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Abstract. We give upper bounds of the numbers of holomorphic sections of Veech holomorphic

families of Riemann surfaces. The numbers depend only on the topological types of the base

Riemann surfaces and fibers. We also show a relation between signatures of Veech groups and

moduli of cylinder decompositions of flat surfaces.

1. Introduction

Let M(g, n) be the moduli space of Riemann surfaces of type (g, n) with 3g −
3+ n > 0. A triple (M,π,B) of a two-dimensional complex manifold M , a Riemann
surface B, and a holomorphic map π : M → B is called a holomorphic family of
Riemann surfaces of type (g, n) over B if each fiber Xt = π−1(t) is a Riemann surface
of type (g, n) and the induced map B ∋ t 7→ Xt ∈ M(g, n) is holomorphic. The
Riemann surface B is called the base space of the holomorphic family (M,π,B)
of Riemann surfaces. A holomorphic family of Riemann surfaces is called locally
non-trivial if the induced map is non-constant. Manin [Man63], Grauert [Gra65]
and Miwa [Miw66] independently proved that every locally non-trivial holomorphic
family (M,π,B) of Riemann surfaces of finite type has only finitely many holomorphic
sections if the base space B is of finite type. Coleman [Col90] found a gap in Manin’s
proof and fixed it. Imayoshi and Shiga [IS88] also proved the finiteness by using
Tiehcmüller theory. Shiga [Shi97] gave upper bounds of the numbers of holomorphic
families of Riemann surfaces of type (g, n) = (0, n)(n ≥ 4), (1, 2) and (2, 0). The
upper bounds also give upper bounds of the numbers of holomorphic sections of
holomorphic families of Riemann surfaces of such types.

In this paper, we study holomorphic sections of Veech holomorphic families of

Riemann surfaces. Let X be a Riemann surface of type (g, n) with 3g − 3 + n > 0.
A flat structure u is an Euclidean structure on X with finitely many singularities
such that every transition function is of the form w = ±z + c. The pair (X, u)
of a Riemann surface X and a flat structure u on X is called a flat surface. All
punctures of X and singularities of u are called critical points of the flat surface
(X, u). We denote by C(X, u) the set of all critical points of (X, u). We assume
that the Euclidean areas of flat surfaces are finite. The affine group Aff+(X, u)
of a flat surface (X, u) is the group of all quasiconformal self-maps of X which
preserve C(X, u) and are affine with respect to the flat structure u. An element h of
Aff+(X, u) is called an affine map. The derivatives A ∈ GL(2,R) of the descriptions

doi:10.5186/aasfm.2014.3906
2010 Mathematics Subject Classification: Primary 32G15; Secondary 32G05, 32G08.
Key words: Holomorphic section, flat surfaces, Veech groups.
This work was supported by JSPS KAKENHI Grant Number 12J05650.



84 Yoshihiko Shinomiya

w = Az + c of an affine map h is uniquely determined up to the sign and they are in
SL(2,R). Thus, we have a homomorphism D : Aff+(X, u) → PSL(2,R). We call the
homomorphism the derivative map. The Veech group Γ(X, u) of (X, u) is the image
of the derivative map. Veech [Vee89] proved that Γ(X, u) is a Fuchsian group and the
mirror image B of the orbifold H/Γ(X, u) is holomorphically and locally isometrically
embedded into the moduli space M(g, n) equipped with the Teichmüller metric. Let
B be a Riemann surface obtained from B by removing all cone points. The Veech
holomorphic family of Riemann surfaces of type (g, n) over B induced by (X, u)
is the holomorphic family of Riemann surfaces corresponding to the holomorphic
embedding of B into the moduli space M(g, n). We show in [Shi13] that every
holomorphic section of Veech holomorphic families of Riemann surfaces is locally
the orbit of a point a ∈ (X, u) for Teichmüller deformations and the point satisfies
Aff+(X, u){a} = Ker(D){a}. In [Shi13], we also give upper bounds of the numbers
of holomorphic sections of Veech holomorphic families of Riemann surfaces such that
the corresponding flat surfaces have simple Jenkins–Strebel directions. The upper
bounds depend only on the topological types of fibers and base spaces. However, flat
surfaces do not have simple Jenkins–Strebel direction in general. In this paper, we
give upper bounds of the numbers of holomorphic sections of all Veech holomorphic
families of Riemann surfaces which depend only on the topological types of fibers
and base spaces. We also give a relation between signatures of Veech groups and
moduli of cylinder decompositions of flat surfaces by Jenkins–Strebel directions. It
claims that ratios of moduli of cylinders restrict to the signatures of Veech groups.

