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Abstract. We extend a result, due to Mattila and Sjölin, which says that if the Hausdorff
dimension of a compact set E ⊂ Rd, d ≥ 2, is greater than d+1

2 , then the distance set ∆(E) = {|x−
y| : x, y ∈ E} contains an interval. We prove this result for distance sets ∆B(E) = {‖x− y‖B : x, y ∈
E}, where ‖ · ‖B is the metric induced by the norm defined by a symmetric bounded convex body B

with a smooth boundary and everywhere non-vanishing Gaussian curvature. We also obtain some
detailed estimates pertaining to the Radon–Nikodym derivative of the distance measure.

1. Introduction

The classical Falconer distance conjecture, originated in 1985, [2], says that if the
Hausdorff dimension of a compact subset of Rd, d ≥ 2, is greater than d

2
, then the

Lebesgue measure of the set of distances, ∆(E) = {|x− y| : x, y ∈ E} is positive. In
[2], Falconer proved the first result in this direction by showing that L1(∆(E)) > 0 if
the Hausdorff dimension of E is greater than d+1

2
. See also [3] and [7] for a thorough

description of the problem and related ideas. The best currently known results are
due to Wolff in two dimensions, and to Erdogan [1] in dimensions three and greater.
They prove that L1(∆(E)) > 0 if the Hausdorff dimension of E is greater than d

2
+ 1

3
.

An important addition to this theory is due to Mattila and Sjölin [8] who proved
that if the Hausdorff dimension of E is greater than d+1

2
, then ∆(E) not only has posi-

tive Lebesgue measure, but also contains an interval. This is accomplished by showing
that the natural measure on the distance set has a continuous density. However, this
set need not contain an interval with left end-point at the origin as illustrated by an
example in ([7], p. 165). It was previously shown by Mattila [6] that if the ambient
dimension is two or three, then the density of the distance measure is not in general
bounded if the Hausdorff dimension of the underlying set E is smaller than d+1

2
. In

higher dimensions, this question is still open for the Euclidean metric, but has been
resolved if the Euclidean metric is replaced by a metric induced by a norm defined
by a suitably chosen paraboloid. See [5].
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In this paper we give an alternative proof of the Mattila–Sjölin result and extend
it to more general distance sets ∆B(E) = {‖x− y‖B : x, y ∈ E}, where ‖ · ‖B is the
norm generated by a symmetric bounded convex body B with a smooth boundary
and everywhere non-vanishing Gaussian curvature.

Our main result is the following.

Theorem 1.1. Let E be a compact subset of Rd, d ≥ 2, with Hausdorff dimen-
sion, denoted by s, greater than d+1

2
. Let µ be a Frostman measure on E. Let σ

denote the Lebesgue measure on ∂B. Define the distance measure ν by the relationˆ
h(t) dν(t) =

¨
h(‖x− y‖B) dµ(x) dµ(y),

where ‖ · ‖B is the norm generated by a symmetric bounded convex body B with a
smooth boundary and everywhere non-vanishing Gaussian curvature.

(i) Then the measure ν is absolutely continuous with respect to the Lebesgue
measure.

(ii) We have
ν((t− ε, t + ε))

2ε
= M(t) + Rε(t),

where
M(t) =

ˆ
|µ̂(ξ)|2σ̂(tξ)td−1 dξ

is the density of ν and

sup
0<ε<ε0

|Rε(t)| . ε
s− d+1

2
0 .

(iii) Moreover, M ∈ Cbs− d+1
2
c(I) for any interval I not containing the origin, where

buc denotes the smallest integer greater than or equal to u. In particular, M
is continuous away from the origin if s > d+1

2
and therefore ∆B(E) contains

an interval in view of (i).
(iv) Suppose that s > k + α, where k is a non-negative integer and 0 < α < 1.

Then the kth derivative of the density function of ν is Hölder continuous of
order α.

Remark 1.2. Metric properties of ‖ · ‖B are not used in the proof of Theo-
rem 1.1. Let Γ be a star shaped body in the sense that for every ω ∈ Sd−1 there
exists 1 < r0(ω) < 2 such that {rω : 0 ≤ r ≤ r0(ω)} ⊂ Γ and {rω : r > r0(ω)}∩Γ = ∅.
Define ‖x‖Γ = inf{t > 0: x ∈ tΓ} and let ∆Γ(E) = {‖x− y‖Γ : x, y ∈ E}. Let σΓ

denote the Lebesgue measure on the boundary of Γ. Then if |σ̂Γ(ξ)| . |ξ|− d−1
2 , the

conclusion of Theorem 1.1 holds with the same exponents.

