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Abstract. We investigate under which dynamical conditions the Julia set of a quadratic
rational map is a Sierpiński curve.

1. Introduction

Iteration of rational maps in one complex variable has been widely studied in
recent decades continuing the remarkable papers of Fatou and Julia who introduced
normal families and Montel’s Theorem to the subject at the beginning of the twenti-
eth century. Indeed, these maps are the natural family of functions when considering
iteration of holomorphic maps on the Riemann sphere Ĉ. For a given rational map
f , the sphere splits into two complementary domains: the Fatou set F(f) where the
family of iterates {fn(z)}n≥0 forms a normal family, and its complement, the Julia
set (f). The Fatou set, when non-empty, is given by the union of, possibly, infinitely
many open sets in Ĉ, usually called Fatou components. On the other hand, it is
known that the Julia set is a closed, totally invariant, perfect non-empty set, and
coincides with the closure of the set of (repelling) periodic points. For background
see [7].

Unless the Julia set of f fills up the whole sphere, one of the major problems
in complex dynamics is to characterize the topology of the Julia set (or at least
determine some topological properties) and, if possible, study the chaotic dynamics
on this invariant set when iterating the map. Indeed, depending on f , the Julia set
can have either trivial topology (for instance just a circle), or a highly rich topology
(for instance it may be a non locally connected continuum, a dendrite, a Cantor set,
a Cantor set of circles, etc.)

The Sierpiński carpet fractal shown in Figure 1 is one of the best known planar,
compact and connected sets. On the one hand, it is a universal plane continuum in the
sense that it contains a homeomorphic copy of any planar, one-dimensional, compact
and connected set. On the other hand, there is a topological characterization of this
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set due to Whyburn [15] which explain why it is not uncommon to find Sierpiński
carpet like-sets in complex dynamics

Theorem 1.1. [15, Theorem 3] Any non-empty planar set that is compact, con-
nected, locally connected, nowhere dense, and has the property that any two com-
plementary domains are bounded by disjoint simple closed curves is homeomorphic
to the Sierpiński carpet.

Sets with this property are known as Sierpiński curves. Building bridges among
complex dynamics and Sierpiński curves is the main goal of different studies including
this paper. The first example of a (rational) map whose Julia set is a Sierpiński
curve is due to Milnor and Tan [6] in 1992. Their example belongs to the family
of quadratic rational maps given by z 7→ a(z + 1/z) + b. Almost at the same time,
in his thesis, Pilgrim gave the cubic, critically finite, family of rational maps z →
c(z − 1)2(z + 2)/(3z − 2) having Sierpiński curve Julia sets for some values of c
(for instance c ≈ 0.6956). Unlike to Milnor and Tan, who proved their result using
polynomial-like maps, Pilgrim proved the existence of Sierpisńki curve Julia sets from
a systematic study of the contacts among boundaries of Fatou components.

Figure 1. The Sierpiński carpet fractal. The black region corresponds the the limit set by
taking out the corresponding central squares.

More recently, other authors have shown that the Julia sets of a rational map
of arbitrary degree can be a Sierpiński curve [2, 14]. For example, in [2], Sierpiński
curve Julia sets were shown to occur in the family z 7→ zn+λ/zd for some values of λ,
and, in [14], for the rational map z 7→ t(1 + (4/27)z3/(1− z)) also for some values of
t. However, it is not only rational maps that can exhibit Sierpiński curve Julia sets,
as was proven by Morosawa in [8]. He showed that the entire transcendental family
z 7→ aea(z− (1−a))ez, have Sierpiński curve Julia sets for all a > 1. Notice that, for
those maps, the Julia set includes a non-locally connected Cantor bouquet (Cantor
set of curves) making this result highly unexpected (see also [3] for more details).
In Figure 2 we show four examples of Sierpiński curve Julia sets, one in each of the
families mentioned above.
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(a) Milnor and Tan’s example −0.138115091(z+

1/z)− 0.303108805.
(b) Devaney’s example z2 − 1

16z2
.

(c) Steinmetz’s example 1 + (4/27)z3/(1− z). (d) Morosawa’s example 1.1(ez(z − 1) + 1).

Figure 2. Four examples of Sierpiński curve Julia sets.

In this paper we present a more systematic approach to the problem of existence
of Sierpiński curves as Julia sets of rational maps. In most of the cases mentioned
above, the functions at hand have a basin of attraction of a superattracting periodic
orbit, which additionaly captures all of the existing critical points. Our goal is to
find sufficient and, if possible, also necessary dynamical conditions under which we
can assure that the Julia set of a certain rational map is a Sierpiński curve.

To find general conditions for all rational maps is a long term program. In
this paper we restrict to rational maps of degree two (quadratic rational maps in
what follows) which have an attracting periodic orbit, i.e., those which belong to
Pern(λ) for some |λ| < 1, the multiplier of the attracting periodic orbit of period n.
We cannot even characterize all of those, but we cover mainly all of the hyperbolic
cases. To do so, we take advantage of the work of Rees [10, 11, 12], Milnor [6] and
Pilgrim [9] who deeply studied quadratic rational maps and its parameter space.
Indded, the space of all quadratic rational maps from the Riemann sphere to itself



6 Robert L. Devaney, Núria Fagella, Antonio Garijo and Xavier Jarque

can be parametrized using 5 complex parameters. However, the space consisting of
all conformal conjugacy classes is biholomorphic to C2 [5] and will be denoted by
M2.

Following [10], hyperbolic maps inM2 can be classified into four types A, B, C
and D, according to the behaviour of their two critical points: Adjacent (type A),
Bitransitive (type B), Capture (type C) and Disjoint (type D). In the Adjacent type,
both critical points belong to the same Fatou component; in the Bitransitive case
the critical points belong to two different Fatou components, both part of the same
immediate basin of attraction; in the Capture type both critical points belong to the
basin of an attracting periodic point but only one of them belongs to the immediate
basin; and finally, in the Disjoint type, the two critical points belong to the attracting
basin of two disjoint attracting cycles.

Figure 3. Sketch of the different types of hyperbolic maps attending to the behaviour of the
critical orbits.