2. Preliminaries

In this section, we define flat surfaces, Veech groups, and Veech holomorphic
families of Riemann surfaces. We also study their properties and some theorems in
[Shi13] which are referred to in this paper.

Let X be a compact Riemann surface of genus g and X a Riemann surface of
type (g, n) with 3g − 3 + n > 0 which is X with n points removed.

Definition 2.1. (Flat structure and flat surface) A flat structure u on X is an
atlas of X with finitely many singular points which satisfies the following conditions:

(1) the local coordinates of u are compatible with the orientation of X,
(2) the transition functions are of the form

w = ±z + c

in z(U ∩ V ) for (U, z), (V, w) ∈ u with U ∩ V 6= ∅,
(3) the atlas u is maximal with respect to (1) and (2).

A pair (X, u) of a Riemann surface X and a flat structure u on X is called a flat
surface. All punctures of X and singular points of u are called critical points of
(X, u). The set of all critical points is denoted by C(X, u).

On a flat surface (X, u), we may consider Euclidean geometry. For instance,
area, segments, lengths or directions of the segments are considered on (X, u). In
this paper, we assume that the Euclidean area of (X, u) is finite. A θ-closed geodesic
on (X, u) is a closed geodesic with direction θ ∈ [0, π) which does not contain critical
points. A segment connecting critical points with direction θ is called a θ-saddle
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connection. If θ = 0, we also call a θ-closed geodesic a horizontal closed geodesic,
and a θ-saddle connection a horizontal saddle connection.

Definition 2.2. (Jenkins–Strebel direction) A direction θ ∈ [0, π) is called a
Jenkins–Strebel direction if almost all points in (X, u) are contained in θ-closed
geodesics.

Let θ ∈ [0, π) be a Jenkins–Strebel direction. If z ∈ (X, u) is not contained in
θ-closed geodesics, then z is on a θ-saddle connection. Let us remove all θ-saddle
connections from X. Then X has finitely many connected components. Every con-
nected component R is a cylinder foliated by θ-closed geodesics and the boundary of
R consists of saddle connections. The core curves of the cylinders are not homotopic
to each other and not homotopic to a point or a puncture. See [Str84].

Definition 2.3. If a Jenkins–Strebel direction θ decomposes X into m cylinders
R1, · · · , Rm, then the direction θ is called a m-Jenkins–Strebel direction. In partic-
ular, if m = 1, then we call the direction θ a simple Jenkins–Strebel direction. The
decomposition {Ri} is called a cylinder decomposition of (X, u) by a Jenkins–Strebel
direction θ.

Remark. Since the core curves of Ri’s are not homotopic to each other, m is
not greater than 3g − 3 + n.

Let u = {(U, z)} be a flat structure on X. For every A ∈ SL(2,R), a flat
surface A · (X, u) = (X, uA) is defined by uA = {(U,A ◦ z)}. The set C(X, uA)
of critical points of (X, uA) coincides with C(X, u) and uA gives a new complex
structure of X. The SL(2,R)-orbit of the flat surface (X, u) in the Teichmüller space
T (X) is defined by ∆ = {[A · (X, u), id] : A ∈ SL(2,R)}. It is easy to show that
[A · (X, u), id] = [UA · (X, u), id] in T (X) for all A ∈ SL(2,R) and U ∈ SO(2). Thus,

the bijection φ : SO(2) \ SL(2,R) → H defined by φ(SO(2) ·A) = −A−1(i) induces a
map ι : H → T (X). Here, A−1(·) acts on H as a Möbius transformation.

Proposition 2.4. [EG97, HS07] The map ι : H → T (X) is a holomorphic and

isometric embedding of the hyperbolic plane H into the Teichmüller space T (X)
equipped with the Teichmüller metric. Every holomorphic and isometric embedding

from H into T (X) is constructed from a flat surface as above.

Let ι : H → T (X) be a holomorphic and isometric embedding constructed from
a flat surface (X, u) of type (g, n). The image ∆ = ι(H) is called a Teichmüller
disk. We consider the image of the Teichmüller disk ∆ in the moduli space M(g, n).
Since M(g, n) = T (X)/Mod(X), the image of the Teichmüller disk is described as
∆/Stab(∆). Here, Mod(X) is the mapping class group of X and Stab(∆) is the
subgroup of Mod(X) consisting of all mapping classes which preserve ∆.

