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Abstract. In this paper we study the existence problem for the p(x)-Laplacian operator with
a nonlinear critical source. We find a local condition on the exponents ensuring the existence
of a nontrivial solution that shows that the Pohozaev obstruction does not holds in general in the
variable exponent setting. The proof relies on the Concentration–Compactness Principle for variable
exponents and the Mountain Pass Theorem.

1. Introduction

In this paper we address the existence problem for the p(x)-Laplace operator
with a source that has critical growth in the sense of the Sobolev embeddings. To be
precise, we consider the equation

(1.1)

{
−∆p(·)u + h|u|p(·)−2u = |u|q(·)−2u in U,

u = 0 on ∂U,

where U ⊂ Rn is a smooth bounded domain, p, q : U → [1,∞) are log-Hölder con-
tinuous functions such that 1 < infU p ≤ supU p < n and 1 ≤ q(x) ≤ p∗(x) :=
np(x)/(n− p(x)), x ∈ U .

The p(x)-Laplacian operator ∆p(·) is defined, as usual, as

∆p(·)u := div(|∇u|p(·)−2∇u).

This operator appears in the study of the so-called electrorheological fluids. We refer
to the monograph by Růžička, [25], and its references, for a detailed account. In
particular, after some simplifications, the modelling of these fluids lead to solve

(1.2)

{
−∆p(·)u = f(·, u,∇u) in U,

u = 0 on ∂U,
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for some nonlinear source f . In most cases, the source term is taken to be only
dependent on u and so, in order for the usual variational techniques to work, one
needs a control on the growth of f given by the Sobolev embedding.

When the growth of f is subcritical in the sense of the Sobolev embedding the
existence of solution follows easily by applying standard procedures of the calculus
of variations (see e.g. [6, 10, 20, 21, 22] and many others). On the other hand, when
the source term has critical growth, there are only a few results on the existence of
solutions for (1.2) that we will review thoroughly later. Let us just notice for the
moment that these results only provide global existence conditions. This strongly
contrasts with the constant exponent case that has been widely studied since Aubin
and Brezis–Nirenberg’s seminal works [2, 5], and for which it is generally possible to
provide existence conditions that are local in the sense that they involve the behaviour
of the coefficients of the equations (and possibly some relevant geometric quantities)
only in a neighborhood of a point. Our main purpose in this paper is to provide local
existence conditions for the equation (1.1).

In order to study (1.1) by means of variational methods, we introduce the func-
tional J : W

1,p(·)
0 (U) → R defined by

(1.3) J(u) :=

ˆ

U

1

p(x)

(
|∇u|p(x) + h(x)|u|p(x)

)
dx−

ˆ

U

1

q(x)
|u|q(x) dx.

This functional is naturally associated to (1.1) in the sense that a weak solution
of (1.1) is a critical point of J . We refer to Section 2 for the definition and some
elementary properties of variable exponent spaces.

We need to assume that the smooth function h is such that the functional

(1.4) I(u) :=

ˆ

U

1

p(x)

(|∇u|p(x) + h(x)|u|p(x)
)

dx

is coercive in the sense that the norm

‖u‖ := inf

{
λ > 0:

ˆ

U

|∇u|p(x) + h(x)|u(x)|p(x)

λp(x)
dx ≤ 1

}

is equivalent to the usual norm of W
1,p(·)
0 (U). Notice that a sufficient condition is

inf
U

h > −λ1 where λ1 = inf
u∈W

1,p(.)
0 (U)

´
U
|∇u|p(x) dx´

U
|u|p(x) dx

> 0.

In particular h can be negative.
When infU q > supU p, it is easy to show that J satisfies the geometric assump-

tions of the Mountain–Pass Theorem (cf. Section 4). Hence if we assume moreover
that the exponent q is subcritical in the sense that

(1.5) inf
U

(p∗ − q) > 0,

which implies that the immersion W
1,p(·)
0 (U) ↪→ Lq(·)(U) is compact, then J satisfies

the Palais–Smale condition, and the existence of a nontrivial solution to (1.1) follows
easily.

When (1.5) is violated, the immersion W
1,p(·)
0 (U) ↪→ Lq(·)(U) does not need to be

compact and so the Palais–Smale condition may fail. The existence of a non-trivial
solution to (1.1) is then a non-trivial problem.
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We denote by

(1.6) A := {x ∈ U : q(x) = p∗(x)}
the critical set. We will assume in this work that this critical set is nonempty.

In [23] the authors prove that if A is small and there exists a control on the rate of
how q reaches the critical value p∗, then the immersion W

1,p(·)
0 (U) ↪→ Lq(·)(U) remains

compact, and so the usual techniques can be applied. When the immersion fails to
be compact they prove that if the subcriticality set U \A contains a sufficiently large
ball, then (1.1) with h = 0 has a nonnegative solution.

