample should the conjecture turn out to be false). It seems
likely that a better understanding of these phenomena will provide further insights
into Eremenko’s conjecture.

Structure of the article. In Section 2, we collect some background about the
escaping set of an exponential map. In Section 3, we establish an important prelim-
inary result. The proof of Theorem 1.2 is then carried out in Section 4, separated
into two different cases (Theorems 4.3 and 4.4).

Basic notation. As usual, we denote the complex plane by C, and the Riemann
sphere by Ĉ = C ∪ {∞}. The closure of a set A in C and in Ĉ will be denoted A,
resp. Â. Boundaries will be understood to be taken in Ĉ, unless explicitly stated
otherwise.

Acknowledgments. I would like to thank Xavier Jarque, Phil Rippon and Gwyneth
Stallard for interesting discussions, and the referee for helpful comments.

2. Escaping points of exponential maps

It was shown by Schleicher and Zimmer [SZ] that the escaping set I(fa) of any
exponential map is organized in curves to infinity, called dynamic rays or hairs, which
come equipped with a combinatorial structure and ordering. We do not require a
precise understanding of this structure. Instead, we take an axiomatic approach,
collecting here only those properties that will be used in our proofs.

2.1. Proposition. Let f(z) = exp(z) + a be an exponential map.

(a) If a ∈ I(f), then a is accessible in the sense of Definition 1.1.
(b) Suppose that U ⊂ C is an open set with U ∩ J(f) 6= ∅. Then there is a curve

γ : [0,∞) → I(f) with γ(0) ∈ U and Re γ(t) →∞ as t →∞.

Proof. The first statement follows from [SZ, Theorem 6.5].
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To prove the second claim, we use the fact that there is a collection of uncountably
many pairwise disjoint curves to ∞ in the escaping set. (This also follows from [SZ],
but has been known much longer: see [DGH, DT].)

Hence there is a curve α : [0,∞) → I(f) with limt→∞ |α(t)| = ∞ and f j(a) /∈ α
for all j ≥ 0. In particular, f−1(α(0)) is an infinite set, and by Montel’s theorem,
there exist n ≥ 1 and some z0 ∈ U such that fn(z0) = α(0). We can analytically
continue the branch of f−n that takes α(0) to z0 to obtain a curve γ : [0,∞) → I(f)
with fn ◦ γ = α and γ(0) = z0 ∈ U .

We have |f(γ(t))| → ∞ as t → ∞. As |f(z)| ≤ exp(Re(z)) + |a| for all z, we
thus have Re γ(t) → +∞ as t →∞, as claimed. ¤

Exponentially bounded itineraries. In this subsection, we fix an exponential
map f(z) = exp(z) + a with accessible singular value, and an associated partition
into itinerary strips Sj. Recall that we defined the itinerary of a point only if its
orbit never belongs to the strip boundaries.

It simplifies terminology if we can speak of itineraries for all points. Hence we
adopt the (slightly non-standard) convention that any sequence u = u0u1u2 . . . with
f j(z) ∈ Suj

is called an itinerary of z. Thus z has a unique itinerary if and only if
its orbit does not enter the strip boundaries.

2.2. Definition. An itinerary u = u0u1u2 . . . is exponentially bounded if there is
a number x ≥ 0 such that 2π|uj| ≤ expj(x) for all j ≥ 0.

Remark 1. At first glance it may seem that the itinerary of every point z ∈ C is
exponentially bounded, since certainly |fn(z)|, and thus | Im fn(z)|, are exponentially
bounded sequences. However, in general, we have no a priori control over how the
imaginary parts in the strips Sj behave as the real parts tend to −∞.

Nonetheless, it seems plausible that all points have exponentially bounded itine-
raries; certainly this is true for well-controlled cases such as Misiurewicz parameters.
We leave this question aside, as its resolution is not required for our purposes.

Remark 2. If z does not have a unique itinerary, we take the statement “z has
exponentially bounded itinerary” to mean that all itineraries of z are exponentially
bounded. However, two itineraries of z differ by at most 1 in every entry, so this is
equivalent to saying that z has at least one exponentially bounded itinerary.

2.3. Proposition. If z ∈ C belongs to the closure of some path-connected
component of I(f) (in particular, if z ∈ I(f) or z = a), then z has exponentially
bounded itinerary.

Proof. Let z0 ∈ I(f), and let u be an itinerary of z0. Then Re f j(z0) → +∞,
and in particular there exists R ∈ R such that Re fn(z0) ≥ R for all j ≥ 0.

