Annales Academise Scientiarum Fennicse
Mathematica
Volumen 37, 2012, 579-594

EXISTENCE OF SOLUTION TO A CRITICAL
EQUATION WITH VARIABLE EXPONENT

Julidn Fernandez Bonder, Nicolas Saintier and Analia Silva

IMAS — CONICET and Universidad de Buenos Aires, Departamento de Matematica, FCEyN
Ciudad Universitaria, Pabellon I (1428) Buenos Aires, Argentina; jfbonder@dm.uba.ar

Universidad Nacional de General Sarmiento, Instituto de Ciencias
Juan Maria Gutierrez 1150 Los Polvorines, Pcia de Bs. As., Argentina; nsaintieQungs.edu.ar
and Universidad de Buenos Aires, Departamento de Matemética, FCEyN
Ciudad Universitaria, Pabellon 1 (1428) Buenos Aires, Argentina; nsaintie@dm.uba.ar

IMAS — CONICET and Universidad de Buenos Aires, Departamento de Matematica, FCEyN
Ciudad Universitaria, Pabellon I (1428) Buenos Aires, Argentina; asilva@dm.uba.ar

Abstract. In this paper we study the existence problem for the p(x)-Laplacian operator with
a nonlinear critical source. We find a local condition on the exponents ensuring the existence
of a nontrivial solution that shows that the Pohozaev obstruction does not holds in general in the
variable exponent setting. The proof relies on the Concentration—-Compactness Principle for variable
exponents and the Mountain Pass Theorem.

1. Introduction

In this paper we address the existence problem for the p(z)-Laplace operator
with a source that has critical growth in the sense of the Sobolev embeddings. To be
precise, we consider the equation

—Apoyu+ hlufPO 2y = u|®2y  in U,

1.1
(1.1) u=20 on OU,

where U C R™ is a smooth bounded domain, p,q: U — [1,00) are log-Holder con-
tinuous functions such that 1 < infyp < supyp < n and 1 < ¢(z) < p*(x) =

np(x)/(n —p(x)), z € U.
The p(x)-Laplacian operator A, is defined, as usual, as

Ayyu = div(|VuPY 72 V).

This operator appears in the study of the so-called electrorheological fluids. We refer
to the monograph by Ruzicka, [25], and its references, for a detailed account. In
particular, after some simplifications, the modelling of these fluids lead to solve

—Apou= f(-,u,Vu) in U,

1.2
(12) u=20 on OU,
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for some nonlinear source f. In most cases, the source term is taken to be only
dependent on u and so, in order for the usual variational techniques to work, one
needs a control on the growth of f given by the Sobolev embedding.

When the growth of f is subcritical in the sense of the Sobolev embedding the
existence of solution follows easily by applying standard procedures of the calculus
of variations (see e.g. |6, 10, 20, 21, 22| and many others). On the other hand, when
the source term has critical growth, there are only a few results on the existence of
solutions for (1.2) that we will review thoroughly later. Let us just notice for the
moment that these results only provide global existence conditions. This strongly
contrasts with the constant exponent case that has been widely studied since Aubin
and Brezis—Nirenberg’s seminal works [2, 5|, and for which it is generally possible to
provide existence conditions that are local in the sense that they involve the behaviour
of the coefficients of the equations (and possibly some relevant geometric quantities)
only in a neighborhood of a point. Our main purpose in this paper is to provide local
existence conditions for the equation (1.1).

In order to study (1.1) by means of variational methods, we introduce the func-

tional J: Wol’p(')(U) — R defined by

(1.3) J(u) ::/{J}%(|Vu|p(m)+h(x)|u|p(r)> dx—/Uﬁqu dr.

This functional is naturally associated to (1.1) in the sense that a weak solution
of (1.1) is a critical point of J. We refer to Section 2 for the definition and some
elementary properties of variable exponent spaces.

We need to assume that the smooth function h is such that the functional

1
y o) ¢ )
is coercive in the sense that the norm

p@) 4, p(a)
lul| := inf {)\>O: / [Vul"™ + h@)ju@)"? |, 1}
U \p(z)

is equivalent to the usual norm of W,* (')(U ). Notice that a sufficient condition is

) ) fU |VulP® de
inf h >—X\; where \; = inf -
v wewl Oy Jy [uP® dz

In particular h can be negative.
When infy; ¢ > supy p, it is easy to show that J satisfies the geometric assump-

tions of the Mountain—Pass Theorem (cf. Section 4). Hence if we assume moreover
that the exponent ¢ is subcritical in the sense that

(1.5) inf(p” —¢q) >0,

which implies that the immersion W, (')(U ) < Li0)(U) is compact, then J satisfies
the Palais—Smale condition, and the existence of a nontrivial solution to (1.1) follows
easily.