In many of our statements we consider one-dimensional complex slices ofM2 and
in particular to Pern(0), for n ≥ 1. These slices Pern(0) contain all the conformal
conjugacy classes of maps with a periodic critical orbit of period n. The first slice,
Per1(0), consists of all quadratic rational maps having a fixed critical point, which
must be superattracting. By sending this point to infinity and the other critical point
to 0, we see that all rational maps in this slice are conformally conjugate to a quadratic
polynomial of the form Qc(z) = z2 + c. Consequently, there are no Sierpiński curve
Julia sets in Per1(0), since any Fatou component must share boundary points with
the basin of infinity. The second slice, Per2(0), consists of all quadratic rational maps
having a period two critical orbit. Such quadratic rational maps has been investigated
by Aspenberg and Yampolsky [1], where the authors consider the mating between
the Basilica with other suitable quadratic polynomials. Among other results they
proved that the two Fatou components containing the period two critical orbit have
non-empty intersection. Therefore there are no Sierpiński curve Julia sets in Per2(0).
Hence Sierpiński carpets can only appear as Julia sets of maps in Pern(0), for n ≥ 3.
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(a) Parameter plane of z2 + c. (b) Parameter plane of az−a2/2

z2
.

(c) Parameter plane of (z−1)(z−a/(2−a))

z2
. (d) Parameter plane of (z−a)(z−(2a−1)/(a−1))

z2
.

Figure 4. The slices Per1(0),Per2(0),Per3(0) and Per4(0).

In the hyperbolic setting, when dealing with the topology of the Julia set, re-
stricting to Pern(0) is not a loss of generality. Indeed, if f is a hyperbolic rational map
of degree two not of type A (we will see later that this is not a relevant restriction),
it follows from Rees’s Theorem (see Theorem 2.3) that the hyperbolic component
H which contains f has a unique center f0, i.e., a map for which all attracting cy-
cles are actually superattracting. In other words, H must intersect Pern(0) for some
n ≥ 1, and this intersection is actually a topological disc. Moreover, all maps in H
are conjugate to f0 in a neighborhood of their Julia set (see [4]). Hence the Julia set
of f0 ∈ Pern(0) is a Sierpiński curve if and only if the Julia set of all maps f ∈ H
are Sierpiński curves. This discussion applies in particular, to maps in Pern(λ) with
|λ| < 1 of any type B,C and D.

We now introduce some terminology in order to state our main results. Let
λ, µ ∈ D and n,m ∈ N with n,m ≥ 3. Suppose f ∈ Pern(λ). We denote by
U the immediate basin of attraction of the attracting cycle and U0, U1, · · · , Un−1

the Fatou components which form the immediate basin of the attracting cycle. If
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f ∈ Pern(λ)∩Perm(µ) then we denote by U and V the immediate basin of attraction
of the two attracting cycles, and we denote by U0, U1, · · · , Un−1 and V0, V1, · · · , Vm−1

the corresponding Fatou components.
As we mentioned before, our goal in this paper is to obtain dynamical conditions

that ensure that the Julia set of a quadratic rational map is a Sierpiński curve. The
first requirement for a quadratic rational map to have a Sierpiński curve Julia set is
that the map is hyperbolic. Using the hyperbolicity of the map and previous results of
other authors the problem reduces to study the contact between Fatou components.

Theorem A. Let n ≥ 3, and let f ∈ M2 be a hyperbolic map in Pern(λ)
without (super) attracting fixed points. The following conditions hold.

(a) If f is of type C or D and i 6= m, then ∂Ui ∩ ∂Um is either empty or reduces
to a unique point p satisfying f j(p) = p, for some 1 ≤ j < n a divisor of n.

(b) Let f be of type D, and f ∈ Pern(λ) ∩ Perm(µ) such that gcd(n,m) = 1.
Assume that ∂Ui1 ∩ ∂Ui2 = ∅ for 0 ≤ i1 < i2 ≤ n − 1 and ∂Vj1 ∩ ∂Vj2 = ∅
for 0 ≤ j1 < j2 ≤ m − 1. Then ∂Ui ∩ ∂Vj = ∅, for 0 ≤ i ≤ n − 1 and
0 ≤ j ≤ m− 1.

Now we apply the above result in order to investigate when a hyperbolic rational
map has a Sierpiński curve Julia set. The first statement of Theorem B follows from
Lemma 8.2 in [6] but we include it here for completeness.

Theorem B. Let n ≥ 1 and let f ∈ M2. Assume that f ∈ Pern(λ) is a
hyperbolic map. Then the following statements hold.

(a) If f is of type A (Adjacent) then J (f) is not a Sierpiński curve.
(b) If f is of type B (Bitransitive) and n = 1, 2, 3, 4 then J (f) is not a Sierpiński

curve.
(c) If f is of type C (Capture), n ≥ 3 and ∂U does not contain any fixed point

of f j for j | n and j < n then J (f) is a Sierpiński curve.
(d) Suppose f is of type D (Disjoint) and n,m ≥ 3 with gcd(n,m) = 1. If ∂U

does not contain any fixed point of f j for j | n, j < n and ∂V does not contain
any fixed point of f j for j | m, j < m, then J (f) is a Sierpiński curve.

As an application of Theorems A and B we can make a fairly complete study of
Per3(0) (with its extensions mentioned above). According to Rees [13] it is possible
to partition the one-dimensional slice into five pieces, each with different dynamics.
In Figure 5 we display this partition, which we shall explain in detail in Section 4.
Two and only two of the pieces, B1 and B∞, are hyperbolic components of type B
(Bitransitive). The regions Ω1, Ω2 and Ω3 contain all hyperbolic components of type
C (Capture) and D (Disjoint) and, of course, all non-hyperbolic parameters. We can
prove the following.

Theorem C. Let f ∈ Per3(0). Then:
(a) If a ∈ B1 ∪B∞, then J (fa) is not a Sierpiński curve.
(b) If a ∈ Ω2 ∪ Ω3, then J (fa) is not a Sierpiński curve.
(c) If a ∈ Ω1 is a type C parameter, then J (fa) is a Sierpiński curve.
(d) If a ∈ Ω1 is a disjoint parameter and ∂V does not contain a fixed point of f j

for j | m, j < m and 3 - m, then J (f) is a Sierpiński curve.

Remark 1.2. As mentioned above, if f is hyperbolic, these properties extend
to all maps in the hyperbolic component inM2 which f belongs to.
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Remark 1.3. Theorem C illustrates that in fact when n is a prime number, the
conditions of Theorems A and B reduce to study the location of the three fixed points
of f . So, for those values of n a deep study in parameter space is plausible.

B1

B∞

Ω2

Ω3

Ω1

Figure 5. The slice Per3(0) and its pieces.

The outline of the paper is as follows: in Section 2 we give previous results
concerning the topology of the Julia set of quadratic hyperbolic rational maps. In
Section 3 we concentrate on the contacts between boundaries of Fatou components.
In Section 3.1 we prove Theorems A and B. Finally, in 4 we study the slice Per3(0)
and prove Theorem C.
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decision DEC-2012/06/M/ST1/00168.

2. Preliminary results

In this section we collect some results related to the topology of Julia sets of
rational maps, which we will use repeatedly. The first theorem states a dichotomy
between the connectivity of the Julia set of a quadratic rational map and the dy-
namical behaviour of its critical points.