The domain S0 is bounded by two components of f−1(γ). Each of these has
bounded imaginary parts in the direction where the real parts tend to +∞. (In fact,
each preimage component is asymptotic to a straight line {Im z = 2πk} for some
k ∈ Z, but we do not require this fact.) In particular,

M := sup{| Im z| : z ∈ S0, Re z ≥ R} < ∞.

Then it follows that | Im f j(z0)− 2πuj| ≤ M for all j, and hence

2π|uj| ≤ | Im f j(z0)|+ M.
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Set α := ln(3(|a|+ M + 2)). Elementary calculations give

exp(|z|+ α) = 3(|a|+ M + 2) exp(|z|) ≥ exp(|z|) + 2(|a|+ M + 2)

≥ exp(Re z) + |a|+ M + ln 3 + (|a|+ M + 2)(2.1)
≥ exp(Re z) + |a|+ M + α ≥ |f(z)|+ M + α

for all z ∈ C. It follows that

2π|uj| ≤ | Im f j(z0)|+ M ≤ |f j(z0)|+ M ≤ expj(|z0|+ α)

for all j ≥ 0, so z0 has exponentially bounded itinerary.
Also, it is shown in [FRS] that the partition boundaries, i.e., the components

of f−1(γ), are path-connected components of I(f) (where γ ⊂ I(f) is the curve
connecting the singular value to infinity). So if C is the path-connected component
of I(f) containing z0, then f j(C) ⊂ Suj

, and hence f j(C) ⊂ Suj
, for all j ≥ 0. So all

points in C have exponentially bounded itinerary, as claimed. ¤
Escaping endpoints. There are two types of escaping points:

2.4. Definition. Suppose that fa is an exponential map and z ∈ I(f). We
say that z is a non-endpoint if there is an injective curve γ : [−1, 1] → I(fa) with
γ(0) = z; otherwise z is called an endpoint.

It follows from [FRS] that this coincides with the classification into “escaping
endpoints of rays” and “points on rays” given in [SZ]; we use the above definition here
because it is easier to state. In [SZ], escaping endpoints were completely classified;
we only require the following fact.

2.5. Proposition ([SZ]). Let fa be an exponential map with a ∈ I(f) (so in
particular a is accessible), and suppose a is an endpoint. Then the kneading sequence
of f , i.e., the itinerary of a, is unique and unbounded.

For exponential maps with an attracting fixed point, any non-endpoint is inac-
cessible from the attracting basin [DG]. The following is a variant of this fact that
holds for every exponential map.

2.6. Proposition. Suppose that f(z) = exp(z) + a is an exponential map and
suppose that z ∈ I(f) is not an endpoint. Then any closed connected set A ⊂ C
with z ∈ A and #A > 1 contains uncountably many escaping points.

Sketch of proof. The idea is that any path-connected component of I(f) is
accumulated on both from above and below by other such components. This is
by now a well-known argument; see, e.g., [R3, Lemma 3.3] and [ReS, Lemma 13],
where it is used in a slightly different context. We provide a few more details for
completeness.

We may assume that A intersects only countably many different path-connected
components of I(f); otherwise we are done. Let γ : [−1, 1] → I(f) be as in Defini-
tion 2.4, with γ(0) = z.

Then there are two sequences γ+
n : [−1, 1] → I(f) and γ−n : [−1, 1] → I(f) of

curves that do not intersect A and that converge locally uniformly to γ from both
sides of γ. Since A is closed, it follows that we must have either γ

(
[−1, 0]

) ⊂ A or
γ
(
[0, 1]

) ⊂ A. ¤
The same argument yields the following result.
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2.7. Proposition. (Accumulation on a) Suppose that f = exp(z) + a is an
exponential map with accessible singular value, and let γ ⊂ I(f) be a curve as in the
definition of accessibility.

If A ⊂ C \ I(f) is a connected set with A ∩ γ 6= ∅, then a ∈ A.

Sketch of proof. As in the above proof, there are two sequences of curves that
converge to γ from both sides. (See also [R1, Lemmas 4.7 and 5.1].) In order to
accumulate on any point of γ, the set A will need to pass arbitrarily close to the
endpoint a of the curve. ¤

3. Closed subsets of non-escaping points

Let us say that a set A ⊂ C disconnects the set C ⊂ C if C∩A = ∅ and (at least)
two different connected components of C \ A intersect C. The following lemma was
used in [J] to prove the connectivity of the escaping set for Misiurewicz exponential
maps.