When (1.5) is violated, the immersion Wol’p(')(U) «— L1O(U) does not need to be
compact and so the Palais-Smale condition may fail. The existence of a non-trivial
solution to (1.1) is then a non-trivial problem.
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We denote by
(1.6) A={xeU:q(x)=p"(z)}

the critical set. We will assume in this work that this critical set is nonempty.
In [23] the authors prove that if A is small and there exists a control on the rate of

how ¢ reaches the critical value p*, then the immersion W,” (')(U ) < LO)(U) remains
compact, and so the usual techniques can be applied. When the immersion fails to
be compact they prove that if the subcriticality set U \ A contains a sufficiently large
ball, then (1.1) with A = 0 has a nonnegative solution.

In [14], problem (1.1) is studied with A = 0 and with a subcritical perturbation.
In this work the authors generalize the Concentration—Compactness Principle (CCP)
of Lions to the variable exponent case and prove that if the subcritical perturbation
is large enough on the critical set, the Palais—-Smale condition is verified and so the
existence of a nontrivial solution follows. See also [15] where similar results were
obtained independently.

In [27], using the CCP of [14, 15|, a multiplicity problem for (1.1) with A = 0
and a nonsymmetric subcritical perturbation is analyzed.

More recently, the authors in [12] studied the best Sobolev constant S(p(-), ¢(+), U)

corresponding to the embedding Wol’p(')(U) — L1)(U), namely

. V| o
(1.7) S(p().q(),U) = inf O
uew P () ||u||Lf1(‘>(U)

Using a refinement of the CCP proved in [14], they gave sufficient conditions for the
existence of an extremal for S(p(-), ¢(+),U), and so the existence of a solution to (1.1)
with A = 0 follows.

We remark that in [12]| a bit more than log-Holder regularity on the exponents
p and ¢ is required, i.e. it is needed that p(-),q(-): Q@ — [1,+00) are continuous
functions with modulus of continuity p(t) such that

(1.8) p(t)log(1/t) -0 ast—0+.

The study of (1.1) posed in the whole R™ is analyzed in [1, 16]. In those works
the authors studied the problem in the case where p, g and h are radial functions and
give somewhat restrictive conditions to ensure the existence of a nontrivial radial
solution.

From now on we will assume that

(1.9) sup p < inf q.
U U
Our first result provides a condition for the functional J defined by (1.3) to satisfy

the Palais—Smale condition.

Theorem 1.1. Assume that the exponents p and q verify (1.8) and, moreover,
that the critical set A given in (1.6) is nonempty. Then, the functional J satisfies
the Palais-Smale condition at level ¢ € (0, %Sn) where

(1.10) § = inf im S(p(-), (), Be(x)),

and S(p(+),q(-), B«(x)) stands for the best Sobolev constant for the domain B.(x)
defined in a similar way as in (1.7).
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The proof of Theorem 1.1 relies on a precise computation of the constants in the
CCP recently proved in [12].

As a corollary, we can apply the Mountain—Pass Theorem to obtain the following
necessary existence condition:

Theorem 1.2. Under the same assumptions of Theorem 1.1, if there exists v €
Wy (U) such that

1
(1.11) sup J(tv) < ES",

>0
then (1.1) has a non-trivial nonnegative solution.

Eventually the following result provide a sufficient local condition for (1.11) to
hold:

Theorem 1.3. Assume that the infimum in the definition (1.10) of S is attained
at a point xo € A such that xq is a local minimum of p and a local maximum of q.
In particular,

(1.12) —Ap(zo) <0< —Aqg(zo).

Assume, moreover, that p,q are C? in a neighborhood of xq, and that h(zy) < 0 if
1 <p(xg) <2 (n>4),orif2<p(xg) <+/n (n>>5), that at least one of the two
inequalities in (1.12) is strict, but h(xo) is arbitrary. Under these assumptions (1.11)
holds. In particular, (1.1) has a non-trivial nonnegative solution.

In the constant exponent case, the well known Pohozaev obstruction [24| affirms
that if h > 0 and U is starshaped then there are no (positive) solutions to (1.1). Our
result shows that for variable p and ¢ and p(x) > 2 this does not need to be the case,
showing a stricking difference between the constant exponent case and the variable
exponent one.

2. Preliminaries on variable exponent spaces

In this section we review some preliminary results regarding Lebesgue and Sobolev
spaces with variable exponent. All of these results and a comprehensive study of these
spaces can be found in [8].