Theorem 2.1. [6, Lemma 8.2] The Julia set J (f) of a quadratic rational map
f is either connected or totally disconnected (in which case the map is conjugate on
the Julia set to the one-sided shift on two symbols). It is totally disconnected if and
only if either:

(a) both critical orbits converge to a common attracting fixed point, or
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(b) both critical orbits converge to a common parabolic fixed point of multiplicity
two but neither critical orbit actually lands on this point.

Theorem 2.2. [7, Theorem 19.2] If the Julia set of a hyperbolic rational map is
connected, then it is locally connected.

The next theorem, due to Rees, states that each hyperbolic component of type B,
C and D in the parameter space contains a critically finite rational map as its unique
center. We also conclude that maps that belong to the same hyperbolic component
are conjugate on their Julia set and so we will frequently consider only critically finite
maps when referring to hyperbolic maps.

Theorem 2.3. [10, Main Theorem, pp. 359–360] Let H be a hyperbolic compo-
nent of type B, C or D ofM2. Then, H contains a unique center f0, i.e., f0 is the
unique critically finite map inside the hyperbolic component H. Moreover, all maps
in the same hyperbolic component are J-stable.

Another important result gives conditions under which we can assure that all
Fatou components are Jordan domains. Recall that this was one of the conditions
for having Sierpiński curve Julia sets.

Theorem 2.4. [9, Theorem 1.1] Let f be a critically finite rational map with ex-
actly two critical points, not counting multiplicity. Then exactly one of the following
possibilities holds:

(a) f is conjugate to zd and the Julia set of f is a Jordan curve, or
(b) f is conjugate to a polynomial of the form zd + c, c 6= 0, and the Fatou

component corresponding to the basin of infinity under a conjugacy is the
unique Fatou component which is not a Jordan domain, or

(c) f is not conjugate to a polynomial, and every Fatou component is a Jordan
domain.

We combine the two results above to get the following corollary.

Corollary 2.5. Let f ∈ M2 be hyperbolic or critically finite and assume f has
no (super) attracting fixed points. Then every Fatou component is a Jordan domain.

Proof. Since, by hypothesis, f has no (super)attracting fixed points, f cannot be
conjugate to a polynomial.

First assume that f is critically finite, not necessarily hyperbolic. Then, using Pil-
grim’s Theorem 2.4 the corollary follows. If f is hyperbolic, it belongs to a hyperbolic
component H. Let f0 be its center, which exists and is unique by Rees’s Theorem
2.3. Clearly, f0 is critically finite and has no (super) attracting fixed points. Hence
by Pilgrims’s result all Fatou components of f0 are Jordan domains. Since f and f0

belong to the same hyperbolic component, they are conjugate on a neighborhood of
the Julia set and therefore f has the same property. �

3. Contact between boundaries of Fatou components:
Proof of Theorems A and B

Throughout this section we assume that f is a hyperbolic quadratic rational
map having a (super)attracting period n cycle with n ≥ 3, or equivalently, f is a
hyperbolic map in Pern(λ) for some n ≥ 3.
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A Sierpiński curve (Julia set) is any subset of the Riemann sphere homeomor-
phic to the Sierpiński carpet. Consequently, due to Whyburn’s Theorem (see the
introduction), a Sierpiński curve Julia set is a Julia set which is compact, connected,
locally connected, nowhere dense, and such that any two complementary Fatou do-
mains are bounded by disjoint simple closed curves. The following lemma states that
all but one of these properties are satisfied under the described hypotheses.

Lemma 3.1. Let f ∈ Pern(λ), with n ≥ 3, be hyperbolic. Then, the Julia set
J (f) is compact, connected, locally connected and nowhere dense. Moreover, if f
has no (super) attracting fixed points (which is always the case for types B and C),
then f is not of type A, and each Fatou component is a Jordan domain.

Proof. The Julia set of a hyperbolic rational map is always a compact, nowhere
dense subset of the Riemann sphere. If there are no (super) attracting fixed points,
Theorem 2.1 implies J (f) is connected and hence locally connected (Theorem 2.2).

If f is of type A without attracting fixed points, both critical points belong to
the same (super) attracting Fatou component U of period higher than 1. Since J (f)
is connected, U is simply connected and therefore f : U → f(U) is of degree three
(U has two critical points) which is a contradiction since f has global degree 2.

Finally Corollary 2.5 implies that all Fatou components of f are Jordan domains.
�

Remark 3.2. In view of Theorem 1.1 and Lemma 3.1, if f is a hyperbolic map
in Pern(λ) n ≥ 3 without (super) attracting fixed points we have that J (f) is a
Sierpiński curve if and only their Fatou components have disjoint closure.

To prove the main result of this section, Proposition 3.8, we first establish some
technical topological and combinatorial results that simplifies the exposition.

Lemma 3.3. Let U, V,W be three disjoint planar Jordan domains and let γ :
R/Z→ ∂U be a parametrization of ∂U .

(a) Let a, b, c, d ∈ [0, 1) be such that 0 ≤ a < c < 1, 0 ≤ b < d < 1 and
{a, b}∩{c, d} = ∅. Assume that γ(a) and γ(c) belong to ∂U∩∂V and γ(b) and
γ(d) belong to ∂U ∩∂W . Then, either {b, d} ⊂ (a, c) or {b, d} ⊂ R/Z \ (a, c).

(b) Let z1, z2, · · · , zk, k ≥ 1 be k different points in ∂U ∩ ∂V ∩ ∂W . Then k ≤ 2.

Proof. We first choose three marked points u, v and w in U, V and W , respec-
tively. Since U (respectively V and W ) is a Jordan domain, every boundary point is
accessible from the interior to the marked point u (respectively v and w) by a unique
internal ray.

First we prove statement (a). We build a (topological) quadrilateral formed by
two internal rays in U , joining u and γ(a) and another one joining u and γ(c), and
two internal rays in V joining v and γ(a) and v and γ(c). This divides the Riemann
sphere into two connected components C1 and C2 only one of which, say C1, contains
W . Thus b and d either both belong to the interval (a, c) or both belong to the
complement of (a, c).