Definition 2.5. (Affine groups) A quasiconformal self-map h of X is called
an affine map of (X, u) if h preserves C(X, u) and, for (U, z) and (V, w) ∈ u with
h(U) ⊂ V , the composition w◦h◦z−1 is of the from w = Az+c for some A ∈ GL(2,R)
and c ∈ C. The group of all affine maps of (X, u) is denoted by Aff+(X, u) and we
call it the affine group of (X, u).

By the definition of flat structures, the derivative A of the affine map w ◦ h ◦ z−1

is uniquely determined up to the sign. Moreover, the assumption that the area of
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(X, u) is finite implies that A is in SL(2,R). Therefore, we obtain a homomorphism
D : Aff+(X, u) → PSL(2,R). The homomorphism is called the derivative map.

Definition 2.6. (Veech groups) We call the image Γ(X, u) = D(Aff+(X, u)) of
the derivative map D the Veech group of (X, u).

Proposition 2.7. [Vee89] Affine maps of (X, u) are not homotopic to each other.

Hence, the group Aff+(X, u) is considered as a subgroup of Mod(X).

Veech proved that Veech groups give the images of Teichmüller disks into the
moduli spaces as follows.

Theorem 2.8. [Vee89, EG97, HS07] The affine group Aff+(X, u) coincides with

Stab(∆). For t ∈ H and h ∈ Aff+(X, u), we have h∗(ι(t)) = ι(RAR−1(t)). Here,

A = D(h), R =
(

−1 0
0 1

)
and RAR−1 is a Möbius transformation which acts on H.

Corollary 2.9. [Vee89, EG97, HS07] The Veech group Γ(X, u) is a Fuchsian

group. Let Γ(X, u) = RΓ(X, u)R−1. The orbifold H/Γ(X, u) is holomorphically

and locally isometrically embedded into the moduli space M(g, n). The embedded

orbifold is the image of the Teichmüller disk ∆ into the moduli space M(g, n).

Veech holomorphic families of Riemann surfaces are given by such holomorphic
and locally isometric embeddings Φ: H/Γ(X, u) → M(g, n). Let H

∗ be H with
elliptic fixed points of Γ(X, u) removed. Since every point t ∈ B = H

∗/Γ(X, u)
corresponds to a Riemann surface Xt = Φ(t), we may construct a two-dimensional
complex manifold M by

M = {(t, z) : t ∈ B, z ∈ Xt = Φ(t)} .

Let π : M → B be the projection π(t, z) = t. Then the triple (M,π,B) is a holomor-
phic family of Riemann surfaces. See [Shi13], for more details of the construction of
the holomorphic families of Riemann surfaces.

Definition 2.10. (Veech holomorphic families of Riemann surfaces) A holomor-
phic family of Riemann surfaces constructed as above is called a Veech holomorphic
family of Riemann surfaces of type (g, n) over B.

Through this paper, we assume that the Veech groups Γ(X, u) of flat surfaces
(X, u) are co-finite Fuchsian groups. If the Veech group Γ(X, u) of a flat surface
(X, u) is of signature (p, k; ν1, · · · , νk) (νi ∈ {2, 3, · · · ,∞}), the base space B of the
corresponding Veech holomorphic family of Riemann surfaces is of type (p, k). In
this case, the map Φ: H/Γ(X, u) → M(g, n) induced by the flat surface (X, u) is a
Teichmüller curve.

In [Shi13], we characterize holomorphic sections of Veech holomorphic families
of Riemann surfaces. Let (X, u) be a flat surface of type (g, n) and (M,π,B) the
Veech holomorphic family of Riemann surfaces defined by (X, u). A holomorphic
section of (M,π,B) is a holomorphic map s : B → M such that π ◦ s = idB. Let
ρ̃ : H → H/Γ(X, u) be the universal covering map. For each t̃ ∈ H, let ft̃ : X → ft̃(X)

be the Teichmüller map whose Beltrami coefficient µt̃ satisfies µt̃ = i−t̃
i+t̃

dz̄
dz

for all

(U, z) ∈ u. Then the Riemann surface ft̃(X) coincides with Xρ(t̃) = π−1(ρ
(
t̃
)
).

Theorem 2.11. [Shi13] Let s : B → M be a holomorphic section of the Veech

holomorphic family (M,π,B) of Riemann surfaces induced by (X, u). There exists
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a ∈ (X, u) such that s ◦ ρ̃(t̃) = (ρ̃(t̃), ft̃(a)) for all t̃ ∈ H
∗. Moreover, the point

a ∈ (X, u) satisfies Aff+(X, u){a} = Ker(D){a}.