Consider a function p: U — [1, +00] log-Holder continuous in the sense that

C
Ip(x) — p(y)| < Toglz — 7
for some constant C' > 0. This regularity assumptions is not needed to define the
Lebesgue and Sobolev spaces with variable p but turns out to be very useful for these
Sobolev spaces to enjoy all the usual properties like Sobolev embeddings, Poincaré

inequality and so on. We will therefore assume it from now for simplicity.
The variable exponent Lebesgue space LP¢)(U) is defined by

LPO(U) = {u € Li (U): /U|u(x)|p(x) dr < oo}

This space is endowed with the norm
p(x)
dr < 1}.

: ulx
1wl oy ) = inf {)\ >0: /U ’¥

, forzyyelU, x#y
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The variable exponent Sobolev space W'P()(U) is defined by
WPO(U) = {u e WEHU): u e LPO(U) and |Vu| € LPO(U)}.
The corresponding norm for this space is
ullwroe @y = 1wl eo @) + VUl o @y

Define W ") (U) as the closure of C(U) with respect to the W0 (U) norm. The

spaces LPO(U), W) (U) and ng’p(')(U) are separable and reflexive Banach spaces
when 1 < p~ < pt < oo, where p~ := essinfyp and pt := esssupyp.

As usual, we denote the conjugate exponent of p(x) by p/(x) = p(z)/(p(x) — 1)
and the Sobolev exponent by

Np(=z) :
p*(l') — N_p(m) lf p(l’) < N7
00 if p(z) > N.

The following result is proved in [18] (see also [11] and [8], pp. 79, Lemma 3.2.20
(3.2.23)).

Proposition 2.1. (Holder-type inequality) Let f € LPO(U) and g € LiO(U).
Then the following inequality holds

s\t s\t
Ifgliow < ((5) +(5) )M lwow sl

where
1 1 1

= + _
s(z)  p(r) ()
The Sobolev embedding Theorem is also proved in [11], Theorem 2.3.

Proposition 2.2. (Sobolev embedding) Let ¢: U € [1,+00) be a measurable
function such that 1 < q(z) < p*(x) < oo for all x € U. Then there is a continuous
embedding

WL”(')(U) — LIO(U).
Moreover, if infy (p* — q) > 0 then, the embedding is compact.

As in the constant exponent spaces, Poincaré inequality holds true (see [§],
pp. 249, Theorem 8.2.4).

Proposition 2.3. (Poincaré inequality) There is a constant C' > 0, C' = C(U),
such that

“uHLP(‘)(U) < CHVUHLPU(U)v
for all u € WoPO(U).

It follows from the Poincaré inequality that |[Vul|psc) @y and [Jullyree @ are

equivalent norms on VVO1 P (')(U ), in particular.
Throughout this paper the following notation will be used: Given ¢q: U — R

bounded, we denote

¢ =supg(e), ¢ = infa(e).
U U

The following proposition is also proved in [11] and it will be most usefull (see
also [8], Chapter 2, Section 1).
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Proposition 2.4. Set p(u) := [, |u()|P™ dz. For u € LPO(U) and {uy}ren C
LPO)(U), we have

(2.1) u# 0= (o =2 p(3) =1),

(2.2) lull sy < 1(=1;> 1) & plu) < 1(=1;> 1),
(23) lull ooy > 1= [l 00y < o) < ull g
(2.4) ullpror @y < 1= HUH];(-)(U) < p(u) < HUHJZ;(')(U)’
(2.5) Jim fJugll sy = 0 & Jim plug) =0,

(2.6) Jim [Jugll s o = 00 ¢ lim p(uy) = oo,

The following Lemma is the extension to variable exponents of the well-known
Brezis—Lieb Lemma (see [4]). The proof is analogous to that of [4]. See Lemma 3.4
in [14].

Lemma 2.5. Let f, — f a.e. and f, — f in LP")(U) then

i ([ 1 ds = [ 18- 50as) = [ 1790

For much more on these spaces, we refer to [8].

3. Proof of Theorem 1.1

In this section we verify that the functional J defined by (1.3) satisfies the Palais—
Smale condition (PS for short) for energy levels below the critical one +S™.
Recall that J is said to satisfy the PS condition if any PS sequence for J has a

strongly converging subsequence, where a sequence {u ren C WO (U ) is called a
PS-sequence for J if

i. The sequence {J(ug)}ren is bounded, and
/
ii. DJ(uy) — 0 strongly in the dual space (Wol’p(')(U)> .

The scheme of the proof is classical (see e.g. [26]) but relies on a version of Lions’
concentration—compactness principle adapted to the variable exponent setting in [14]
and then refined in [12].