In [14], problem (1.1) is studied with h = 0 and with a subcritical perturbation.
In this work the authors generalize the Concentration–Compactness Principle (CCP)
of Lions to the variable exponent case and prove that if the subcritical perturbation
is large enough on the critical set, the Palais–Smale condition is verified and so the
existence of a nontrivial solution follows. See also [15] where similar results were
obtained independently.

In [27], using the CCP of [14, 15], a multiplicity problem for (1.1) with h = 0
and a nonsymmetric subcritical perturbation is analyzed.

More recently, the authors in [12] studied the best Sobolev constant S(p(·), q(·), U)

corresponding to the embedding W
1,p(·)
0 (U) ↪→ Lq(·)(U), namely

(1.7) S(p(·), q(·), U) = inf
u∈W

1,p(·)
0 (U)

‖∇u‖Lp(·)(U)

‖u‖Lq(·)(U)

.

Using a refinement of the CCP proved in [14], they gave sufficient conditions for the
existence of an extremal for S(p(·), q(·), U), and so the existence of a solution to (1.1)
with h = 0 follows.

We remark that in [12] a bit more than log-Hölder regularity on the exponents
p and q is required, i.e. it is needed that p(·), q(·) : Ω → [1, +∞) are continuous
functions with modulus of continuity ρ(t) such that

(1.8) ρ(t) log(1/t) → 0 as t → 0 + .

The study of (1.1) posed in the whole Rn is analyzed in [1, 16]. In those works
the authors studied the problem in the case where p, q and h are radial functions and
give somewhat restrictive conditions to ensure the existence of a nontrivial radial
solution.

From now on we will assume that

(1.9) sup
U

p < inf
U

q.

Our first result provides a condition for the functional J defined by (1.3) to satisfy
the Palais–Smale condition.

Theorem 1.1. Assume that the exponents p and q verify (1.8) and, moreover,
that the critical set A given in (1.6) is nonempty. Then, the functional J satisfies
the Palais–Smale condition at level c ∈ (0, 1

n
Sn) where

(1.10) S := inf
x∈A

lim
ε→0

S(p(·), q(·), Bε(x)),

and S(p(·), q(·), Bε(x)) stands for the best Sobolev constant for the domain Bε(x)
defined in a similar way as in (1.7).
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The proof of Theorem 1.1 relies on a precise computation of the constants in the
CCP recently proved in [12].

As a corollary, we can apply the Mountain–Pass Theorem to obtain the following
necessary existence condition:

Theorem 1.2. Under the same assumptions of Theorem 1.1, if there exists v ∈
W

1,p(·)
0 (U) such that

(1.11) sup
t>0

J(tv) <
1

n
Sn,

then (1.1) has a non-trivial nonnegative solution.

Eventually the following result provide a sufficient local condition for (1.11) to
hold:

Theorem 1.3. Assume that the infimum in the definition (1.10) of S is attained
at a point x0 ∈ A such that x0 is a local minimum of p and a local maximum of q.
In particular,

(1.12) −∆p(x0) ≤ 0 ≤ −∆q(x0).

Assume, moreover, that p, q are C2 in a neighborhood of x0, and that h(x0) < 0 if
1 < p(x0) < 2 (n ≥ 4), or if 2 ≤ p(x0) <

√
n (n ≥ 5), that at least one of the two

inequalities in (1.12) is strict, but h(x0) is arbitrary. Under these assumptions (1.11)
holds. In particular, (1.1) has a non-trivial nonnegative solution.

In the constant exponent case, the well known Pohozaev obstruction [24] affirms
that if h ≥ 0 and U is starshaped then there are no (positive) solutions to (1.1). Our
result shows that for variable p and q and p(x) ≥ 2 this does not need to be the case,
showing a stricking difference between the constant exponent case and the variable
exponent one.

2. Preliminaries on variable exponent spaces

In this section we review some preliminary results regarding Lebesgue and Sobolev
spaces with variable exponent. All of these results and a comprehensive study of these
spaces can be found in [8].

Consider a function p : U → [1, +∞] log-Hölder continuous in the sense that

|p(x)− p(y)| ≤ C

| log |x− y|| , for x, y ∈ U, x 6= y

for some constant C > 0. This regularity assumptions is not needed to define the
Lebesgue and Sobolev spaces with variable p but turns out to be very useful for these
Sobolev spaces to enjoy all the usual properties like Sobolev embeddings, Poincaré
inequality and so on. We will therefore assume it from now for simplicity.

The variable exponent Lebesgue space Lp(·)(U) is defined by

Lp(·)(U) =
{

u ∈ L1
loc(U) :

ˆ

U

|u(x)|p(x) dx < ∞
}

.

This space is endowed with the norm

‖u‖Lp(·)(U) = inf
{

λ > 0 :

ˆ

U

∣∣∣u(x)

λ

∣∣∣
p(x)

dx ≤ 1
}

.
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The variable exponent Sobolev space W 1,p(·)(U) is defined by

W 1,p(·)(U) = {u ∈ W 1,1
loc (U) : u ∈ Lp(·)(U) and |∇u| ∈ Lp(·)(U)}.