Second we prove statement (b). Assume k ≥ 3. As before we build a (pseudo)
quadrilateral formed by two internal rays in U joining u and z1 and another one
joining u and z2 and two internal rays in V joining v and z1 and v and z2. The
complement of those rays (plus the landing points) in the Riemann sphere are two
connected domains C1 and C2 only one of which, say C1, contains W . We now add
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to the picture the two internal rays in C1 connecting the point w with z1 and z2,
respectively. These new edges subdivide the domain C1 into two domains, say D1

and D2. By construction the points {z3 · · · , zk} ∈ ∂U ∩ ∂V ∩ ∂W belong to one and
only one of the domains C2, D1 or D2. Therefore they cannot be accessed through
internal rays by the three marked points u, v and w, a contradiction. So k ≤ 2. �

Lemma 3.4. Let f be a rational map of degree d ≥ 2. Let U, V and W be three
different Jordan domains such that f(U) = U , f(V ) = V and f(W ) = W . If there
exists p ∈ ∂U ∩ ∂V ∩ ∂W , then either f(p) = p or f ′(p) = 0.

Proof. By assumption the three Jordan domains U , V and W are Fatou compo-
nents. Let p ∈ ∂U ∩∂V ∩∂W such that f(p) 6= p. Notice that f(p) ∈ ∂U ∩∂V ∩∂W
and denote δ := |f(p)− p| > 0.

Take a circle γε around p of radius ε < δ/3. Since f is holomorphic at p, if
we assume f ′(p) 6= 0 we can choose ε small enough so that, if we go around p
counterclockwise once through γε, then its image, f(γε), also gives one and only one
turn around f(p) counterclockwise (in particular f preserves orientation). Let Dε

denote the disc of center p and radius ε.
Denote by u, v and w three points in U ∩ γε, V ∩ γε and W ∩ γε, respectively,

which can be joined with p through curves in U∩Dε, V ∩Dε andW ∩Dε respectively.
Assume, without loss of generality, that starting at u, and turning counterclockwise,
γε meets v and w in this order. Let βU be a simple curve in U joining p, u, f(u) and
f(p). Similarly let βV be a simple curve in V joining p, v, f(v) and f(p). Let D1 and
D2 be the two connected components of Ĉ \ (βU ∪ βV ). Choose D1 to be the region
intersecting the arc of γε going from u to v counterclockwise. Thus D1 intersects the
arc of f (γε) going from f(u) to f(v) clockwise. It follows that the points w and f(w)
(and the whole domain W ) should belong to D2 which by construction intersects the
piece of f(γε) that goes from f(u) to f(v) counterclockwise. It is now immediate to
see that one turn around p implies two (or more) turns around f(p), a contradiction
with f ′(p) 6= 0. See Figure 6. Hence if f ′(p) 6= 0 we should have f(p) = p and the
lemma follows. �

u

v

w

f(v)

f(u)

f(w)

D1

D2

γε f(γε)

p f(p)

Figure 6. Sketch of the proof of Lemma 3.4.
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Remark 3.5. The previous lemma only uses local properties of holomorphic
maps. In particular it applies to rational maps of any degree. In our case we will
apply this lemma to a suitable iterate of a quadratic rational map.

The above lemmas give some topological conditions on how the boundaries of
the Fatou components may intersect. In what follows we will use frequently the fact
that a certain map defined on the boundary of the Fatou components behaves like
(more precisely it is conjugate to) the doubling map θ → 2θ acting on the circle. The
next lemma gives information on how the orbits of the doubling map distribute on
the unit circle.

Definition 3.6. Let η = {η0, η1, · · · , η`, · · · } and τ = {τ0, τ1, · · · , τ`, · · · }, with
ηi, τi ∈ R/Z denote two different (finite or infinite) orbits under the doubling map.
We say that η and τ are mixed if there exist four indexes a, b, c and d such that
ηa < τb < ηc < τd with the cyclic order of the circle.

Lemma 3.7. Consider the doubling map, θ → 2θ, acting on the unit circle R/Z.
If τ and η are two different orbits of the doubling map which are either finite and
periodic of period k ≥ 3 or infinite, then τ and η are mixed.

Proof. Denote by Θ the doubling map. If the binary expansion of θ ∈ R/Z is
s(θ) = s0s1s2 · · · , sj ∈ {0, 1} then sj = 0 if and only if Θj(θ) ∈ [0, 1/2). Conse-
quently the four quadrants given by (0, 1/4), (1/4, 1/2), (1/2, 3/4), (3/4, 1) correspond
to those angles whose binary expansion starts by 00, 01, 10 and 11, respectively. Ob-
serve that the angles 0, 1/4, 1/2 and 3/4 are fixed or prefixed.

First suppose that the orbits are periodic of period k ≥ 3. Then, both cycles
should have one angle in the second quadrant and one angle in the third quadrant.
Moreover each orbit should have at least one angle in the first quadrant (correspond-
ing to two consecutive symbols 0), or one angle in the fourth quadrant (corresponding
to two consecutive symbols 1). Indeed, the only periodic orbit touching neither the
first nor the fourth quadrant is the unique 2-cycle {1/3, 2/3}.

Assume w.l.o.g. the η-cycle is the one having a point in the third quadrant with
largest argument (among the two cycles). Denote this point by ηc. Next we select
one point of the τ -cycle in the third quadrant, say τb, and one point of the η-cycle
in the second quadrant, say ηa. Finally we choose one point of the τ -cycle belonging
to either the fourth or the first quadrant; denoted by τd. So by construction we have
ηa < τb < ηc < τd, as we wanted to show.

The case of inifnite orbits follows similarly. �

We are ready to prove the main result of this section which implies Theorem A(a).

Proposition 3.8. Let n ≥ 3 and let f ∈M2 be a hyperbolic map of type C or D
in Pern(λ) having no (super) attracting fixed points. We denote by U0, U1, · · · , Un−1

the Fatou components which form the immediate basin of attraction of an n-cycle.
Then for i 6= m, ∂Ui ∩ ∂Um is either empty or reduces to a unique point p satisfying
f `(p) = p, for some 1 ≤ ` < n, dividing n.

Proof. Without loss of generality we assume that f is critically finite, i.e., f ∈
Pern(0) (see Theorem 2.3), U0 contains the unique critical point belonging to the
superattracting cycle under consideration, and f(Ui) = Ui+1 (so, f(ui) = ui+1) (here
and from now on, all indices are taken mod n). Moveover, since f is of type C or
D and n ≥ 3, every Fatou component is a Jordan domain (Corollary 2.5) and the
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dynamics of g := fn : Ui → Ui is conformally conjugate to z → z2 on the closed
unit disc D by the Böttcher map φi : Ui → D (which is uniquely defined on each
Ui, i = 0, . . . , n− 1).

The inverse of the Böttcher map defines internal rays in every Ui; more precisely
Ri(θ) = φ−1

i {re2πiθ, 0 ≤ r ≤ 1} gives the internal ray in Ui of angle θ ∈ R/Z. The
unique point of Ri(θ) in the boundary of Ui (that is, φ−1

i (e2πiθ)) will be denoted by
R̂i(θ).