Let {ug}ren C Wol’p(')(U) be a PS-sequence for J. Recalling that the functional
I defined by (1.4) is assumed to be coercive, it then follows that {u }ren is bounded

in Wol’p(')(U). In fact, for k large, we have that

e 1> ) — qi<DJ(uk>,uk>

11 1 1
>(=——=) [ |Vu P<x>+hxup<x>dx—/ )] de
(p+ q‘) U| d (&) U((J(w) q‘>| #
11
RN () (@)
> (p+ q_)/U|VUk|” + h(z)|up " d.

from where the claim follows recalling assumption (1.9).
We may thus assume that u; — u weakly in VVO1 P (')(U ). We claim that u turns
out to be a weak solution to (1.1). In fact, since uxy — u weakly in Wol’p(’)(U) it
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follows that
Vg [PO 2V, — [VulPY2Vu  weakly in LP'O(U),
g [P0 20y, — u|PY 20 weakly in LP'O(U),

g |70 20y, — |u|?™ 2 weakly in LYO(U).

So
0 = lim (D.J(uy), 6)
(3.1) = lim / VPO 2V, Vo + hlug PO upe do — / [ |10 201.6
. im | ;

= [ IV T i ugda — [ ful 2
v U

for every ¢ € C5°(U). This proves that u is a weak solution of (1.1).
By the CCP for variable exponents (see [14] and the refinement proved in [12])
it holds that

g, |70 — v = |u]?0) + Z v;0,, weakly in the sense of measures,
il
|V [P — > |VuPO + Zﬂi(sxi weakly in the sense of measures,
iel
Syil/p*(iﬂi) < M}/P(l‘i)

= My )

where [ is a finite set, {v; }icr and {; }ier are positive numbers and the points {x;}er
belong to the critical set A defined in (1.6).
It is not difficult to check (arguing as in (3.1)) that vy, := ux, — u is PS-sequence

for J(v) == J(v) — [, ﬁh|v|p(’7). Now, by Lemma 2.5 we get
1
(19007 + bl )] d / Lo de + 0(1)

) =90 = [ e
— Jw) + /U ]%hwo(@ dz + o(1) = J(vg) + o1).

1

Since u is a weak solution of (1.1), and since p* < ¢,

1 1
J(u) > —+/ (‘VUP(Z) + h($)|u|P(ﬂﬂ)) dr — __/ |u|q(m) dr
Pt Ju qa Ju

11
S (. |u|?®) dz > 0.
pt ) Ju

Let ¢ € C®(U). As D.J(v,) — 0, we have

o(1) = (DJ(vi), vx)
::/|Vvd”médx——/WUM“@¢dx+l/|VUMM@iWh%V¢w¢m
U U U
—A-B+C.

Therefore,
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Since v, — 0 weakly in Wol’p(')(U) it is easy to see that C' — 0 as k — oo. By means
of Lemma 2.5 it follows that

A—>/¢d/j and B—>/¢d17,
U U

where i = p— |Vul[P™® and 7 = v — |u|?®). So we conclude that ji = #. In particular,
v; > p; (i € I) from where we obtain that v; > S™. Hence

. 1 1
— i > i = | sy |
o= Jim Jue) 2 Jim Jow) = [ i [ o

11y | 1 .
=/ G~ o) d”:ZZ(p(:ca ) LS

el

We deduce that if ¢ < %S” then I must be empty implying that u; — wu strongly in
Wy (). 0

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is an immediate consequence of the Mountain Pass
Theorem, Theorem 1.1 and assumption (1.11).

In fact, it suffices to verify that J has the Mountain Pass geometry in the sense
that

(1) J(0) = 0 (this is obvious),

(2) there exist r, p > 0 such that J(v) > p if HUHWLP(.)(U)

0

> r, such that J(v) < 0.

=r, and

(3) there exist some v, ||v||W01,p(A)(U)

Concerning the latter condition notice that, given some u # 0, we have that J(tu) < 0
for t > 0 big enough. Indeed, for t > 1,

J(tu) / " (VU + () ) d / o)
tu) = — ulP + h(x)|u|P) dx — ——|u|?" dx
v p(x) v q(x)
_ 1
<t I (u) — 9 /—|u|q(x)dx,
UQ(iﬁ)

which tends to —oc as t — 400 since ¢~ > p*.

