ON THE MATTILA–SJÖLIN THEOREM FOR DISTANCE SETS

Alex Iosevich, Mihalis Mourgoglou and Krystal Taylor

University of Rochester, Department of Mathematics Rochester, NY 14627, U.S.A.; iosevich@math.rochester.edu UMR 8628 Université Paris-Sud 11-CNRS, Département de Mathématiques Université Paris-Sud 11, F-91405 Orsay Cedex, France; mihalis.mourgoglou@math.u-psud.fr University of Rochester, Department of Mathematics

Rochester, NY 14627, U.S.A.; taylor@math.rochester.edu

Abstract. We extend a result, due to Mattila and Sjölin, which says that if the Hausdorff dimension of a compact set $E \subset \mathbf{R}^d$, $d \ge 2$, is greater than $\frac{d+1}{2}$, then the distance set $\Delta(E) = \{|x - y|: x, y \in E\}$ contains an interval. We prove this result for distance sets $\Delta_B(E) = \{|x - y\|_B : x, y \in E\}$, where $\|\cdot\|_B$ is the metric induced by the norm defined by a symmetric bounded convex body B with a smooth boundary and everywhere non-vanishing Gaussian curvature. We also obtain some detailed estimates pertaining to the Radon–Nikodym derivative of the distance measure.

1. Introduction

The classical Falconer distance conjecture, originated in 1985, [2], says that if the Hausdorff dimension of a compact subset of \mathbf{R}^d , $d \ge 2$, is greater than $\frac{d}{2}$, then the Lebesgue measure of the set of distances, $\Delta(E) = \{|x - y| : x, y \in E\}$ is positive. In [2], Falconer proved the first result in this direction by showing that $\mathcal{L}^1(\Delta(E)) > 0$ if the Hausdorff dimension of E is greater than $\frac{d+1}{2}$. See also [3] and [7] for a thorough description of the problem and related ideas. The best currently known results are due to Wolff in two dimensions, and to Erdogan [1] in dimensions three and greater. They prove that $\mathcal{L}^1(\Delta(E)) > 0$ if the Hausdorff dimension of E is greater than $\frac{d}{2} + \frac{1}{3}$.

An important addition to this theory is due to Mattila and Sjölin [8] who proved that if the Hausdorff dimension of E is greater than $\frac{d+1}{2}$, then $\Delta(E)$ not only has positive Lebesgue measure, but also contains an interval. This is accomplished by showing that the natural measure on the distance set has a continuous density. However, this set need not contain an interval with left end-point at the origin as illustrated by an example in ([7], p. 165). It was previously shown by Mattila [6] that if the ambient dimension is two or three, then the density of the distance measure is not in general bounded if the Hausdorff dimension of the underlying set E is smaller than $\frac{d+1}{2}$. In higher dimensions, this question is still open for the Euclidean metric, but has been resolved if the Euclidean metric is replaced by a metric induced by a norm defined by a suitably chosen paraboloid. See [5].

doi:10.5186/aasfm.2012.3732

²⁰¹⁰ Mathematics Subject Classification: Primary 28A75, 42B20, 52C10.

Key words: Falconer distance problem, Erdos problems, bilinear operators, distribution of angles, arithmetic of the lattice.

This work was partially supported by the NSF Grant DMS10-45404.

In this paper we give an alternative proof of the Mattila–Sjölin result and extend it to more general distance sets $\Delta_B(E) = \{ \|x - y\|_B : x, y \in E \}$, where $\|\cdot\|_B$ is the norm generated by a symmetric bounded convex body B with a smooth boundary and everywhere non-vanishing Gaussian curvature.

Our main result is the following.

Theorem 1.1. Let *E* be a compact subset of \mathbf{R}^d , $d \ge 2$, with Hausdorff dimension, denoted by *s*, greater than $\frac{d+1}{2}$. Let μ be a Frostman measure on *E*. Let σ denote the Lebesgue measure on ∂B . Define the distance measure ν by the relation

$$\int h(t) \, d\nu(t) = \iint h(\|x - y\|_B) \, d\mu(x) \, d\mu(y)$$

where $\|\cdot\|_B$ is the norm generated by a symmetric bounded convex body B with a smooth boundary and everywhere non-vanishing Gaussian curvature.