The corresponding norm for this space is

‖u‖W 1,p(·)(U) = ‖u‖Lp(·)(U) + ‖∇u‖Lp(·)(U).

Define W
1,p(·)
0 (U) as the closure of C∞

c (U) with respect to the W 1,p(·)(U) norm. The
spaces Lp(·)(U), W 1,p(·)(U) and W

1,p(·)
0 (U) are separable and reflexive Banach spaces

when 1 < p− ≤ p+ < ∞, where p− := ess infUp and p+ := ess supUp.
As usual, we denote the conjugate exponent of p(x) by p′(x) = p(x)/(p(x) − 1)

and the Sobolev exponent by

p∗(x) =

{
Np(x)

N−p(x)
if p(x) < N,

∞ if p(x) ≥ N.

The following result is proved in [18] (see also [11] and [8], pp. 79, Lemma 3.2.20
(3.2.23)).

Proposition 2.1. (Hölder-type inequality) Let f ∈ Lp(·)(U) and g ∈ Lq(·)(U).
Then the following inequality holds

‖fg‖Ls(·)(U) ≤
((s

p

)+

+
(s

q

)+)
‖f‖Lp(·)(U)‖g‖Lq(·)(U),

where
1

s(x)
=

1

p(x)
+

1

q(x)
.

The Sobolev embedding Theorem is also proved in [11], Theorem 2.3.

Proposition 2.2. (Sobolev embedding) Let q : U ∈ [1, +∞) be a measurable
function such that 1 ≤ q(x) ≤ p∗(x) < ∞ for all x ∈ U . Then there is a continuous
embedding

W 1,p(·)(U) ↪→ Lq(·)(U).

Moreover, if infU(p∗ − q) > 0 then, the embedding is compact.

As in the constant exponent spaces, Poincaré inequality holds true (see [8],
pp. 249, Theorem 8.2.4).

Proposition 2.3. (Poincaré inequality) There is a constant C > 0, C = C(U),
such that

‖u‖Lp(·)(U) ≤ C‖∇u‖Lp(·)(U),

for all u ∈ W
1,p(·)
0 (U).

It follows from the Poincaré inequality that ‖∇u‖Lp(·)(U) and ‖u‖W 1,p(·)(U) are
equivalent norms on W

1,p(·)
0 (U), in particular.

Throughout this paper the following notation will be used: Given q : U → R
bounded, we denote

q+ := sup
U

q(x), q− := inf
U

q(x).

The following proposition is also proved in [11] and it will be most usefull (see
also [8], Chapter 2, Section 1).
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Proposition 2.4. Set ρ(u) :=
´

U
|u(x)|p(x) dx. For u ∈ Lp(·)(U) and {uk}k∈N ⊂

Lp(·)(U), we have

u 6= 0 ⇒
(
‖u‖Lp(·)(U) = λ ⇔ ρ(

u

λ
) = 1

)
,(2.1)

‖u‖Lp(·)(U) < 1(= 1; > 1) ⇔ ρ(u) < 1(= 1; > 1),(2.2)

‖u‖Lp(·)(U) > 1 ⇒ ‖u‖p−

Lp(·)(U)
≤ ρ(u) ≤ ‖u‖p+

Lp(·)(U)
,(2.3)

‖u‖Lp(·)(U) < 1 ⇒ ‖u‖p+

Lp(·)(U)
≤ ρ(u) ≤ ‖u‖p−

Lp(·)(U)
,(2.4)

lim
k→∞

‖uk‖Lp(·)(U) = 0 ⇔ lim
k→∞

ρ(uk) = 0,(2.5)

lim
k→∞

‖uk‖Lp(·)(U) = ∞⇔ lim
k→∞

ρ(uk) = ∞.(2.6)

The following Lemma is the extension to variable exponents of the well-known
Brezis–Lieb Lemma (see [4]). The proof is analogous to that of [4]. See Lemma 3.4
in [14].

Lemma 2.5. Let fn → f a.e. and fn ⇀ f in Lp(·)(U) then

lim
n→∞

(ˆ

U

|fn|p(x)dx−
ˆ

U

|f − fn|p(x)dx

)
=

ˆ

U

|f |p(x)dx.

For much more on these spaces, we refer to [8].

3. Proof of Theorem 1.1

In this section we verify that the functional J defined by (1.3) satisfies the Palais–
Smale condition (PS for short) for energy levels below the critical one 1

n
Sn.

Recall that J is said to satisfy the PS condition if any PS sequence for J has a
strongly converging subsequence, where a sequence {uk}k∈N ⊂ W

1,p(·)
0 (U) is called a

PS-sequence for J if
i. The sequence {J(uk)}k∈N is bounded, and

ii. DJ(uk) → 0 strongly in the dual space
(
W

1,p(·)
0 (U)

)′
.