3.1. Lemma. Let C ⊂ C. Then C is disconnected if and only if there is a closed
connected set A ⊂ C that disconnects C.

Proof. The “if” part is trivial. If C is disconnected, then by the definition of
connectivity there are two points z, w ∈ C and an open set U ⊂ C with ∂U ∩C = ∅
such that z ∈ U and w /∈ U . By passing to a connected component if necessary, we
may assume that U is connected. Let V be the connected component of Ĉ \ Û that
contains w. Then V is simply connected with ∂V ⊂ ∂U ⊂ Ĉ \ C. It follows that
C \ V has exactly one connected component (since every such connected component
intersects the connected set U). Thus A := ∂V ∩ C is a closed connected set that
disconnects z and w, as required. ¤

Thus, in order to prove the connectedness of the escaping set, we need to study
closed connected sets of non-escaping points and show that these cannot disconnect
I(f). The following proposition will be the main ingredient in this argument.

3.2. Proposition. Let f = fa be an exponential map with accessible singular
value a. Let A ⊂ C be closed and connected. Suppose that furthermore the points
in A have uniformly exponentially bounded itineraries, i.e., there exists a number x
with the following property: if n ≥ 0 and u ∈ Z such that fn(A) ∩ Su 6= ∅, then
2π|u| ≤ expn(x).

If A ∩ I(f) is bounded, then there is n ≥ 0 such that fn(A) is bounded.

This is essentially a (simpler) variant of [R3, Lemma 6.5], and can be proved easily
in the same manner using the combinatorial terminology of that paper. Instead, we
give an alternative proof—quite similar to the proof of the main theorem of [J]—that
does not require familiarity with these concepts.

Proof. We prove the converse, so suppose that fn(A) is unbounded for all n. (In
particular, A is nonempty.) We need to show that A ∩ I(f) is unbounded.

Similarly as in the proof of Proposition 2.3, set

M := sup{| Im z| : z ∈ S0, Re z ≥ 0}.
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and α := ln(3(|a|+ M + 2)). Also pick some z0 ∈ A and let x0 ≥ max(|z0|, x) + α be
arbitrary. The hypotheses and (2.1) imply that

(3.1) | Im fn(z)| ≤ expn(x) + M ≤ expn(x0)

whenever z ∈ A and n ≥ 0 such that Re fn(z) ≥ 0. Also, again by (2.1),

(3.2) |fn(z0)| ≤ expn(x0).

Let n ∈ N. Recall that fn(A) is connected and unbounded by assumption. Hence
by (3.2), there exists some zn ∈ A with

|fn(zn)| = expn(x0).

We claim that

(3.3) expj(x0)− 1 ≤ |f j(zn)| ≤ 2 expj(x0) + 1

for j = 0, . . . , n. Indeed, if j < n is such that (3.3) is true for j + 1, then

Re f j(zn) = ln |f j+1(zn)− a| ≥ ln(|f j+1(zn)| − |a|)

≥ ln(expj+1(x0)− |a| − 1) = expj(x0)− ln
expj+1(x0)

expj+1(x0)− |a| − 1

≥ expj(x0)− ln 2 > expj(x0)− 1.

Similarly, we see that
Re f j(zn) ≤ expj(x0) + 1.

Together with (3.1), this yields (3.3) for j.
Now let z be any accumulation point of the sequence zn; since A is closed (and

the sequence is bounded), we have z ∈ A. By continuity, (3.3) holds also for z,
and hence z ∈ A ∩ I(f). As x0 can be chosen arbitrarily large, we have shown that
A ∩ I(f) is unbounded, as required. ¤

4. Proof of Theorem 1.2

The following two lemmas study the properties of sets that can disconnect the
escaping set of an exponential map with accessible singular value.

4.1. Lemma. Let f be an exponential map and suppose that A ⊂ C \ I(f)
disconnects the escaping set. Then A contains points with arbitrarily large real
parts.

Proof. This follows immediately from Proposition 2.1 (b). ¤

4.2. Lemma. Let f = fa be an exponential map with accessible singular value
a. Suppose that A ⊂ C \ I(f) is connected and disconnects the escaping set. Then

(a) If the real parts of the points of A are bounded from below, then f(A) also
disconnects the escaping set.

(b) The common itinerary of the points of A is exponentially bounded.