- (i) Then the measure ν is absolutely continuous with respect to the Lebesgue measure.
- (ii) We have

$$\frac{\nu((t-\epsilon,t+\epsilon))}{2\epsilon} = M(t) + R^{\epsilon}(t).$$

where

$$M(t) = \int |\widehat{\mu}(\xi)|^2 \widehat{\sigma}(t\xi) t^{d-1} d\xi$$

is the density of ν and

$$\sup_{0 < \epsilon < \epsilon_0} |R^{\epsilon}(t)| \lesssim \epsilon_0^{s - \frac{d+1}{2}}.$$

- (iii) Moreover, $M \in C^{\lfloor s \frac{d+1}{2} \rfloor}(I)$ for any interval I not containing the origin, where $\lfloor u \rfloor$ denotes the smallest integer greater than or equal to u. In particular, M is continuous away from the origin if $s > \frac{d+1}{2}$ and therefore $\Delta_B(E)$ contains an interval in view of (i).
- (iv) Suppose that $s > k + \alpha$, where k is a non-negative integer and $0 < \alpha < 1$. Then the kth derivative of the density function of ν is Hölder continuous of order α .

Remark 1.2. Metric properties of $\|\cdot\|_B$ are not used in the proof of Theorem 1.1. Let Γ be a star shaped body in the sense that for every $\omega \in S^{d-1}$ there exists $1 < r_0(\omega) < 2$ such that $\{r\omega: 0 \le r \le r_0(\omega)\} \subset \Gamma$ and $\{r\omega: r > r_0(\omega)\} \cap \Gamma = \emptyset$. Define $\|x\|_{\Gamma} = \inf\{t > 0: x \in t\Gamma\}$ and let $\Delta_{\Gamma}(E) = \{\|x - y\|_{\Gamma}: x, y \in E\}$. Let σ_{Γ} denote the Lebesgue measure on the boundary of Γ . Then if $|\widehat{\sigma}_{\Gamma}(\xi)| \le |\xi|^{-\frac{d-1}{2}}$, the conclusion of Theorem 1.1 holds with the same exponents.

1.1. Sharpness of results. As we note above, Mattila's construction [6] shows that if the Hausdorff dimension of E is smaller than $\frac{d+1}{2}$, d = 2, 3, then the density of distance measure is not in general bounded in the case of the Euclidean metric. Moreover, Mattila construction can be easily extended to all metrics generated by a bounded convex body B with a smooth boundary and non-vanishing Gaussian curvature.

In dimensions four and higher, all we know at the moment (see the main result in [5]) is that there exists a bounded convex body B with a smooth boundary and non-vanishing curvature, such that the density of the distance measure is not in general

bounded if the Hausdorff dimension of the underlying set E is less than $\frac{d+1}{2}$. We do no know what happens when the Hausdorff dimension of E equals $\frac{d+1}{2}$ in any dimension and for any smooth metric.

It would be very interesting if any of these results actually depended on the underlying convex body B in a non-trivial way. This would mean that smoothness and non-vanishing Gaussian curvature of the level set do not tell the whole story. There is some evidence that this may be the case. See, for example, [4], where connections between problems of Falconer type and distribution of lattice points in thin annuli are explored.

If the Hausdorff dimension of E is less than $\frac{d}{2}$, then the density of the distance measure, for any metric induced by a bounded convex body B with a smooth boundary and non-vanishing curvature is not in general bounded by a construction due to Falconer [2].

Acknowledgements. The second named author holds a two-year Sophie Germain International post-doctoral scholarship in Fondation de Mathématiques Jacques Hadamard (FMJH) and would like to thank the faculty and staff of the Université Paris-Sud 11, Orsay for their hospitality.