The scheme of the proof is classical (see e.g. [26]) but relies on a version of Lions’
concentration–compactness principle adapted to the variable exponent setting in [14]
and then refined in [12].

Let {uk}k∈N ⊂ W
1,p(·)
0 (U) be a PS-sequence for J . Recalling that the functional

I defined by (1.4) is assumed to be coercive, it then follows that {uk}k∈N is bounded
in W

1,p(·)
0 (U). In fact, for k large, we have that

c + 1 ≥ J(uk)− 1

q−
〈DJ(uk), uk〉

≥ ( 1

p+
− 1

q−
) ˆ

U

|∇uk|p(x) + h(x)|uk|p(x) dx−
ˆ

U

( 1

q(x)
− 1

q−
)|uk|q(x) dx

≥ ( 1

p+
− 1

q−
) ˆ

U

|∇uk|p(x) + h(x)|uk|p(x) dx.

from where the claim follows recalling assumption (1.9).
We may thus assume that uk ⇀ u weakly in W

1,p(·)
0 (U). We claim that u turns

out to be a weak solution to (1.1). In fact, since uk ⇀ u weakly in W
1,p(·)
0 (U) it
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follows that

|∇uk|p(·)−2∇uk ⇀ |∇u|p(·)−2∇u weakly in Lp′(·)(U),

|uk|p(·)−2uk ⇀ |u|p(·)−2u weakly in Lp′(·)(U),

|uk|q(·)−2uk ⇀ |u|q(·)−2u weakly in Lq′(·)(U).

So
0 = lim

k→∞
〈DJ(uk), φ〉

= lim
k→∞

ˆ

U

|∇uk|p(x)−2∇uk∇φ + h|uk|p(x)−2ukφ dx−
ˆ

U

|uk|q(x)−2ukφ

=

ˆ

U

|∇u|p(x)−2∇u∇φ + h|u|p(x)−2uφ dx−
ˆ

U

|u|q(x)−2uφ,

(3.1)

for every φ ∈ C∞
0 (U). This proves that u is a weak solution of (1.1).

By the CCP for variable exponents (see [14] and the refinement proved in [12])
it holds that

|uk|q(·) ⇀ ν = |u|q(·) +
∑
i∈I

νiδxi
weakly in the sense of measures,

|∇uk|p(·) ⇀ µ ≥ |∇u|p(·) +
∑
i∈I

µiδxi
weakly in the sense of measures,

Sν
1/p∗(xi)
i ≤ µ

1/p(xi)
i ,

where I is a finite set, {νi}i∈I and {µi}i∈I are positive numbers and the points {xi}i∈I

belong to the critical set A defined in (1.6).
It is not difficult to check (arguing as in (3.1)) that vk := uk − u is PS-sequence

for J̃(v) := J(v)− ´
U

1
p(x)

h|v|p(x). Now, by Lemma 2.5 we get

J(uk)− J(u) =

ˆ

U

1

p(x)

[
|∇vk|p(x) + h|vk|p(x)

]
dx−

ˆ

U

1

q(x)
|vk|q(x) dx + o(1)

= J̃(vk) +

ˆ

U

1

p(x)
h|vk|p(x) dx + o(1) = J̃(vk) + o(1).

Since u is a weak solution of (1.1), and since p+ < q−,

J(u) ≥ 1

p+

ˆ

U

(|∇u|p(x) + h(x)|u|p(x)
)

dx− 1

q−

ˆ

U

|u|q(x) dx

=

(
1

p+
− 1

q−

) ˆ

U

|u|q(x) dx ≥ 0.

Therefore,
J(uk) ≥ J̃(vk) + o(1).

Let φ ∈ C∞
c (U). As DJ̃(vk) → 0, we have

o(1) = 〈DJ̃(vk), vkφ〉

=

ˆ

U

|∇vk|p(x)φ dx−
ˆ

U

|vk|q(x)φ dx +

ˆ

U

|∇vk|p(x)−2∇vk∇φvk dx

= A−B + C.
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Since vk ⇀ 0 weakly in W
1,p(·)
0 (U) it is easy to see that C → 0 as k →∞. By means

of Lemma 2.5 it follows that

A →
ˆ

U

φ dµ̃ and B →
ˆ

U

φ dν̃,

where µ̃ = µ−|∇u|p(x) and ν̃ = ν−|u|q(x). So we conclude that µ̃ = ν̃. In particular,
νi ≥ µi (i ∈ I) from where we obtain that νi ≥ Sn. Hence

c = lim
k→∞

J(uk) ≥ lim
k→∞

J̃(vk) =

ˆ
1

p(x)
dµ̃−

ˆ
1

q(x)
dν̃

=

ˆ ( 1

p(x)
− 1

q(x)

)
dν̃ =

∑
i∈I

(
1

p(xi)
− 1

p∗(xi)

)
νi ≥ #(I)

1

n
Sn.