It remains to verify condition (2). If |jv = r small enough, then

lwgro @)

xr €T +
[ 190 ) d = el

)
and
1]l oty ) < C'||U||W01,za<->(U) =Cr<1,
SO
/U|v\q<x> 4 < Ol
Therefore
c
‘]('U) > %Ter - Trq > 0,
p q

since p™ < ¢~. This completes the proof. O
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5. Proof of Theorem 1.3
Let 2y € A be such that

= inf im S(p(-), ¢(-), Be(x)) = lim S(p(-), (-), Be(o)).

zeA e—0 e—0

For ease of notation we assume that zo = 0, write p = p(0) and observe that
q = q(0) = p*. From Theorem 6.1 in [12], we have that if 0 is a local maximum of ¢
and a local minimum of p, then

S =1m S(p(-),q(), B(0)) = K(n,p)~",

e—0

where K (n,p) is the best constant in the Sobolev inequality in R", i.e.,

K(n,p)™' = IVollerer
veWLP(R™) HUHLP*(R”)

Let U be an extremal for the constant K (n,p). That is, U verifies
21 IVU]lze@we)
K(n,p) ™t = =2,

U]l Lo* )

It is well known, see [2, 28], that U can be given by the formula

n—p

Uz) = (1+ m%) s

Moreover, any extremal for K (n,p) is obtained by a translation and a dilation of U
in the form

Ueao(z) = €7 U((z — z0)/€).

Given 0 > 0 small we take a cut-off function n € C2°(Byg, [0, 1]) such that n =1
in Bs. We then consider the test-function

ue(x) = Ue,o(l’)n(x)
For this test function we have:

Proposition 5.1. Assume that 0 is a critical point of p and q. We have

o Ifp <3,
(5.1) F(@)u?® dz = Ay + Aj®Ine + o(*Ine)
Rn
with
« — 0 "
Ao = f(0) U dx, A= _n=r/0O UP (D?*q(0)z, x) dz.
Rn p 2 Jgre
e If p < min{y/n, 2},
(5.2) f(@)|Vu P™ dr = By + Bie®Ine + o(e®Ine)
R”
with
0
By = f(O)/ VUPde, By = —g%/ VUP(D*p(0)z, z) da.
R n
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o Ifp < /n,
(5.3) f(@)|uP® dx = Coe? + o(e?)  with Cy = £(0) / UP dx.
R” n
Remark 5.2. Observe that if g(x) is a radial function, then

/ _9(2)(Az,z) dz = tr(A) / g(x)a}de = @ / g(a)|af* dr,

n

for any A € R™" (with adequate decaying assumptions at infinity on g).

this is a consequence of the fact that, for ¢ # j,

/ g(z)x;z; dr = 0.

With this observation, we easily conclude that

A = —f]g?)Aq(O) / U |2 da
and £0)
B, = —%Ap(()) /n |VU|P|z|* d.

We postpone the proof of this proposition to Section 6.
As U is an extremal for K(n,p) it follows that U verifies

K -p * *
NS/ S GOy ) e ST
HU p *P
Lo (R7)
_ s Ko R _ yp—1 -
Then V =C»-»rU = WU solves —A,V = VP =" and satisfy

IVV | owey = K (n,p)~"".
Consider the test function
ve(z) = TV (2/e)n(z) = CFru. ().

Using the previous proposition we immediately obtain

In fact,

Proposition 5.3. Assume that 0 is a critical point of p and q. If p < min{y/n,

22} then

Pt dz = F0)K (n,p) ™ + f(0)AC T e + o(e ),
RTL
(5.4) - f(@)| Vo P® dz = f(0)K (n,p)™™ + f(0)Be’Ine + o(e*Ine),

/ f(x)|v€|p(”) dxr = f(0)Ce’ + o(€P),

with
A * *
A=— Q(O)K(n,p)’”HU p*p/ |z|2UP" dx,
2p* R
Ap(0 ety —
B =20k ppuly? [ Lo,
D R~

C = K(n,p)"(|U

Ul

-p
p*
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Using v, as a test-function in (1.11) we can see that there exists tq > 1 such that
J(tve) < 0 for t > tg. Now if p < 2, we can write

fe(t) == J(tve) = fo(t) + € f1(t) + o(€P)
Cl-uniformly in ¢ € [0, ¢], with

o) = K (2= 2) ana 00 = Lenoc
0 = n,p —_ = — an 1 = — .
p P p
Notice that fj reaches its maximum in [0, ¢o] at ¢ = 1. Moreover, it is a nondegenerate
maximum since fJ(1) = (p — p*) K™ # 0. It follows that f, reaches a maximum at

_ _ _h@
te =1+ ae? + o(e?) for a = 7y Hence

sup J(tve) = J(twe) = %K(n,p)_” + f1(1)e? + o(€?)