2. Proof of Theorem 1.1

2.1. Proof of items (i) and (ii). The proof of item (i) of Theorem 1.1 is due to Falconer [2] and Mattila [6]. This brings us to item (ii). Recall that every compact set E in \mathbb{R}^d , of Hausdorff dimension s > 0 possesses a Frostman measure (see e.g. [7], p. 112), which is a probability measure μ with the property that given any $\delta > 0$, for every ball of radius r^{-1} , denoted by $B_{r^{-1}}$, there exists $C_{\delta} > 0$ such that

$$\mu(B_{r^{-1}}) \le C_{\delta} r^{-s+\delta}$$

Let

$$\nu^{\epsilon}(t) = \frac{\nu((t-\epsilon,t+\epsilon))}{2\epsilon} = \frac{1}{2\epsilon} \, \mu \times \mu\{(x,y) \colon t-\epsilon \le \|x-y\|_B \le t+\epsilon\}.$$

We shall prove that $\lim_{\epsilon \to 0} \nu^{\epsilon}(t)$ exists and is a $C^{\lfloor s - \frac{d+1}{2} \rfloor}$ function.

Let ρ be a smooth cut-off function, identically equal to 1 in the unit ball and vanishing outside the ball of radius 2, with $\int \rho = 1$. Let $\rho_{\epsilon}(x) = \epsilon^{-d}\rho(x/\epsilon)$. Since $\sigma_t * \rho_{\epsilon}$ is supported on the annulus of radius t and width $\approx \epsilon$, and is $\approx \epsilon^{-1}$ on this annulus, there is no harm in working with the measure

(2.1)
$$\iint \sigma_t * \rho_\epsilon(x-y) \, d\mu(x) \, d\mu(y),$$

where σ_t is the surface measure on the set $\{x : \|x\|_B = t\}$. By abusing notation slightly, we shall refer to this measure as $\nu^{\epsilon}(t)$.

By the Fourier inversion formula,

$$\nu^{\epsilon}(t) = \int |\widehat{\mu}(\xi)|^2 \widehat{\sigma}_t(\xi) \widehat{\rho}(\epsilon\xi) d\xi$$

=
$$\int |\widehat{\mu}(\xi)|^2 \widehat{\sigma}_t(\xi) d\xi - \int |\widehat{\mu}(\xi)|^2 \widehat{\sigma}_t(\xi) (1 - \widehat{\rho}(\epsilon\xi)) d\xi = M(t) + R^{\epsilon}(t).$$

We shall prove that M(t) is a $C^{\lfloor s - \frac{d+1}{2} \rfloor}$ function and that $\lim_{\epsilon \to 0} R^{\epsilon}(t) = 0$. We start with the latter. We shall need the following stationary phase estimate. See, for example, [10], [9] or [11].

Lemma 2.1. Let σ be the surface measure on a compact piece of a smooth convex surface in \mathbb{R}^d , $d \geq 2$, with everywhere non-vanishing Gaussian curvature. Then

(2.2)
$$|\widehat{\sigma}(\xi)| \lesssim |\xi|^{-\frac{a-1}{2}},$$

where here, and throughout, $X \leq Y$ means that there exists C > 0 such that $X \leq CY$. Moreover,

(2.3)
$$|D^{\alpha}\widehat{\sigma}(\xi)| \le C_{\alpha,d}|\xi|^{-\frac{d-1}{2}},$$

where D^{α} is the differential operator with respect to the multi-index $\alpha = (\alpha_1, \ldots, \alpha_d)$.

We shall also need the following well-known estimate. See, for example, [3] and [7].