We deduce that if c < 1
n
Sn then I must be empty implying that uk → u strongly in

W
1,p(·)
0 (U). ¤

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is an immediate consequence of the Mountain Pass
Theorem, Theorem 1.1 and assumption (1.11).

In fact, it suffices to verify that J has the Mountain Pass geometry in the sense
that

(1) J(0) = 0 (this is obvious),
(2) there exist r, ρ > 0 such that J(v) ≥ ρ if ‖v‖

W
1,p(·)
0 (U)

= r, and
(3) there exist some v, ‖v‖

W
1,p(·)
0 (U)

> r, such that J(v) ≤ 0.

Concerning the latter condition notice that, given some u 6≡ 0, we have that J(tu) < 0
for t > 0 big enough. Indeed, for t > 1,

J(tu) =

ˆ

U

tp(x)

p(x)

(|∇u|p(x) + h(x)|u|p(x)
)

dx−
ˆ

U

tq(x)

q(x)
|u|q(x) dx

≤ tp
+

I(u)− tq
−
ˆ

U

1

q(x)
|u|q(x) dx,

which tends to −∞ as t → +∞ since q− > p+.
It remains to verify condition (2). If ‖v‖

W
1,p(·)
0 (U)

= r small enough, then
ˆ

U

|∇v|p(x) + h|v|p(x) dx ≥ c‖v‖p+

W
1,p(·)
0 (U)

and
‖v‖Lq(·)(U) ≤ C‖v‖

W
1,p(·)
0 (U)

= Cr < 1,

so ˆ

U

|v|q(x) dx ≤ C‖v‖q−

W
1,p(·)
0 (U)

.

Therefore

J(v) ≥ c

p+
rp+ − C

q−
rq− > 0,

since p+ < q−. This completes the proof. ¤



Existence of solution to a critical equation with variable exponent 587

5. Proof of Theorem 1.3

Let x0 ∈ A be such that

S := inf
x∈A

lim
ε→0

S(p(·), q(·), Bε(x)) = lim
ε→0

S(p(·), q(·), Bε(x0)).

For ease of notation we assume that x0 = 0, write p = p(0) and observe that
q = q(0) = p∗. From Theorem 6.1 in [12], we have that if 0 is a local maximum of q
and a local minimum of p, then

S = lim
ε→0

S(p(·), q(·), Bε(0)) = K(n, p)−1,

where K(n, p) is the best constant in the Sobolev inequality in Rn, i.e.,

K(n, p)−1 = inf
v∈W 1,p(Rn)

‖∇v‖Lp(Rn)

‖v‖Lp∗ (Rn)

.

Let U be an extremal for the constant K(n, p). That is, U verifies

K(n, p)−1 =
‖∇U‖Lp(Rn)

‖U‖Lp∗ (Rn)

.

It is well known, see [2, 28], that U can be given by the formula

U(x) =
(
1 + |x| p

p−1

)−n−p
p

.

Moreover, any extremal for K(n, p) is obtained by a translation and a dilation of U
in the form

Uε,x0(x) = ε−
n−p

p U((x− x0)/ε).

Given δ > 0 small we take a cut-off function η ∈ C∞
c (B2δ, [0, 1]) such that η ≡ 1

in Bδ. We then consider the test-function

uε(x) = Uε,0(x)η(x).

For this test function we have:

Proposition 5.1. Assume that 0 is a critical point of p and q. We have
• If p ≤ n

2
,

(5.1)
ˆ

Rn

f(x)uq(x)
ε dx = A0 + A1ε

2 ln ε + o(ε2 ln ε)

with

A0 = f(0)

ˆ

Rn

Up∗ dx, A1 = −n− p

p

f(0)

2

ˆ

Rn

Up∗(D2q(0)x, x) dx.

• If p < min{√n, n+2
3
},

(5.2)
ˆ

Rn

f(x)|∇uε|p(x) dx = B0 + B1ε
2 ln ε + o(ε2 ln ε)

with

B0 = f(0)

ˆ

Rn

|∇U |p dx, B1 = −n

p

f(0)

2

ˆ

Rn

|∇U |p(D2p(0)x, x) dx.
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• If p <
√

n,

(5.3)
ˆ

Rn

f(x)|uε|p(x) dx = C0ε
p + o(εp) with C0 = f(0)

ˆ

Rn

Up dx.

Remark 5.2. Observe that if g(x) is a radial function, thenˆ

Rn

g(x)(Ax, x) dx = tr(A)

ˆ

Rn

g(x)x2
1 dx =

tr(A)

n

ˆ

Rn

g(x)|x|2 dx,

for any A ∈ Rn×n (with adequate decaying assumptions at infinity on g). In fact,
this is a consequence of the fact that, for i 6= j,ˆ

Rn

g(x)xixj dx = 0.