1.1. Sharpness of results. As we note above, Mattila’s construction [6] shows
that if the Hausdorff dimension of E is smaller than d+1

2
, d = 2, 3, then the density

of distance measure is not in general bounded in the case of the Euclidean metric.
Moreover, Mattila construction can be easily extended to all metrics generated by
a bounded convex body B with a smooth boundary and non-vanishing Gaussian
curvature.

In dimensions four and higher, all we know at the moment (see the main result in
[5]) is that there exists a bounded convex body B with a smooth boundary and non-
vanishing curvature, such that the density of the distance measure is not in general
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bounded if the Hausdorff dimension of the underlying set E is less than d+1
2
. We

do no know what happens when the Hausdorff dimension of E equals d+1
2

in any
dimension and for any smooth metric.

It would be very interesting if any of these results actually depended on the
underlying convex body B in a non-trivial way. This would mean that smoothness
and non-vanishing Gaussian curvature of the level set do not tell the whole story.
There is some evidence that this may be the case. See, for example, [4], where
connections between problems of Falconer type and distribution of lattice points in
thin annuli are explored.

If the Hausdorff dimension of E is less than d
2
, then the density of the distance

measure, for any metric induced by a bounded convex body B with a smooth bound-
ary and non-vanishing curvature is not in general bounded by a construction due to
Falconer [2].

Acknowledgements. The second named author holds a two-year Sophie Ger-
main International post-doctoral scholarship in Fondation de Mathématiques Jacques
Hadamard (FMJH) and would like to thank the faculty and staff of the Université
Paris-Sud 11, Orsay for their hospitality.

2. Proof of Theorem 1.1

2.1. Proof of items (i) and (ii). The proof of item (i) of Theorem 1.1 is due
to Falconer [2] and Mattila [6]. This brings us to item (ii). Recall that every compact
set E in Rd, of Hausdorff dimension s > 0 possesses a Frostman measure (see e.g.
[7], p. 112), which is a probability measure µ with the property that given any δ > 0,
for every ball of radius r−1, denoted by Br−1 , there exists Cδ > 0 such that

µ(Br−1) ≤ Cδr
−s+δ.

Let

νε(t) =
ν((t− ε, t + ε))

2ε
=

1

2ε
µ× µ{(x, y) : t− ε ≤ ‖x− y‖B ≤ t + ε}.

We shall prove that limε→0 νε(t) exists and is a Cbs− d+1
2
c function.

Let ρ be a smooth cut-off function, identically equal to 1 in the unit ball and
vanishing outside the ball of radius 2, with

´
ρ = 1. Let ρε(x) = ε−dρ(x/ε). Since

σt ∗ ρε is supported on the annulus of radius t and width ≈ ε, and is ≈ ε−1 on this
annulus, there is no harm in working with the measure

(2.1)
¨

σt ∗ ρε(x− y) dµ(x) dµ(y),

where σt is the surface measure on the set {x : ‖x‖B = t}. By abusing notation
slightly, we shall refer to this measure as νε(t).

By the Fourier inversion formula,

νε(t) =

ˆ
|µ̂(ξ)|2σ̂t(ξ)ρ̂(εξ)dξ

=

ˆ
|µ̂(ξ)|2σ̂t(ξ)dξ −

ˆ
|µ̂(ξ)|2σ̂t(ξ)(1− ρ̂(εξ))dξ = M(t) + Rε(t).



560 Alex Iosevich, Mihalis Mourgoglou and Krystal Taylor

We shall prove that M(t) is a Cbs− d+1
2
c function and that limε→0 Rε(t) = 0. We

start with the latter. We shall need the following stationary phase estimate. See, for
example, [10], [9] or [11].

Lemma 2.1. Let σ be the surface measure on a compact piece of a smooth
convex surface in Rd, d ≥ 2, with everywhere non-vanishing Gaussian curvature.
Then

(2.2) |σ̂(ξ)| . |ξ|− d−1
2 ,

where here, and throughout, X . Y means that there exists C > 0 such that
X ≤ CY . Moreover,

(2.3) |Dασ̂(ξ)| ≤ Cα,d|ξ|−
d−1
2 ,

where Dα is the differential operator with respect to the multi-index α = (α1, . . . , αd).

We shall also need the following well-known estimate. See, for example, [3] and
[7].