t>0

Then if h(0) < 0 we get sup,q J(tve) < 2K (n,p)™".
We now assume that p > 2. Then

fo(t) = J(tve) = fo(t) + fi(t)e Ine + o(* ne),
C'-uniformly in ¢ € [0, o], with

. P g
p p
As before f, reaches its maximum at t, = 1 + ae?*Ine + o(e*Ine€) with a = —J{,{,((ll))
0

Hence

sup J(tve) = J(tev.) = fo(1) + fi(1)e Ine + o(e% Ine)

t>0

1 ~
=—K(n,p) "+ fi(1)e’Ine + o(e’ Ine).
n

We thus need fi(1) <0, i.e.,
(5.5) —Ap(0) < =Aq(0)(p/p")*D(n, p),

where
/yVU\de/ |z|2UP" dx
Rn R”

/Up*dx/ 22| VU P dx
n R'n

Since 0 is a local maximum of ¢ and a local minimum of p we already know that
(1.12) holds. Then if one of the two inequalities in (1.12) is strict we see that (5.5)
holds.

D(n,p) =

This ends the proof of Theorem 1.3. 0
As a final remark, we notice that we can compute D(n,p) exactly. To do this let
o L'(g)T'(p—
(5.6) 0= / Y1+ 1) P dt = Blg,p—q) — “DL =0
0 I'(p)
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where B(z,y) := [;°t*'(1 +t)"*"¥dt is the Beta function. This formula can be
found, for instance, in [3]. Passing to spherical coordinates and then performing the

change of variable t = rﬁ, dr = ’%t_%dt, we obtain

nk=t
P

-1
p In ’

/ UP de =U,_,

_ p=1_2
e A
n )

/ |2[PUP" do = wp s

-1 —p\? pe=t
| vurds—o, P (” p) L

p—1
—1 — P nk=l_243
/ |:U\2|VU]pdx:wn_1p (n p) o
R" p \p—1
Then
np-1) | n-1)_ 2,
Dy T w2
’ I"(Pp‘l) IMPP_IL%H n—p n+2 ’
where we used that
Jatl — q Je

p p
p—q—1
which follows from (5.6) and the formula I'(z + 1) = 2T'(z2).
6. Proof of Proposition 5.1

As 0 is a local minimum of p(-) we can assume that p,5 := min,ep,, p(z) = p.

6.1. Proof of (5.1). We first write

Rnf(:p)ue(a:)Q(z) dex = /B f(2)ud™® dx + f(@)uc(x)1® do = I,(e) + I(e).

25\B_1/p B.1/p

Since u.(z) < 1if || > €'/P, we have, letting ¢y; := ming,, q that

(&) < [l / uo(2) d

Bas\B_1/p
<l g™ / U(2)% da,
Rn\B;(;vfl)/p

where the integral in the right hand side can be bounded by

+0o0 p
C/ u+m1)p%w*W§0/

—(p—1)/p e—(p=1)/p

oo —14n—"=Pg— _pk=lyn—p —
r 1% dp < Ce ™ p T p %2,

Hence I () < Ce"/P so that

F(@)ue(z)?™® dz = / f(2)ue(2)1® da + O(e"P)
R” Bp

n—p

- / Fler)e DU ()1 d 4 O(P).
Be—-1/p
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As Vq(0) =0, we get
aler) = a(0) + 5(Da(0)a, ) + offaP),
with ¢(0) = p(0)* = p*, so
F(@)uc ()1 dz = Ag(e) + Ar(e)e® In e —|—/ o(¢?In €)|z|*U(2)"" dx
R" B—-1)/p

+e/ U(z)?" Vf(0)-zdx + O(eP)

e—(—1)/p

= Ag(€) + A1(e)€* In € + o(* In €) + O("/P),

where Ag(e) and A;(e) are the same as Ay and A; except that we integrate over
B, »-1)» instead of R™ and we have used the fact that

/ U(z)P"Vf(0)-xdr =0,
BE—(P—l)/P

since U is radially symmetric. We have

+oo
|Ag(e) — Ap| < C/ Uz)" dx < C’/ (14 r#=1)"" L dr
Rn\BE—(p—l)/p 5_(19_1)/17
+oo —np n
< C'/ it T dp < Cer.
e—(=1)/p
If p < (n+2)/2, we can estimate
|Ai(e) — Ay < C 22U (2)F" dx

R™\B__(p-1)/p

too P 1 n+2—2p
<C (14 re= 1) " dr < Ce v .