The map f induces the following dynamics on the internal rays

f(R0(θ)) = R1(2θ), f(R1(2θ)) = R2(2θ), · · · , f(Rn−1(2θ)) = R0(2θ),

for every θ ∈ R/Z. Similarly the equipotential Ei(s) is defined by φ−1
i {se2πiθ, 0 ≤

θ ≤ 1} which cuts each internal ray once.
Assume there is a point p ∈ ∂Ui ∩ ∂Um for i 6= m. By taking a suitable iterate of

f we can assume, without loss of generality, that p ∈ ∂U0 ∩ ∂Uj, for some 0 < j < n.
Our goal is to show, by contradiction, that g(p) = p. Observe that, once this has been
proved, we will have that f j(p) = p for some 1 ≤ j ≤ n a divisor of n. To exclude
the case j = n, and conclude the statement of the proposition, we notice that this
would imply that g has a fixed point in each boundary of the Uj’s, a contradiction
since g|Uj, j = 0, . . . , n − 1 is conformally conjugate to z → z2 on D and this map
has z = 1 as its unique fixed point on the unit circle.

We first show that the orbit of p under g cannot be pre-fixed, that is we cannot
have g(g`(p)) = g`(p) for some ` > 0. Assume otherwise. Since the doubling map has
a unique fixed point and a unique preimage of it (different from itself) we conclude
that g`(p) = R̂0(0) and g`−1(p) = R̂0(1/2). Applying f we have that f(g`(p)) = R̂1(0)

and f(g`−1(p)) = f(R̂0(1/2)) = R̂1(0) which implies that f(g`(p)) = f(g`−1(p)). On
the other hand we have that f(g`(p)) = f(g`−1(p)) ∈ ∂U1 ∩ ∂Uj+1 and has two
different preimages g`(p) and g`−1(p) in ∂Uj while f : U j → U j+1 has degree one. To
deal with the finite periodic case or the infinite or non-preperiodic case we split the
proof in two cases.

Case 1. (2j 6= n) If the orbit of p under g is periodic of period 2, that is
{p, g(p)} ∈ ∂U0 ∩ ∂Uj with p 6= g(p) and g2(p) = p, according to the previous
notation, it corresponds to the preimage by the Böttcher map of the periodic orbit
{1/3, 2/3} under the doubling map (there is a unique periodic orbit of period two).
Applying f j we have that the orbit {f j(p), f j (g(p))} ∈ ∂Uj ∩ ∂U2j also corresponds
to the preimage by the Böttcher map of the same periodic orbit {1/3, 2/3} under the
doubling map. Hence these two cycles (lying in ∂Uj) {p, g(p)} and {f j(p), f j(g(p))},
are the same cycle. We remark that we do not know if p = f j(p) or p = f j(g(p)),
we only claim that, as a cycle, it is the same one. By construction we know that
p ∈ ∂U0 ∩ ∂Uj ∩ ∂U2j. Therefore from Lemma 3.4 we obtain either g′(p) = 0 or
g(p) = p, a contradiction either way.

If the orbit of p is either periodic of period higher than 2 or infinite (hence non-
preperiodic) we denote by O(p) = {p, g(p), g2(p), . . .} and O(q) = {q = f j(p), g(q),
g2(q), . . .} the orbits of p and f j(p) under g, respectively, in ∂U0∩∂Uj. By assumption
their cardinality is at least 3. If O(p) = O(q), applying f j, we would have that all
points in O(p) would be points in the common boundary of U0, Uj and U2j, which is
a contradiction to Lemma 3.3(b), since the cardinality of the orbits is at least three.
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Thus O(p) 6= O(q) should be two different orbits in ∂Uj. Let η = {η1, η2, . . .}
and τ = {τ1, τ2, . . .} be the projection of the two orbits to the unit circle using the
Böttcher coordinates of Uj. Using the combinatorial result given by Lemma 3.7 we
conclude than these two orbits are mixed, i.e., there exists four indexes a, b, c and d
such that ηa < τb < ηc < τd. Applying Lemma 3.3 (a)-(b), respectively, to the points
R̂0(ηa) and R̂0(ηc) in ∂U0 ∩ ∂Uj and R̂0(τc) and R̂0(τd) in ∂U0 ∩ ∂U2j we arrive at a
contradiction.

From the arguments above the preperiodic case is also not possible. So, if 2j 6= n
then the only possible case is g(p) = p.

Case 2. (2j = n) For the symmetric case 2j = n the arguments above do not hold
since U2j = U0. However there are two main ingredients that provide a contradiction.

On the one hand if we walk along the boundary of U0 starting at p, say counter-
clockwise, and we find the points on the orbit of p in a certain order, then when we
walk clockwise along the boundary of Uj starting at p we should find the points
of its orbit in the same order. On the other hand, the map f j : Uj → U0 is
1-to-1, extends to the boundary of Uj, and it sends Uj to U0 preserving orienta-
tion, that is, it sends the arc of Uj joining clockwise (respectively counterclockwise)
a, b ∈ ∂U0 ∩ ∂Uj to the corresponding arc of U0 joining clockwise (respectively coun-
terclockwise) f j(a), f j(b) ∈ ∂U0 ∩ ∂Uj. The latter condition follows since f j is a
holomorphic map such that f j(uj) = u0 and sends rays and equipotentials defined
in Uj to rays and equipotentials defined in U0. The following arguments which finish
the proof of the proposition are direct consequences of these two remarks.

As before let O(p) = {p, f 2j(p), f 4j(p) . . .} and O(q) = {q = f j(p), f 3j(p), f 5j(p),
. . .} be the orbits of p and f j(p) under g = fn, respectively. Notice that for all ` ≥ 1
we have f 2j` = g`. We assume p 6= f 2j(p) and whish to arrive to a contradiction.
We first show that f j(p) 6= {p, f 2j(p)}. If f j(p) = p we apply f j to both sides
and we get f 2j(p) = f j(p) = p, a contradiction. If f j(p) = f 2j(p) it is easy to
get f 4j(p) = f 2j(p), or equivalently, g(g(p)) = g(p). This would imply that p is
prefixed under g, a contradiction. Summarizing we have that {p, f j(p), f 2j(p)} are
three different points in ∂U0 ∩ ∂Uj.

Take p ∈ ∂U0 ∩ ∂Uj and denote by θ`0 := ϕ0(f j`(p)) ∈ S1 and θ`j := ϕj(f
j`(p)) ∈

S1, ` ≥ 0, the angles projected by the Böttcher coordinates of U0 and Uj respectively.
For i ≥ 0 and s ∈ {0, j} let γi,i+1

s± denote the arc in the unit circle going from θis to
θi+1
s clockwise (+) or counterclockwise (−). Without loss of generality we assume
that θ2

j ∈ γ
0,1
j+

. If θ2
j ∈ γ

0,1
j−

, the arguments are similar. Consequently θ2
0 ∈ γ

0,1
0− . The

image under (ϕ0 ◦ f j ◦ ϕ−1
j ) of γ0,1

j+
is γ1,2

0+
. So θ3

0 ∈ γ1,2
0+

and therefore θ3
j ∈ γ1,2

j−
.