Let Γ be a finite index subgroup of Γ(X, u) and Γ = RΓR−1. Let ρ : H/Γ →
H/Γ(X, u) be the covering map. The holomorphic and locally isometric map Φ ◦
ρ : H/Γ → M(g, n) constructs a holomorphic family of Riemann surfaces. Let H

∗
Γ

be the upper half-plane H with elliptic fixed points of Γ removed. We set B′ =
H

∗
Γ
/Γ, M ′ = {(t, z) : t ∈ B′, z ∈ Xt = Φ ◦ ρ(t)}, and π′ : M ′ → B′ to be a projection

π′(t, z) = t. Then the triple (M ′, π′, B′) is a holomorphic family of Riemann surfaces
of type (g, n) over B′.

Corollary 2.12. [Shi13] A holomorphic section s′ : B′ → M ′ of the holomorphic

family (M ′, π′, B′) of Riemann surfaces as above corresponds to a point a ∈ X
satisfying D−1(Γ){a} = Ker(D){a}.

In [Shi13], we estimate the number of points a ∈ X satisfying Aff+(X, u){a} =
Ker(D){a} in case that (X, u) has a simple Jenkins–Strebel direction. The estimation
gives upper bounds of the numbers of holomorphic sections of Veech holomorphic
families of Riemann surfaces induced by such flat surfaces.

Theorem 2.13. [Shi13] Let (X, u) be a flat surface of type (g, n) with a simple

Jenkins–Strebel direction. Let (M,π,B) be the Veech holomorphic family of Rie-

mann surfaces induced by (X, u). Suppose that the base space B is of type (p, k).
Then the number of holomorphic sections of (M,π,B) is at most

32π(2p− 2 + k)(3g − 3 + n)2(3g − 2 + n)− 2g + 2.

In Section 3, we give upper bounds of the numbers of holomorphic sections of
all Veech holomorphic families of Riemann surfaces by extending the proof of Theo-
rem 2.13 in [Shi13]. We also apply the following theorem from [Shi13].

Theorem 2.14. [Shi13] Let Γ < PSL(2,R) be a Fuchsian group of type (p, k : ν1,
· · · , νk) (νi ∈ {2, 3, · · · ,∞}). Let k0 be the number of νi’s which are equal to ∞.

Assume that Γ contains
[(

1 1
0 1

)]
and it is primitive. Then there exists

[(
a b
c d

)]
∈

Γ such that

1 ≤ |c| < Area(H/Γ)− k0 + 1.

Here, Area (H/Γ(X, u)) is the hyperbolic area of the orbifold H/Γ.

The first inequality is the consequence of the Shimizu lemma (c.f. [IT92]).

Lemma 2.15. (The Shimizu lemma) Let Γ < PSL(2,R) be a Fuchsian group.

Assume that
[(

1 1
0 1

)]
∈ Γ and it is primitive. Then c = 0 or |c| ≥ 1 for all

[(
a b
c d

)]
∈ Γ.

Remark. It is known that

Area (H/Γ(X, u)) = 2π

(
2p− 2 +

k∑

i=1

(1−
1

νi
)

)

for a Fuchsian group Γ of signature (p, k : ν1, · · · , νk). See [FK92]. The Shimizu
lemma also means that the horodisks centered at punctures of H/Γ whose areas are
1 do not intersect each other.
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Proof of Theorem 2.14. Suppose that |c| ≥ Area(H/Γ) − k0 + 1 for all[(
a b
c d

)]
∈ Γ with c 6= 0. Let p1, · · · , pk0 be punctures of H/Γ. We assume that p1

corresponds to
[(

1 1
0 1

)]
. Let Ui be the horodisks centered at pi (i ∈ {2, · · · , k0})

whose areas are 1. By the Shimizu lemma, Ui ∩ Uj = ∅ (i 6= j). Let D be the Ford
region of Γ and p̃1 = ∞, p̃2, · · · , p̃k0 the vertices of D corresponding to p1, · · · , pk0,
respectively. The two edges of D which intersect at p̃i are contained in isometric
circles, say Ci and C ′

i, for each i ∈ {2, · · · , k0}. The radii of Ci and C ′
i are equal. Let

Di be the subregion of D which is bounded by Ci, C
′
i and the horizontal Euclidean