Lemma 2.2. Let μ be a Frostman measure on a compact set E of Hausdorff dimension s > 0. Then

$$\int_{2^{j} \le |\xi| \le 2^{j+1}} \left|\widehat{\mu}(\xi)\right|^{2} d\xi \lessapprox 2^{j(d-s)},$$

and, consequently,

$$\int |\widehat{\mu}(\xi)|^2 |\xi|^{-\gamma} d\xi = c \iint |x-y|^{-d+\gamma} d\mu(x) d\mu(y) \lesssim 1$$

if $\gamma > d - s$. Here, and throughout, $X \leq Y$, with the controlling parameter r means that for every $\epsilon > 0$ there exists $C_{\epsilon} > 0$ such that $X \leq C_{\epsilon} r^{\epsilon} Y$.

To prove the lemma, observe that

$$\int_{2^{j} \le |\xi| \le 2^{j+1}} |\widehat{\mu}(\xi)|^2 d\xi \lesssim \int |\widehat{\mu}(\xi)|^2 \psi(2^{-j}\xi) d\xi,$$

where ψ is a suitable smooth function supported in $\{x \in \mathbf{R}^d : 1/2 \le |x| \le 4\}$ and identically equal to 1 in the unit annulus. By definition of the Fourier transform and the Fourier inversion theorem, this expression is equal to

$$2^{dj} \iint \widehat{\psi}(2^j(x-y)) \, d\mu(x) \, d\mu(y) \lessapprox 2^{j(d-s)}$$

since $\widehat{\psi}$ decays rapidly at infinity.

By Lemma 2.1 and Lemma 2.2, we have

$$(2.4) \qquad |R^{\epsilon}(t)| \lesssim \int_{|\xi| > \frac{1}{\epsilon}} |\widehat{\mu}(\xi)|^2 |\xi|^{-\frac{d-1}{2}} d\xi \\ \lesssim \int_{|\xi| > \frac{1}{\epsilon}} |\widehat{\mu}(\xi)|^2 |\xi|^{-\frac{d-1}{2}} d\xi = \sum_{j > \log_2(1/\epsilon)} \int_{2^j \le |\xi| \le 2^{j+1}} |\widehat{\mu}(\xi)|^2 |\xi|^{-\frac{d-1}{2}} d\xi \\ \lesssim \sum_{j > \log_2(1/\epsilon)} 2^{j(d-s)} 2^{-j\frac{d-1}{2}} \lesssim \epsilon^{s-\frac{d+1}{2}},$$

560

and thus

$$\sup_{0<\epsilon\leq\epsilon_0}|R_\epsilon(t)|\leq\epsilon_0^{s-\frac{d+1}{2}}.$$

In order to handle $|R^{\epsilon}(t)|$ over the integral when $|\xi| < \frac{1}{\epsilon}$, we notice that $(1 - \hat{\rho}(\epsilon\xi))$ is 0 when $\xi = (0, \ldots, 0)$ and, by continuity, is small in a neighborhood of the origin. This calculation establishes all the claims in part ii) of Theorem 1.1.

We note that the weaker statement showing that $\lim_{\epsilon \to 0} |R_{\epsilon}(t)| = 0$ follows in an easier way from the dominated convergence theorem.

2.2. Proof of item (iii). Once again, by Lemma 2.1, we have

$$|M(t)| \lesssim \int |\widehat{\mu}(\xi)|^2 |\xi|^{-\frac{d-1}{2}} d\xi$$

and by the calculation identical to the one in the previous paragraph, we see that this quantity is ≤ 1 if the Hausdorff dimension of E is greater than $\frac{d+1}{2}$. Continuity follows by the Lebesgue dominated convergence theorem. The convergence of the integral allows us to differentiate inside the integral sign. We obtain

$$M'(t) = \int |\widehat{\mu}(\xi)|^2 \frac{d}{dt} \left\{ t^{d-1} \widehat{\sigma}(t\xi) \right\} d\xi$$

We have

$$\frac{d}{dt}\left\{t^{d-1}\widehat{\sigma}(t\xi)\right\} = (d-1)t^{d-2}\widehat{\sigma}(t\xi) + t^{d-1}\nabla\widehat{\sigma}(t\xi) \cdot \xi.$$