The image under (ϕ0 ◦ f j ◦ ϕ−1
j ) of γ1,2

j−
is γ2,3

0− . So θ4
0 ∈ γ2,3

0− and therefore θ4
j ∈

γ2,3
j+

. Applying successively this process it follows that {θ0
0, θ

2
0, θ

4
0, . . .} is an infinite

monotone sequence of points in γ0,1
0− . Since these points correspond to an orbit under

the doubling map, their limit can only be a fixed point. But the only fixed point of
Θ is θ = 0 which is repelling, a contradiction. �

We have studied, in the previous proposition, the intersections between the
boundaries of the Fatou components of a (super) attracting cycle for types C and D
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quadratic rational maps. For type C maps there is just one such cycle; so the propo-
sition above already covers all possible intersections among boundaries of Fatou com-
ponents. Indeed, any Fatou domain eventually maps to the cycle and hyperbolicity
implies there are no critical points in the Julia set, hence if there are no intersections
among the boundaries of Fatou components of the superattracting cycle, there are
no intersections whatsoever.

For type D maps the situation is quite different since the above arguments only
apply to both superattracting cycles separately, but do not to possible intersections
among components of different cycles. In fact the parameter plane contains open
sets of parameters (small Mandelbrot sets) for which these contacts occur. The next
result deals with these cases.

Proposition 3.9. Let f ∈ M2 be a hyperbolic map of type D and let m ≥
n ≥ 3. We denote by U0, U1, · · · , Un−1 and V0, V1, · · · , Vm−1 the Fatou components
which form the two immediate basins of attraction of the two cycles. Assume that
∂Ui1 ∩ ∂Ui2 = ∅ for 0 ≤ i1 < i2 ≤ n− 1 and ∂Vj1 ∩ ∂Vj2 = ∅ for 0 ≤ j1 < j2 ≤ m− 1.
If p ∈ ∂Ui ∩ ∂Vj, then n | m.

Proof. We can assume that f is critically finite, i.e., f ∈ Pern(0) ∩ Perm(0) (see
Theorem 2.3). We label the Fatou components so that U0 and V0 contain the two
critical points of f . Assume f(Ui) = Ui+1 ( mod n) and f(Vi) = Vi+1 ( mod m). Since f is
of type D and n,m ≥ 3 we know that every Fatou component is a Jordan domain (see
Corollary 2.5) and the dynamics of fn : Ui → Ui and fm : V j → V j is conformally
conjugate to z → z2 on the closed unit disc D. We also denote by u0, u1, · · · , un−1

and v0, v1, · · · , vm−1 the two superattracting cycles.
We suppose that n - m, or equivalently we assume that nk 6= 0 (modm), for all

1 ≤ k ≤ m− 1. Let p be a point in ∂Ui ∩ ∂Vj. Then

p ∈ ∂Ui ∩ ∂Vj ( mod m)

fn(p) ∈ ∂Ui ∩ ∂Vj+n ( mod m)

f 2n(p) ∈ ∂Ui ∩ ∂Vj+2n ( mod m)

· · · · · ·
fn(m−1)(p) ∈ ∂Ui ∩ ∂Vj+(m−1)n ( mod m).

On the one hand we have that if `1, `2 ≤ m − 1 then Vj+`1n ( mod m) 6= Vj+`2n ( mod m)

since nk 6= 0 (modm) and on the other hand f `1n(p) 6= f `2n(p) since by assumption
∂Vj+`1n ( mod m)∩∂Vj+`2n ( mod m) = ∅. From these two facts we have that ∂Ui has non-
empty intersection with ∂V0, ∂V1, · · · , and ∂Vm−1. The same happens for the rest of
∂Ui for 0 ≤ i ≤ n − 1. In summary every Fatou component Ui intersects all Fatou
components Vj. We denote by zij a point in the common boundary of ∂Ui∩ ∂Vj. We
build a domain Ω0 such that the boundary of Ω0 is formed by several internal rays.
The first one joins u0 and u1 passing through V0 in the following way: we connect u0,
z00, v0, z10 and u1 using internal rays. The second one joins u0 to u1 passing trough
V1 in the same fashion. We construct another domain Ω1. In this case the boundary
of Ω1 is formed by two curves, the first one joining u0 and u1 passing trough V1 and
the second one joining u0 to u1 passing trough V2. These divide the Riemann sphere
into three domains Ω0, Ω1 and the complement of Ω0 ∪ Ω1. Now u2 must belong to
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one of these three regions. Therefore it cannot be accessed through internal rays by
the three marked points v0, v1 and v2. �

3.1. Proofs of Theorems A and B. The proof of Theorem A is a direct
consequence of the results above.

Conclusion of the proof of Theorem A. Statement (a) follows directly from
Proposition 3.8 while statement (b) follows from Proposition 3.9. �

We finish this section with the proof of Theorem B.

Proof of Theorem B. If f ∈ Pern(λ) is of type A then, from Lemma 3.1, f has
an attracting fixed point (the only attracting cycle). Hence Theorem 2.1 implies that
the Julia set is totally disconnected. This proves (a).

Observe that statement (b) is trivial for n = 1 and it is a particular case of [1]
for n = 2. Hence we assume n ≥ 3 and f ∈ Pern(0), (see Theorem 2.3). If f is
of type B the free critical point must belong to Ui for some i 6= 0. So, f has no
superattracting fixed points and therefore each Ui is a Jordan domain (see Corollary
2.5). Observe that fn : Ui → Ui, i = 0, . . . , n − 1, is a degree 4 map conjugate to
z 7→ z4. Consequently fn | ∂Ui is conjugate to θ 7→ 4θ on the unit circle S1 = R/Z.
Since the map is critically finite, every internal ray in Ui lands at a well-defined point
on ∂Ui, i = 0, . . . n − 1. It follows that there are three fixed points of fn on ∂Ui,
namely γi(0), γi(1/3) and γi(2/3), i = 0, . . . , n − 1. By construction each of these
points is fixed under fn, and so they are periodic points of period d for f with d|n.
If one of them is periodic of period d < n then such a point must belong to ∂Ui∩∂Uj
for some i 6= j and so J (f) cannot be a Sierpiński curve. So, let us assume d = n
(the only case compatible with J (f) being a Sierpiński curve), and show that this is
not possible if n = 3 or n = 4.