Lemma 2.2. Let µ be a Frostman measure on a compact set E of Hausdorff
dimension s > 0. Then ˆ

2j≤|ξ|≤2j+1

|µ̂(ξ)|2 dξ / 2j(d−s),

and, consequently,
ˆ
|µ̂(ξ)|2|ξ|−γ dξ = c

¨
|x− y|−d+γ dµ(x) dµ(y) . 1

if γ > d− s. Here, and throughout, X / Y , with the controlling parameter r means
that for every ε > 0 there exists Cε > 0 such that X ≤ Cεr

εY .

To prove the lemma, observe that
ˆ

2j≤|ξ|≤2j+1

|µ̂(ξ)|2 dξ .
ˆ
|µ̂(ξ)|2ψ(2−jξ) dξ,

where ψ is a suitable smooth function supported in {x ∈ Rd : 1/2 ≤ |x| ≤ 4} and
identically equal to 1 in the unit annulus. By definition of the Fourier transform and
the Fourier inversion theorem, this expression is equal to

2dj

¨
ψ̂(2j(x− y)) dµ(x) dµ(y) / 2j(d−s)

since ψ̂ decays rapidly at infinity.
By Lemma 2.1 and Lemma 2.2, we have

|Rε(t)| /
ˆ

|ξ|> 1
ε

|µ̂(ξ)|2|ξ|− d−1
2 dξ

≤
ˆ

|ξ|> 1
ε

|µ̂(ξ)|2|ξ|− d−1
2 dξ =

∑

j>log2(1/ε)

ˆ

2j≤|ξ|≤2j+1

|µ̂(ξ)|2|ξ|− d−1
2 dξ

/
∑

j>log2(1/ε)

2j(d−s)2−j d−1
2 / εs− d+1

2 ,

(2.4)
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and thus
sup

0<ε≤ε0

|Rε(t)| ≤ ε
s− d+1

2
0 .

In order to handle |Rε(t)| over the integral when |ξ| < 1
ε
, we notice that (1−ρ̂(εξ))

is 0 when ξ = (0, . . . , 0) and, by continuity, is small in a neighborhood of the origin.
This calculation establishes all the claims in part ii) of Theorem 1.1.

We note that the weaker statement showing that limε→0 |Rε(t)| = 0 follows in an
easier way from the dominated convergence theorem.

2.2. Proof of item (iii). Once again, by Lemma 2.1, we have

|M(t)| .
ˆ
|µ̂(ξ)|2|ξ|− d−1

2 dξ

and by the calculation identical to the one in the previous paragraph, we see that
this quantity is . 1 if the Hausdorff dimension of E is greater than d+1

2
. Continuity

follows by the Lebesgue dominated convergence theorem. The convergence of the
integral allows us to differentiate inside the integral sign. We obtain

M ′(t) =

ˆ
|µ̂(ξ)|2 d

dt

{
td−1σ̂(tξ)

}
dξ.

We have
d

dt

{
td−1σ̂(tξ)

}
= (d− 1)td−2σ̂(tξ) + td−1∇σ̂(tξ) · ξ.

Applying (2.2) and (2.3) of Lemma 2.1 once more, it follows that∣∣∣∣
d

dt

{
td−1σ̂(tξ)

}∣∣∣∣ . |ξ|− d−1
2

+1.

Repeating the argument in 2.4, we see that M ′(t) exists if the Hausdorff dimension
of E is greater than d+1

2
+ 1. Proceeding in the same way one establishes that

dm

dtm
{
td−1σ̂(tξ)

}
. |ξ|− d−1

2
+m

and the conclusion of Theorem 1.1 follows.

2.3. Proof of item (iv). We shall deal with the case k = 0, as the other cases
follow from a similar argument. Let

λ(t) = td−1σ̂(tξ).

We must show that
|M(u)−M(v)| ≤ C|u− v|α.

We have

M(u)−M(v) =

ˆ
|µ̂(ξ)|2(λ(u)− λ(v)) dξ

=

ˆ
|µ̂(ξ)|2(λ(u)− λ(v))α(λ(u)− λ(v))1−α dξ.

Now,
λ(u)− λ(v) = (u− v)λ′(c),

where c ∈ (u, v), by the mean-value theorem. It follows that

|λ(u)− λ(v)|α ≤ |u− v|α|λ′(c)|α.
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On the other hand,

|λ(u)− λ(v)|1−α ≤ |λ(u)|1−α + |λ(v)|1−α.

We have already shown above that

|λ(u)| . |ξ|− d−1
2 and |λ′(u)| . |ξ|− d−1

2
+1.

It follows that

|M(u)−M(v)| . |u− v|α
ˆ
|µ̂(ξ)|2|ξ|− d−1

2
+αdξ . |u− v|−α,

where the last step follows by Lemma 2.2, and so the item iv) follows.
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