segment connecting the tops of Ci and C ′
i for all i ∈ {2, · · · , k0}. Let Ũi be the preim-

age of Ui in D. Since Ũi has area 1 and the region Di has area π− 2, the region Ũi is
contained in Di for all i ∈ {2, · · · , k0}. By the assumption, the radii of all isometric

circles of Γ are less than or equal to (Area(H/Γ)− k0 + 1)−1. This implies that p1
has a horodisk U1 whose area is at least Area(H/Γ)− k0 + 1. Moreover, U1 ∩Ui = ∅

for all i ∈ {2, · · · , k0} and H/Γ−
⋃k0

i=1 Ui has a positive area. Therefore,

Area(H/Γ) >

k0∑

i=1

Area(Ui) ≥ Area(H/Γ).

This is a contradiction. �

Finally, we see another property of Veech groups.

Theorem 2.16. (The Veech dichotomy theorem) [Vee89] Let (X, u) be a flat

surface. Suppose that the Veech group Γ(X, u) of (X, u) is a co-finite Fuchsian

group. Then every direction θ ∈ [0, π) satisfies one of the following properties:

• The direction θ is a Jenkins–Strebel direction. Let {Ri}
m
i=1 be the cylinder

decomposition of (X, u) by the direction θ. Then the ratio mod(Ri)/mod(Rj)
is a rational number for all i, j ∈ {1, · · · , k}.

• Every θ-direction geodesic is dense in X and uniquely ergodic. That is, the

θ-direction geodesic flow has only one transverse measure µ up to scalar mul-

tiples such that the flow is ergodic with respect to µ.

Here, the modulus mod(Ri) of the cylinder Ri is the ratio of the circumference to

the height.

For details of ergodicity, see [KH95, Nik01].

3. Main theorems

In this section, we prove the following two theorems. The first theorem gives
upper bounds of numbers of holomorphic sections of all Veech holomorphic families
of Riemann surfaces. The second theorem gives a relation between signatures of
Veech groups of flat surfaces and moduli of cylinders of cylinder decompositions of
the flat surfaces.

Theorem 3.1. Let (M,π,B) be a Veech holomorphic family of Riemann surfaces

of type (g, n) over B. Suppose that the base space B is a Riemann surface of type

(p, k). Then the number of holomorphic sections of (M,π,B) is at most

32π(2p− 2 + k) dimM(g, n)2
{
2 dimM(g, n) + 3 exp

(
5

e
dimM(g, n)

)}
.
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Theorem 3.2. Let (X, u) be a flat surface of type (g, n). Suppose that the Veech

group Γ(X, u) is of signature (p, k : ν1, · · · , νk) (νi ∈ {2, 3, · · · ,∞}). Let {Ri}
m
i=1 be

the cylinder decomposition of (X, u) by a Jenkins–Strebel direction. Then,
(
mod(Ri)

mod(Rj)

) 1

2

< 2 exp

(
5

e
dimM(g, n)

)
Area(H/Γ(X, u))

for all i, j ∈ {1, · · · , m}.

Using Theorem 2.11, a proof of Theorem 3.1 is given by estimating the cardinality
of the set

S(X, u) =
{
z ∈ X : Aff+(X, u){z} = Ker(D){z}

}
.

Let ϕ : X → Y = X/Ker(D) be the quotient map. Then Y has a flat structure
u′ induced by the flat structure u on X. Assume that Y is of type (g′, n′). Since
Γ(X, u) = Aff+(X, u)/Ker(D), we may consider Γ(X, u) as a subgroup of the affine
group Aff+(Y, u′). Then, ϕ(S(X, u)) = {w ∈ Y : Γ(X, u){w} = {w}}. Theorem 2.16
and the assumption that Γ(X, u) is a co-finite Fuchsian group imply that the set of
all Jenkins–Strebel directions of (X, u) is dense in [0, π). We may assume that the
direction θ = 0 is a m-Jenkins–Strebel direction of (X, u) for some 1 ≤ m ≤ 3g−3+n.
Then θ = 0 is also a m′-Jenkins–Strebel direction of (Y, u′) for some m′ ≤ m. Let
{Ri}

m
i=1 and {R′

j}
m′

j=1 be the cylinder decompositions of (X, u) and (Y, u′) by the
direction θ = 0, respectively. We define a map σ : {1, · · · , m} → {1, · · · , m′} by
σ(i) = j if ϕ(Ri) = R′

j. By Theorem 2.16, the Veech group Γ(X, u) contains elements

of the form
[(

1 b
0 1

)]
(b 6= 0). As Γ(X, u) is a co-finite Fuchsian group, Γ(X, u) also

contains elements of the form
[(

∗ ∗
c ∗

)]
(c 6= 0). We set

b0 = inf
{
|b| :

[(
1 b
0 1

)]
∈ Γ(X, u), b 6= 0

}

and

c1 = inf
{
|c| :

[(
a b
c d

)]
∈ Γ(X, u), c 6= 0

}
.