If d = n, the 3n points involved in the construction form 3 different cycles of
period n for f . So f would have, globally, at least 4 cycles of period n since each
f ∈ Pern(0) has one (further) superattracting n cycle. However a quadratic rational
map has at most 2 cycles of period n = 3, and 3 cycles of period n = 4 respectively,
a contradiction.

From Lemma 3.1 statement (c) reduces to consider the possible contact points
among boundaries of Fatou components. From Theorem A(a), we immediately con-
clude that there are no contacts among the Fatou components of the unique attracting
cycle of f . Finally, if f is of type C, then any other Fatou component is a preimage of
one of the components of the attracting cycle and since f is hyperbolic there are no
critical points in the Julia set. So, there are no possible contacts among boundaries
whatsoever.

The proof of statement (d) follows immediately from Theorem A(b). �

4. The period three slice. Proof of Theorem C

In this section we restrict our attention to rational maps in Per3(0). This slice
contains all the conformal conjugacy classes of maps inM2 with a periodic critical
orbit of period three. Using a suitable Möbius transformation we can assume that
one critical point is located at the origin, and the critical cycle is 0 7→ ∞ 7→ 1 7→ 0.
Such maps can be written as (z − 1)(z − a)/z2, and using this expression the other
critical point is now located at 2a/(a + 1). We may change this parametrization of
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Per3(0) so that the critical point is located at a, obtaining the following expression

(1) fa(z) =
(z − 1)

(
z − a

2−a

)
z2

where a ∈ C \ {0, 2}.

We exclude the values a = 0 (f0 has degree 1) and a = 2 (f2 is not well defined).
As we mentioned before, fa, for a ∈ C\{0, 2}, has a superattracting cycle 0 7→ ∞ 7→
1 7→ 0 and we denote by U0 = U0(a), U∞ = U∞(a), U1 = U1(a) the Fatou components
containing the corresponding points of this superattracting cycle. This map has two
critical points, located at c1 = 0 and c2(a) = a, and the corresponding critical values
are v1 =∞ and v2(a) = − (1−a)2

a(2−a)
. Thus, the dynamical behaviour of fa is determined

by the orbit of the free critical point c2(a) = a. The parameter a-plane has been
thoroughly studied by Rees [13] and we recall briefly some of its main properties.
We parametrize the hyperbolic components of Per3(0) by the unit disc in the natural
way. For the Bitransitive and Capture components we use the well defined Böttcher
map in a small neighbourhood of each point of the critical cycle {0,∞, 1} and for
the Disjoint type components the multiplier of the attracting cycle different from
{0,∞, 1}.

The first known result is the existence of only two Bitranstitve components [13]
denoted by B1 and B∞ and defined by

B1 = {a ∈ C | a ∈ U1(a)} and B∞ = {a ∈ C | a ∈ U∞(a)}.
B1 is open, bounded, connected and simply connected and B∞ is open, unbounded,
connected and simply connected in Ĉ. In the next result we collect these and other
main known properties of the parameter plane (see Figures 7 and 8).

Proposition 4.1. [13] For fa(z) with a ∈ C \ {0, 2}, the following conditions
hold:

(a) The boundaries of B1 and B∞ meet at three parameters 0, x and x̄ and the
set C \ (B1 ∪B∞ ∪{0, x, x̄}) has exactly three connected components: Ω1,Ω2

and Ω3.
(b) Each connected component Ωi, for i = 1, 2, 3, contains a unique value ai such

that fai is conformally conjugate to a polynomial map of degree 2. Moreover,
each one of the three parameters ai is the center of a hyperbolic component
∆i of period one.

(c) Each parameter value, 0, x and x̄, is the landing point of two fixed parameter
rays, one in B1 and one in B∞.

(d) The parameter values x and x̄ correspond to parabolic maps having a fixed
point with multiplier e2πi/3 and e−2πi/3, respectively.

In Figure 7 we plot the a-parameter plane. In this picture we label the two
hyperbolic components B1 and B∞ of Bitransitive type and the cutting points 0, x
and x̄ that separate this parameter plane into three different zones: Ω1,Ω2 and Ω3.
Each zone contains a unique parameter a such that fa is conformally conjugate to a
quadratic polynomial. We will show that these three parameter values are a1, a2 and
a2 (plotted with a small black circle), which correspond to the airplane, the rabbit
and the co-rabbit, respectively.
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Figure 7. The slice Per3(0).

We can find explicitly the values of x and x̄ and the quadratic polynomial fai ,
for i = 1, 2, 3. First, we calculate the three parameters a1, a2 and a3 such that the
corresponding quadratic rational map fai is conformally conjugate to a quadratic
polynomial. This can happen if and only if the free critical point c2(a) = a is a
superattracting fixed point. This superattracting fixed point plays the role of ∞ for
the quadratic polynomial. This condition says that the corresponding critical value
v2(a) coincides with the critical point c2(a), or equivalently

v2(a) = − (1− a)2

a(2− a)
= a

which yields
a3 − 3a2 + 2a− 1 = 0.

The above equation has one real solution a1 ≈ 2.32472 and two complex conjugate
solutions a2 ≈ 0.33764 + 0.56228i and a3 ≈ 0.33764 − 0.56228i. Notice that there
are only three monic and centered quadratic polynomials of the form z2 + c with
a 3-critical cycle. These three polynomials are the airplane z2 − 1.7588, the rabbit
z2 − 0.122561 + 0.744861i and the co-rabbit z2 − 0.122561 − 0.744861i. We claim
that fa1 is conformally conjugate to the airplane, fa2 to the rabbit and fa2 to the
co-rabbit. To see this we define the map

τ(z) =
1

z − ai
+

1

ai

and then Pi := τ ◦ fai ◦ τ−1 is a centered quadratic polynomial, since∞ is a superat-
tracing fixed point and z = 0 is the unique finite critical point. Easy computations
show that

Pi(z) =
1

ai
− a3

i (ai − 2)z2.

Finally, after conjugation with the affine map σ(z) = −a3
i (ai−2)z, the corresponding

quadratic polynomial Qi := σ ◦ Pi ◦ σ−1 is given by

Qi(z) = z2 − a2
i (ai − 2),
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which coincides with the airplane for i = 1, the rabbit for i = 2 and the co-rabbit
for i = 3. We call a1 the airplane parameter, a2 the rabbit parameter and a2 the
co-rabbit parameter. Likewise, we call Ω1 the airplane piece since it contains the
airplane parameter a1, Ω2 the rabbit piece since it contains the rabbit parameter and
Ω3 the co-rabbit piece since it contains the co-rabbit parameter.