Proof. Let γ be the curve from Definition 1.1. Let U be the component of C \A
that contains a left half plane, and let V 6= U be another component of C \ A with
V ∩I(f) 6= ∅. (Such a component exists by assumption.) Every component of f−1(γ)
intersects every left half plane. Thus f−1(γ) ⊂ U , and in particular V ∩ f−1(γ) = ∅.
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This means that V is contained in a single itinerary domain Sj and the real parts
of the points of V are bounded from below. Since V intersects A, it follows that A is
contained in the same itinerary domain Sj. (Recall that A is connected and does not
intersect the escaping set.) As f |Sj

is a conformal isomorphism between Sj and C\γ,
it follows that f(V ) is a component of C\(f(A)∪γ). Now f(A) does not accumulate
on the singular value a by assumption, and it follows from Proposition 2.7 that f(A)
does not intersect γ. It follows that f(V ) is a connected component of C \ f(A) that
intersects the escaping set but does not intersect γ. Hence f(A) disconnects I(f),
which proves the first claim.

Note that the second claim is trivial if A intersects the escaping set, since every
escaping point has exponentially bounded itinerary by Proposition 2.3. So we may
suppose that A is a closed set. Also recall that a has exponentially bounded itinerary,
which means that we may assume that a /∈ fn(A) for all n ≥ 0. Then the real parts
of the points of fn(A) are bounded from below for all n.

Hence for all n ≥ 0, fn(A) is a closed subset of C with real parts bounded from
below and disconnecting I(f). Let us say that fn(A) surrounds a set X ⊂ C\fn(A)
if X does not belong to the component of C \ fn(A) that contains a left half plane.

By assumption, A surrounds some escaping point z0. We claim that, for every
n ≥ 0,

(∗) fn(A) surrounds either fn(z0) or f j(a) for some j < n.

This follows by induction using an argument similarly as in the first part of the
proof. Indeed, let w = fn(z0) or w = f j(a) be the point surrounded by fn(A) by
the induction hypothesis, let U be the component of C \ fn(A) containing w, and
let Sj be the itinerary strip containing fn(A) and hence U . Now f : Sj → C \ γ
is a conformal isomorphism. Thus either f(U), and hence f(w), is surrounded by
fn+1(A), or U is mapped to the component of C \ fn+1(A) that contains a left half
plane and fn+1(A) surrounds γ, and hence a. The induction is complete in either
case.

Because z0 and a both have exponentially bounded itineraries, it follows from (*)
that all points in A do also. ¤

Now we are ready to prove Theorem 1.2. We begin by treating the case where f
has a unique and non-periodic kneading sequence. This includes the second case of
Theorem 1.2, as well as the case of all escaping endpoints.

4.3. Theorem. Suppose that f = fa is an exponential map with accessible
singular value with unique kneading sequence u = u0u1u2 . . . . If u is not periodic,
then I(f) is connected.

Proof. We prove the converse. So suppose that I(f) is disconnected; we must
show that u is periodic. By Lemma 3.1, there exists a closed connected set A ⊂ C
that disconnects the set of escaping points. Then all points of A have a common
itinerary u′, and this itinerary is exponentially bounded by Lemma 4.2. Note that

(∗) If k ≥ 0 is such that fk(A) is unbounded to the left, then a ∈ fk+1(A), and
hence σk+1(u′) = u.

(Here σ denotes the shift map; i.e., σ(u0u1u2 . . . ) = u1u2 . . . .)
By Proposition 3.2, fk(A) is bounded for some k; let k1 be minimal with this

property. Since A is unbounded by Lemma 4.1, we must have k1 > 0, and since
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fk1−1(A) is contained in one of the domains Sj, it follows that fk1−1(A) is unbounded
to the left.

Now let k0 be the minimal number for which fk0(A) is unbounded to the left.
By Lemma 4.2, fk0(A) also disconnects the escaping set, and hence is unbounded to
the right by Lemma 4.1. Thus fk0+1(A) is unbounded, and therefore k0 + 1 < k1 by
definition.

So (∗) implies that
σk1(u′) = u = σk0+1(u′),

and hence σk1−k0−1(u) = u. Thus we have seen that u is periodic, as claimed. ¤
We now complete the proof of Theorem 1.2 by covering the case where the singular

value is escaping but not an endpoint. (Note that there are parameters that satisfy
the hypotheses of both Theorem 4.3 and Theorem 4.4.)

4.4. Theorem. Suppose that f(z) = exp(z) + a is an exponential map with
a ∈ I(f) such that a is a non-endpoint. Then I(f) is connected.

Proof. The singular value is accessible by Proposition 2.1. As shown in the proof
of Theorem 4.3, if I(f) was disconnected, there would be an unbounded, closed,
connected set A ⊂ C \ I(f) and some number k0 such that fk0+1(A) ∪ {a} is closed
and connected. But this is impossible by Proposition 2.6. ¤
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