With this observation, we easily conclude that

A1 = −f(0)

p∗
∆q(0)

ˆ

Rn

Up∗|x|2 dx

and
B1 = −f(0)

2p
∆p(0)

ˆ

Rn

|∇U |p|x|2 dx.

We postpone the proof of this proposition to Section 6.
As U is an extremal for K(n, p) it follows that U verifies

−∆pU =
K(n, p)−p

‖U‖p∗−p

Lp∗ (Rn)

Up∗−1 = CUp∗−1.

Then V = C
1

p∗−p U = K(n,p)
−n−p

p

‖U‖p∗
U solves −∆pV = V p∗−1 and satisfy

‖∇V ‖Lp(Rn) = K(n, p)−n/p.

Consider the test function

vε(x) = ε−
n−p

p V (x/ε)η(x) = C
1

p∗−p uε(x).

Using the previous proposition we immediately obtain

Proposition 5.3. Assume that 0 is a critical point of p and q. If p < min{√n,
n+2

3
}, then ˆ

Rn

f(x)vq(x)
ε dx = f(0)K(n, p)−n + f(0)Aε2 ln ε + o(ε2 ln ε),

ˆ

Rn

f(x)|∇vε|p(x) dx = f(0)K(n, p)−n + f(0)Bε2 ln ε + o(ε2 ln ε),

ˆ

Rn

f(x)|vε|p(x) dx = f(0)Cεp + o(εp),

(5.4)

with

A = −∆q(0)

2p∗
K(n, p)−n‖U‖−p∗

p∗

ˆ

Rn

|x|2Up∗ dx,

B = −∆p(0)

2p
K(n, p)p−n‖U‖−p

p∗

ˆ

Rn

|x|2|∇U |p dx,

C = K(n, p)p−n‖U‖−p
p∗ ‖U‖p

p.
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Using vε as a test-function in (1.11) we can see that there exists t0 > 1 such that
J(tvε) < 0 for t > t0. Now if p < 2, we can write

fε(t) := J(tvε) = f0(t) + εpf1(t) + o(εp)

C1-uniformly in t ∈ [0, t0], with

f0(t) = K(n, p)−n

(
tp

p
− tp

∗

p∗

)
and f1(t) =

1

p
tph(0)C.

Notice that f0 reaches its maximum in [0, t0] at t = 1. Moreover, it is a nondegenerate
maximum since f ′′0 (1) = (p − p∗)K−n 6= 0. It follows that fε reaches a maximum at
tε = 1 + aεp + o(εp) for a = − f ′1(1)

f ′′0 (1)
. Hence

sup
t>0

J(tvε) = J(tεvε) =
1

n
K(n, p)−n + f1(1)εp + o(εp)

Then if h(0) < 0 we get supt>0 J(tvε) < 1
n
K(n, p)−n.

We now assume that p ≥ 2. Then

fε(t) = J(tvε) = f0(t) + f̃1(t)ε
2 ln ε + o(ε2 ln ε),

C1-uniformly in t ∈ [0, t0], with

f̃1(t) =
tp
∗

p∗
A− tp

p
B.

As before fε reaches its maximum at tε = 1 + aε2 ln ε + o(ε2 ln ε) with a = − f̃ ′1(1)

f ′′0 (1)
.

Hence

sup
t>0

J(tvε) = J(tεvε) = f0(1) + f̃1(1)ε2 ln ε + o(ε2 ln ε)

=
1

n
K(n, p)−n + f̃1(1)ε2 ln ε + o(ε2 ln ε).

We thus need f̃1(1) < 0, i.e.,

(5.5) −∆p(0) < −∆q(0)(p/p∗)2D(n, p),

where

D(n, p) :=

ˆ

Rn

|∇U |p dx

ˆ

Rn

|x|2Up∗ dx
ˆ

Rn

Up∗ dx

ˆ

Rn

|x|2|∇U |p dx

.

Since 0 is a local maximum of q and a local minimum of p we already know that
(1.12) holds. Then if one of the two inequalities in (1.12) is strict we see that (5.5)
holds.

This ends the proof of Theorem 1.3. ¤
As a final remark, we notice that we can compute D(n, p) exactly. To do this let

(5.6) Iq
p :=

ˆ ∞

0

tq−1(1 + t)−p dt = B(q, p− q) =
Γ(q)Γ(p− q)

Γ(p)
,
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where B(x, y) :=
´∞

0
tx−1(1 + t)−x−y dt is the Beta function. This formula can be

found, for instance, in [3]. Passing to spherical coordinates and then performing the
change of variable t = r

p
p−1 , dr = p−1

p
t−

1
p dt, we obtain

ˆ

Rn

Up∗ dx = Un−1
p− 1

p
I

n p−1
p

n ,

ˆ

Rn

|x|2Up∗ dx = ωn−1
p− 1

p
I

n p−1
p
− 2

p
+2

n ,

ˆ

Rn

|∇U |p dx = ωn−1
p− 1

p

(
n− p

p− 1

)p

I
n p−1

p
+1

n ,

ˆ

Rn

|x|2|∇U |p dx = ωn−1
p− 1

p

(
n− p

p− 1

)p

I
n p−1

p
− 2

p
+3

n .