(a) The Douady rabbit. The
Julia set of z2 − 0.122561 +

0.744861i.

(b) The Douady co–rabbit. The
Julia set of z2 − 0.122561 −
0.744861i.

(c) The airplane. The Julia set
of z2 − 1.75488.

(d) Julia set of f0.33764+0.56228i,
in Per3(0), conjugate to the
Douady rabbit.

(e) Julia set of f0.33764−0.56228i,
in Per3(0), conjugate to the
Douady co-rabbit.

(f) Julia set of f2.32472, in
Per3(0), conjugate to the air-
plane.

Figure 8. We plot the three unique monic, quadratic, centered polynomial having a superat-
tracting 3-cycle: the rabbit, the co-rabbit and the airplane, and the three corresponding rational
maps fa that are conformally conjugate to a quadratic polynomial.

In the next proposition we show another property of the cutting parameter values
x and x̄, that will be important in order to determine their values.

Proposition 4.2. Let ∆i be the hyperbolic component containing ai (so that
∆i ⊂ Ωi), i = 1, 2, 3. Then, the cutting parameter values x and x̄ in Proposition 4.1
belong to the boundary of ∆1, and not to the boundary of ∆2 and ∆3.

Proof. When a parameter a belongs to any of the ∆i, i = 1, 2, 3, the correspond-
ing dynamical plane exhibits a fixed basin of an attracting fixed point denoted, in
what follows, by p(a). From Proposition 4.1 we know that fx (respectively fx̄) has
a parabolic fixed point, p(x) (respectively p(x̄)), with multiplier e2πi/3 (respectively
e−2πi/3). Thus x and x̄ must belong to ∂∆1, ∂∆2, or ∂∆3. Moreover since x and
x̄ also belong to ∂B1 (and ∂B∞), the dynamical planes for fx and fx̄ are such that
p(x) and p(x̄) belong to ∂U0 ∩ ∂U1 ∩ ∂U∞. These are the two conditions defining the
parameters x and x̄ (see Figure 7).
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When the parameter a, belonging to any of the ∆i, i = 1, 2, 3, crosses the bound-
ary of its hyperbolic component through its 1/3-bifurcation point, the attracting fixed
point p(a) becomes a parabolic fixed point of multiplier either e2πi/3 or e−2πi/3 since,
at this precise parameter value, the attracting fixed point coalesces with a repelling
periodic orbit of period three.

Since fa, a ∈ C, is a quadratic rational map, it has only two 3-cycles and, because
we are in Per3(0), one of them is the critical cycle {0,∞, 1}. So, the repelling periodic
orbit which coalesces with p(a) at the 1/3-bifurcation parameter must be the unique
repelling 3-cycle existing for this parameter.

We now investigate the location of this repelling 3-cycle for parameters in each
of the hyperbolic components ∆1,∆2 and ∆3. To do so, we note that if a is any
parameter in ∆i, we have that f 3

a : U0 7→ U0 is conjugate to the map z 7→ z2 in the
closed unit disc. Thus, there exists a unique point z0(a) ∈ ∂U0 such that f 3

a (z0(a)) =
z0(a). This fixed point could be either a (repelling) fixed point for fa or a (repelling)
3-cycle of fa.

It is clear that for a = a1 the point z0 (a1) is a repelling 3-cycle, since, for the
airplane, ∂U0∩∂U∞∩∂U1 is empty. So, this configuration remains for all parameters
in ∆1 (the hyperbolic component containing the airplane parameter). At the 1/3-
bifurcation points of ∆1, the repelling periodic orbit {z0(a), f (z0(a)) , f 2 (z0(a))})
coalesces with p(a) (the attracting fixed point), and this collision must happen in
∂U0∩∂U∞∩∂U1. So the 1/3-bifurcation parameters of ∆1 are precisely the parameter
values a = x and a = x̄, and so, p(a) becomes either p(x) or p(x̄), respectively.

On the other hand for a = ai, i = 2, 3 the point z0 (ai) is a fixed point (since
for the rabbit and co-rabbit ∂U0 ∩ ∂U∞ ∩ ∂U1 is precisely z0 (ai)). As before this
configuration remains for all parameters in ∆i, i = 2, 3 (the hyperbolic components
containing the rabbit and co-rabbit, respectively). Therefore, at the 1/3-bifurcation
point of ∆i, i = 2, 3, the fixed point p(a) coalesces with the repelling periodic orbit
but this collision does not happen in ∂U0 ∪ ∂U∞ ∪ ∂U1 since the repelling periodic
orbit of period three does not belong to ∂U0∪∂U∞∪∂U1. Consequently the resulting
parabolic point is not in ∂U0 ∩ ∂U∞ ∩ ∂U1 and the 1/3-bifurcation parameter can
neither be x nor x̄. �

Doing easy numerical computations we get that there are five parameter values
having a parabolic fixed point with multiplier e2πi/3 or e−2πi/3. These are

0, 1.84445 . . .± i0.893455 . . . , 0.441264 . . .± i0.59116 . . . .

It is easy to show that x ≈ 1.84445 + 0.893455i (and so, x̄ ≈ 1.84445 − 0.893455i).
Thus the parameters 0.441264 ± 0.59116i corresponds to the 1/3-bifurcations of ∆2

and ∆3, respectively.
Now we are ready to prove Theorem C.

Proof of Theorem C. (a) Assume a ∈ (B1 ∪B∞). From Theorem 2.3 we know
that B1 has a unique center at a = 1. Likewise, a =∞ is the unique center of B∞. In
either case the corresponding map fa0 is a critically finite hyperbolic map in Per3(0)
of type B. Thus, from Theorem B (b) J (fa0) is not a Sierpiński curve. We conclude
that J (fa) is not a Sierpiński curve either, since all Julia sets in the same hyperbolic
component are homeomorphic.

(b) Assume a ∈ Ω2 (here we do not restrict to a hyperbolic parameter). From the
previous proposition we know that there exists a fixed point z0(a) ∈ ∂U0∩∂U∞∩∂U1
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and this fixed point is the natural continuation of z0 (a2) which cannot bifurcate until
a = x ∈ ∆1. The case a ∈ Ω3 is similar.

(c) Finally we assume a ∈ H where H is a hyperbolic component of type C in Ω1.
We know that Ω1 contains the airplane polynomial for which ∂U0 ∩ ∂U∞ ∩ ∂U1 = ∅.
This configuration cannot change unless the period 3 repelling cycle coalesces with
a fixed point, which only happens at a = x or a = x̄. Hence the intersection is
empty for all parameters in Ω1. It follows from Theorem B (c) that this is the precise
condition for J (fa) to be a Sierpiński curve.

(d) This case a direct application of Theorem B (d). �
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