—(p=1)/p

We thus have
f(@)uc(x)1® de — Ay — A2 Ine = O(€"/?) 4+ o(e?1n ),
Rn
which reduces to (5.1) if we assume that p < n/2. O

6.2. Proof of (5.3). As before,

f(x)uf(””) dor = f(x)uf(“) dx + / f(x)uf(m) dx
Rm Bas\B_1/p

Bel/p

where, noticing that p = p.;, the 2nd integral in the right hand side can be bounded
by

1/p—1

o0 n—p> n
/ uf dr < C’e”/ (1+ rp%l)p_"rn_l dr < Cebe™ s = Cer,
Bas\B_1/p €
if p> < n. Then

F@)u?™® de = (z)uP® dz + O(er )
R” le/p
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_ /B Flex)e™ S DU (7 do 1+ O(e8) = 2 £(0) | U@ de +o(e?). O

1/p—1 R

6.3. Proof of (5.2). We first write
f(x)\Vuelp(x) dr = f(z)InVU. + UGVn]p(x) dor = f(x)]nVUe\p(’“") dr + R.,
R" R® R®

where, using the inequality
lla+ 0" —al?| < C([b]* + [b|al*™),

(the constant C' being uniform in ¢ for ¢ in a bounded interval of [0, +00)) we can
estimate

RI<c[[ v dos [
Bas\Bs B

Since U, < 1 in R™\ By for € small, we can bound [;(¢) as before by

VU (@) [ VU de| = ClI(e)+L(e))

25\ Bs

2

Li(e)<C / UPdz < Cé? / UPdx < CeéPe T = Cert,
Bg(;\B(g 1{”\35/e

if p?> < n. Since |[VU,| < 1 in R™\Bs for € small, we also have
Ly(e) < C/R . Ue(@)| VUL dx < CIU o) VUl (o 5,)
"\Bs

_n—p_ -
< CTw=0 | VUt 5

with, since |U’(r)| ~ PR as 7o~ +00,
+oo

/ VUJPde < C | |U(r)Pr"" dr < Cevr.
R™\Bs 5/e

It follows that I(e) = O(e%) and then R, = O(e:%zf). Independently, since

n=p g (BN [ (1T
e —-n o ]_ o
(VU (2)| p—le <€) +<e>

we have
n—p . =1
(6.1) IVU.(z)] <1 for |z| > Chert-n, C, = (n ;19> |
p J—
Taking some constant C' > C,,, we thus write
f(x)|vue\p(x) dr = / f(2)|VUP® dz
Re B n—p
cep(n—1)
+ / F(@)| VU™ dz + O(er=T).
Rn\B n—p

cep(n—1)
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Since |VU.(z)] < 1in R"\B _a-» , we can bound the second integral on the right

Cep(n—1)
hand side by
e _r_ p \ " 1 n(n—p) n—p
C/ [VU|? da < 0/ nipo1) TP (1 + ,W) "ty < Certnh) = o(ev1).
m - 67 (n—1)
R \Bcep(n"—pl) !
Hence
(@) Vu " do = / F(@)| VU@ de + O(er)
Rn B np
cep(n—1)

= By(e) + Bi(€)eé*In € + o(e* Ine) + O(e%),

where By(€) and Bj(e) are the same as By, By but integrating over B (1) instead
€ p(n—1)

of R™. Again, as in the computation of (5.1), the term involving V f(0) vanishes for
symmetry reasons.

(1=n)
Since |U'(r)|P ~ rp1 as 7 ~ 400, we have
+oo -n n(n—p) n—
| By — By(e€)| < C/ \VU|P dx < C’/ oy TP N dr < Cerinh = o(er 1),
R"\B n(p—1) e p(n—1)
ce p(n—1)
n(n—3p+2) 2
|B; — Bi(e)] < C/ |z|?|VUP dz < Ce paD if p < nt .
R™\B n(p—1) 3
ce p(n=1)
Hence, if p < ”T*Q, we have
f(@)|VuP® de — By — Bi*In € = o(* Ine). O
R”

Acknowledgements. This work was partially supported by Universidad de Buenos
Aires under grant X078 and by CONICET (Argentina) PIP 5478/1438. A. Silva is
a fellow of CONICET.

References

[1] Awves, C.O.,and M. A. S. SouTo: Existence of solutions for a class of problems in RY involv-
ing the p(x)-Laplacian. - In: Contributions to nonlinear analysis, Progr. Nonlinear Differential
Equations Appl. 66, Birkh&duser, Basel, 2006, 17-32.

[2] AUBIN, T.: Problémes isopérimétriques et espaces de Sobolev. - J. Differential Geom. 11:4,
1976, 573-598.

[3] BEALS, R., and R. WoNG: Special functions. - Cambridge Stud. Adv. Math. 126, Cambridge
Univ. Press, Cambridge, 2010.