Then

D(n, p) =
I

n(p−1)
p

+1
n I

n(p−1)
p

− 2
p
+2

n

I
n(p−1)

p
n I

n(p−1)
p

− 2
p
+3

n

=
n

n− p

(n− p)− 2(p− 1)

n + 2
,

where we used that
Iq+1
p =

q

p− q − 1
Iq
p

which follows from (5.6) and the formula Γ(z + 1) = zΓ(z).

6. Proof of Proposition 5.1

As 0 is a local minimum of p(·) we can assume that p−2δ := minx∈B2δ
p(x) = p.

6.1. Proof of (5.1). We first write
ˆ

Rn

f(x)uε(x)q(x) dx =

ˆ

B2δ\Bε1/p

f(x)uq(x)
ε dx +

ˆ

B
ε1/p

f(x)uε(x)q(x) dx = I1(ε) + I2(ε).

Since uε(x) ≤ 1 if |x| ≥ ε1/p, we have, letting q−2δ := minB2δ
q that

I1(ε) ≤ ‖f‖L∞(B2δ)

ˆ

B2δ\Bε1/p

uε(x)q−2δ dx

≤ ‖f‖L∞(B2δ)ε
n−n−p

p
q−2δ

ˆ

Rn\B
ε−(p−1)/p

U(x)q−2δ dx,

where the integral in the right hand side can be bounded by

C

ˆ +∞

ε−(p−1)/p

(1 + r
p

p−1 )−
n−p

p
q−2δ rn−1 dr ≤ C

ˆ +∞

ε−(p−1)/p

r−1+n−n−p
p−1

q−2δ dr ≤ Cε−n p−1
p

+n−p
p

q−2δ .

Hence I1(ε) ≤ Cεn/p so that
ˆ

Rn

f(x)uε(x)q(x) dx =

ˆ

B
ε1/p

f(x)uε(x)q(x) dx + O(εn/p)

=

ˆ

B
ε−(p−1)/p

f(εx)εn−q(εx)n−p
p U(x)q(εx) dx + O(εn/p).
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As ∇q(0) = 0, we get

q(εx) = q(0) +
1

2
ε2(D2q(0)x, x) + o(ε2|x|2),

with q(0) = p(0)∗ = p∗, so
ˆ

Rn

f(x)uε(x)q(x) dx = A0(ε) + A1(ε)ε
2 ln ε +

ˆ

B
ε−(p−1)/p

o(ε2 ln ε)|x|2U(x)p∗ dx

+ ε

ˆ

B
ε−(p−1)/p

U(x)p∗∇f(0) · x dx + O(εn/p)

= A0(ε) + A1(ε)ε
2 ln ε + o(ε2 ln ε) + O(εn/p),

where A0(ε) and A1(ε) are the same as A0 and A1 except that we integrate over
Bε−(p−1)/p instead of Rn and we have used the fact that

ˆ

B
ε−(p−1)/p

U(x)p∗∇f(0) · x dx = 0,

since U is radially symmetric. We have

|A0(ε)− A0| ≤ C

ˆ

Rn\B
ε−(p−1)/p

U(x)p∗ dx ≤ C

ˆ +∞

ε−(p−1)/p

(1 + r
p

p−1 )−nrn−1 dr

≤ C

ˆ +∞

ε−(p−1)/p

r
−np
p−1

+n−1 dr ≤ Cε
n
p .

If p < (n + 2)/2, we can estimate

|A1(ε)− A1| ≤ C

ˆ

Rn\B
ε−(p−1)/p

|x|2U(x)p∗ dx

≤ C

ˆ +∞

ε−(p−1)/p

(1 + r
p

p−1 )−nrn+1 dr ≤ Cε
n+2−2p

p .

We thus haveˆ

Rn

f(x)uε(x)q(x) dx− A0 − A1ε
2 ln ε = O(εn/p) + o(ε2 ln ε),

which reduces to (5.1) if we assume that p ≤ n/2. ¤
6.2. Proof of (5.3). As before,

ˆ

Rn

f(x)up(x)
ε dx =

ˆ

B
ε1/p

f(x)up(x)
ε dx +

ˆ

B2δ\Bε1/p

f(x)up(x)
ε dx

where, noticing that p = p−2δ, the 2nd integral in the right hand side can be bounded
by ˆ

B2δ\Bε1/p

up
ε dx ≤ Cεp

ˆ ∞

ε1/p−1

(1 + r
p

p−1 )p−nrn−1 dr ≤ Cεpε
n−p2

p = Cε
n
p ,

if p2 < n. Then
ˆ

Rn

f(x)up(x)
ε dx =

ˆ

B
ε1/p

f(x)up(x)
ε dx + O(ε

n
p )
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=

ˆ

B
ε1/p−1

f(εx)εn−n−p
p

p(εx)U(x)p(εx) dx + O(ε
n
p ) = εpf(0)