Applying (2.2) and (2.3) of Lemma 2.1 once more, it follows that

$$\left|\frac{d}{dt}\left\{t^{d-1}\widehat{\sigma}(t\xi)\right\}\right| \lesssim |\xi|^{-\frac{d-1}{2}+1}$$

Repeating the argument in 2.4, we see that M'(t) exists if the Hausdorff dimension of E is greater than $\frac{d+1}{2} + 1$. Proceeding in the same way one establishes that

$$\frac{d^m}{dt^m} \left\{ t^{d-1} \widehat{\sigma}(t\xi) \right\} \lesssim |\xi|^{-\frac{d-1}{2}+m}$$

and the conclusion of Theorem 1.1 follows.

2.3. Proof of item (iv). We shall deal with the case k = 0, as the other cases follow from a similar argument. Let

$$\lambda(t) = t^{d-1}\widehat{\sigma}(t\xi).$$

We must show that

$$|M(u) - M(v)| \le C|u - v|^{\alpha}.$$

We have

$$M(u) - M(v) = \int |\widehat{\mu}(\xi)|^2 (\lambda(u) - \lambda(v)) d\xi$$

=
$$\int |\widehat{\mu}(\xi)|^2 (\lambda(u) - \lambda(v))^{\alpha} (\lambda(u) - \lambda(v))^{1-\alpha} d\xi$$

Now,

$$\lambda(u) - \lambda(v) = (u - v)\lambda'(c),$$

where $c \in (u, v)$, by the mean-value theorem. It follows that

$$|\lambda(u) - \lambda(v)|^{\alpha} \le |u - v|^{\alpha} |\lambda'(c)|^{\alpha}.$$

On the other hand,

$$\left|\lambda(u) - \lambda(v)\right|^{1-\alpha} \le \left|\lambda(u)\right|^{1-\alpha} + \left|\lambda(v)\right|^{1-\alpha}.$$

We have already shown above that

$$|\lambda(u)| \lesssim |\xi|^{-\frac{d-1}{2}}$$
 and $|\lambda'(u)| \lesssim |\xi|^{-\frac{d-1}{2}+1}$.

It follows that

$$|M(u) - M(v)| \lesssim |u - v|^{\alpha} \int |\widehat{\mu}(\xi)|^2 |\xi|^{-\frac{d-1}{2} + \alpha} d\xi \lesssim |u - v|^{-\alpha},$$

where the last step follows by Lemma 2.2, and so the item iv) follows.

References

- ERDOĞAN, B.: A bilinear Fourier extension theorem and applications to the distance set problem. - Int. Math. Res. Not. IMRN 2005:23, 2005.
- [2] FALCONER, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32, 1986, 206-212.
- [3] FALCONER, K. J.: The geometry of fractal sets. Cambridge Tracts in Math. 85, Cambridge Univ. Press, Cambridge, 1986.
- [4] IOSEVICH, A., and M. RUDNEV: Distance measures for well-distributed sets. Discrete Comput. Geom. 38, 2007.
- [5] IOSEVICH, A., and S. SENGER: Sharpness of Falconer's estimate in continuous and arithmetic settings, geometric incidence theorems and distribution of lattice points in convex domains. arxiv.org/pdf/1006.1397 (submitted).
- [6] MATTILA, P.: On the Hausdorf dimension and capacities of intersections. Mathematika 82, 1985, 213–217.
- [7] MATTILA, P.: Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge, 1995.
- [8] MATTILA, P., and SJÖLIN, P.: Regularity of distance measures and sets. Math. Nachr. 204, 1999, 157–162.
- [9] SOGGE, C.: Fourier integrals in classical analysis. Cambridge Tracts in Math. 105, Cambridge Univ. Press, Cambridge, 1993.
- [10] STEIN, E. M.: Harmonic analysis. Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, NJ, 1993.
- [11] WOLFF, T.: Lectures on harmonic analysis. Univ. Lecture Ser. 29, edited by I. Laba and C. Shubin, Amer. Math. Soc., Providence, RI, 2003.

Received 13 December 2011

562