[4] BrEzis, H., and E. LIEB: A relation between pointwise convergence of functions and conver-
gence of functionals. - Proc. Amer. Math. Soc. 88:3, 1983, 486—490.

[5] BrEziS, H., and L. NIRENBERG: Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents. - Comm. Pure Appl. Math. 36:4, 1983, 437-477.

[6] CaBADA, A., and R.L. Pouso: Existence theory for functional p-Laplacian equations with
variable exponents. - Nonlinear Anal. 52:2, 2003, 557-572.

[7] CHEN, Y., S. LEVINE, and M. RAO: Variable exponent, linear growth functionals in image
restoration. - STAM J. Appl. Math. 66:4, 2006, 1383-1406 (electronic).



594
18]
19]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

Julian Fernédndez Bonder, Nicolas Saintier and Analia Silva

DIENING, L., P. HARJULEHTO, P. HASTO, and M. RUZICKA: Lebesgue and Sobolev spaces
with variable exponents. - Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.

DRUET, O.: Generalized scalar curvature type equations on compact Riemannian manifolds. -
Proc. Roy. Soc. Edinburgh Sect. A 130:4, 2000, 767-788.

Fan, X.-L., and Q.-H. ZHANG: Existence of solutions for p(z)-Laplacian Dirichlet problem. -
Nonlinear Anal. 52:8, 2003, 1843-1852.

FAN, X., and D. ZHAO: On the spaces LP(*)(Q) and W) (Q). - J. Math. Anal. Appl. 263:2,
2001, 424-446.

FERNANDEZ BONDER, J., N. SAINTIER, and A. SitvA: On the Sobolev embedding Theorem
for variable exponent spaces in the critical range. - J. Differential Equations 253:5, 2012, 1604—
1620.

FERNANDEZ BONDER, J., N. SAINTIER, and A. SitvA: On the Sobole trace Theorem for
variable exponent spaces in the critical range. - In preparation.

FERNANDEZ BONDER, J., and A. SiLvA: Concentration-compactness principle for variable
exponent spaces and applications. - Electron. J. Differential Equations 141:18, 2010.

Fu, Y.: The principle of concentration compactness in LP(*) spaces and its application. -
Nonlinear Anal. 71:5-6, 2009, 1876-1892.

Fu, Y., and X. ZHANG: Multiple solutions for a class of p(x)-Laplacian equations in involving
the critical exponent. - Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466:2118, 2010,
1667-1686.

GUEDDA, M., and L. VERON: Quasilinear elliptic equations involving critical Sobolev expo-
nents. - Nonlinear Anal. 13:8, 1989, 879-902.

KovAcik, O., and J. RAKOSNIK: On spaces LP(®) and W*P(®) _ Czechoslovak Math. J.
41(116):4, 1991, 592-618.
Lions, P.-L., F. PACELLA, and M. TRICARICO: Best constants in Sobolev inequalities for

functions vanishing on some part of the boundary and related questions. - Indiana Univ. Math.
J. 37:2, 1988, 301-324.

MiHAILESCU, M.: Elliptic problems in variable exponent spaces. - Bull. Austral. Math. Soc.
74:2, 2006, 197-206.

MIHAILESCU, M.: On a class of nonlinear problems involving a p(x)-Laplace type operator. -
Czechoslovak Math. J. 58(133):1, 2008, 155-172.

MIHAILESCU, M., and V. RADULESCU: On a nonhomogeneous quasilinear eigenvalue problem
in Sobolev spaces with variable exponent. - Proc. Amer. Math. Soc. 135:9, 2007, 2929-2937
(electronic).

Mizuta, Y., T. Ouno, T. SHIMOMURA, and N. SHIOJI: Compact embeddings for Sobolev

spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving
the p(x)-Laplacian and its critical exponent. - Ann. Acad. Sci. Fenn. Math. 35:1, 2010, 115-130.

PoHOZAEV, S.1.: On the eigenfunctions of the equation Au + Af(u) = 0. - Dokl. Akad. Nauk
SSSR 165, 1965, 36-39.

RUZICKA, M.: Electrorheological fluids: modeling and mathematical theory. - Lecture Notes
in Math. 1748, Springer-Verlag, Berlin, 2000.

SAINTIER, N.: Asymptotic estimates and blow-up theory for critical equations involving the
p-Laplacian. - Calc. Var. Partial Differential Equations 25:3, 2006, 299-331.

Sitva, A.: Multiple solutions for the p(x)-Laplace operator with critical growth. - Adv. Non-
linear Stud. 11:1 2011, 63-75.

TALENTI, G.: Best constant in Sobolev inequality. - Ann. Mat. Pura Appl. (4) 110, 1976,
353-372.

Received 11 April 2012