ˆ

Rn

U(x)p dx + o(εp). ¤

6.3. Proof of (5.2). We first write
ˆ

Rn

f(x)|∇uε|p(x) dx =

ˆ

Rn

f(x)|η∇Uε + Uε∇η|p(x) dx =

ˆ

Rn

f(x)|η∇Uε|p(x) dx + Rε,

where, using the inequality

||a + b|q − |a|q| ≤ C(|b|q + |b||a|q−1),

(the constant C being uniform in q for q in a bounded interval of [0, +∞)) we can
estimate

|Rε| ≤ C
[ˆ

B2δ\Bδ

|∇η|p(x)Up(x)
ε dx+

ˆ

B2δ\Bδ

|∇η|Uε(x)|∇Uε|p(x)−1 dx
]

= C[I1(ε)+I2(ε)].

Since Uε ≤ 1 in Rn\Bδ for ε small, we can bound I1(ε) as before by

I1(ε) ≤ C

ˆ

B2δ\Bδ

Up
ε dx ≤ Cεp

ˆ

Rn\Bδ/ε

Up dx ≤ Cεpε
n−p2

p−1 = Cε
n−p
p−1 ,

if p2 < n. Since |∇Uε| ≤ 1 in Rn\Bδ for ε small, we also have

I2(ε) ≤ C

ˆ

Rn\Bδ

Uε(x)|∇Uε|p−1 dx ≤ C‖Uε‖Lp(Rn\Bδ)‖∇Uε‖p−1
Lp(Rn\Bδ)

≤ Cε
n−p

p(p−1)‖∇Uε‖p−1
Lp(Rn\Bδ),

with, since |U ′(r)| ∼ r−
n−1
p−1 as r ∼ +∞,

ˆ

Rn\Bδ

|∇Uε|p dx ≤ C

ˆ +∞

δ/ε

|U ′(r)|prn−1 dr ≤ Cε
n−p
p−1 .

It follows that I2(ε) = O(ε
n−p
p−1 ) and then Rε = O(ε

n−p
p−1 ). Independently, since

|∇Uε(x)| =n− p

p− 1
ε−n/p

( |x|
ε

) 1
p−1

(
1 +

( |x|
ε

) p
p−1

)−n/p

we have

(6.1) |∇Uε(x)| < 1 for |x| > Cpε
n−p

p(n−1) , Cp =

(
n− p

p− 1

) p−1
n−1

.

Taking some constant C > Cp, we thus write
ˆ

Rn

f(x)|∇uε|p(x) dx =

ˆ

B
Cε

n−p
p(n−1)

f(x)|∇Uε|p(x) dx

+

ˆ

Rn\B
Cε

n−p
p(n−1)

f(x)|∇Uε|p(x) dx + O(ε
n−p
p−1 ).
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Since |∇Uε(x)| < 1 in Rn\B
Cε

n−p
p(n−1)

, we can bound the second integral on the right
hand side by

C

ˆ

Rn\B
Cε

n−p
p(n−1)

|∇Uε|p dx ≤ C

ˆ +∞

ε
−n(p−1)

p(n−1)

r
p

p−1

(
1 + r

p
p−1

)−n

rn−1 dr ≤ Cε
n(n−p)
p(n−1) = o(ε

n−p
p−1 ).

Hence ˆ

Rn

f(x)|∇uε|p(x) dx =

ˆ

B
Cε

n−p
p(n−1)

f(x)|∇Uε|p(x) dx + O(ε
n−p
p−1 )

= B0(ε) + B1(ε)ε
2 ln ε + o(ε2 ln ε) + O(ε

n−p
p−1 ),

where B0(ε) and B1(ε) are the same as B0, B1 but integrating over B
ε
−n(p−1)

p(n−1)
instead

of Rn. Again, as in the computation of (5.1), the term involving ∇f(0) vanishes for
symmetry reasons.

Since |U ′(r)|p ∼ r
p(1−n)

p−1 as r ∼ +∞, we have

|B0 −B0(ε)| ≤ C

ˆ

Rn\B
Cε
−n(p−1)

p(n−1)

|∇U |p dx ≤ C

ˆ +∞

ε
−n(p−1)

p(n−1)

r
p−n
p−1

−1 dr ≤ Cε
n(n−p)
p(n−1) = o(ε

n−p
p−1 ),

|B1 −B1(ε)| ≤ C

ˆ

Rn\B
Cε
−n(p−1)

p(n−1)

|x|2|∇U |p dx ≤ Cε
n(n−3p+2)

p(n−1) if p <
n + 2

3
.

Hence, if p < n+2
3
, we have
ˆ

Rn

f(x)|∇uε|p(x) dx−B0 −B1ε
2 ln ε = o(ε2 ln ε). ¤
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