Let A =
[(

a1 b1
c1 d1

)]
and B =

[(
1 b0
0 1

)]
be elements of Γ(X, u) which attain the

numbers c1 and b0, respectively. Denote by h′
A and h′

B the elements of Aff+(Y, u′)
corresponding to A and B, respectively. Let Sj = {l1j , · · · , l

nj

j } be the set of all
horizontal closed geodesics in R′

j containing a fixed point of h′
B (j = 1, · · · , m′).

Let L1
j , L

2
j be the boundary components of R′

j for each j ∈ {1, · · · , m′}. Then we
consider the set

Cross(A) =




m′⋃

j=1

⋃

lkj∈Sj

(
lkj ∩ h′

A

(
lkj
))



⋃
(

m′⋃

j=1

⋃

r=1,2

(
Lr
j ∩ h′

A(L
r
j)
)
)
.

Lemma 3.3. The set Cross(A) contains ϕ(S(X, u)).

Proof. Since ϕ (S(X, u)) is the set of all fixed points of Γ(X, u) on (Y, u′), the
set ϕ (S(X, u)) is contained in Cross(A). �

Let Hi, H
′
j be heights of the cylinders Ri, R

′
j and Wi,W

′
j circumferences of the

cylinders Ri, R
′
j , respectively. Let Ki be the subgroup of Ker(D) consisting of all

maps preserving Ri. Then R′
σ(i) coincides with the quotient Ri/Ki and the area of
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R′
σ(i) is HiWi/♯Ki. If Ki contains a map permuting two boundary components of Ri,

then we have H ′
σ(i) = Hi/2 and W ′

σ(i) = 2Wi/♯Ki. Otherwise, we have H ′
σ(i) = Hi

and W ′
σ(i) = Wi/♯Ki. As a result, we have the following inequalities:

Wi/♯Ker(D) ≤ W ′
σ(i) ≤ Wi,

and

Hi/2 ≤ H ′
σ(i) ≤ Hi.

Recall that the moduli of Ri and R′
j are defined by mod(Ri) = Wi/Hi and mod(R′

j) =
W ′

j/H
′
j. Thus, we have

(1) mod(Ri)/♯Ker(D) ≤ mod(R′
σ(i)) ≤ 2mod(Ri).

Lemma 3.4. If j = σ(i), then

♯Sj ≤

⌈
b0♯Ker(D)

mod(Ri)

⌉
.

Here, ⌈x⌉ is the smallest integer which is greater than or equal to x.

Proof. Suppose that j = σ(i). If h′
B does not fix R′

j , then ♯Sj = 0. If h′
B fixes

R′
j and permutes two boundary components of R′

j , then ♯Sj = 1. Otherwise, by
identifying R′

j with [0,W ′
j)× (0, H ′

j), the affine map h′
B can be represented as

h′
B

(
u
v

)
=

(
1 b0
0 1

)(
u
v

)
+

(
W ′

jξ
0

)

for some 0 ≤ ξ < 1. Thus, (u, v) ∈ [0,W ′
j) × (0, H ′

j) corresponds to a fixed point
of h′

B if and only if v = (k − ξ)W ′
j/b0 for some k ∈ Z. Since v ∈ (0, H ′

j), such

integers k satisfy ξ < k < b0
mod(R′

j)
+ ξ. Hence, by the inequality (1), we have

♯Sj ≤
⌈

b0
mod(R′

j)
+ ξ
⌉
− 1 ≤

⌈
b0♯Ker(D)
mod(Ri)

⌉
. �

Lemma 3.5. For every j ∈ {1, · · · , m′} and a horizontal closed geodesic lkj ∈ Sj ,

the inequality

♯
(
lkj ∩ h′

A(l
k
j )
)
≤ 2mod(Ri)c1

holds if j = σ(i).

Proof. Assume that j = σ(i) and lkj ∈ Sj . Let us identify the closed geodesic

lkj with the vector
(

W ′

j

0

)
. Then the closed geodesic h′

A(l
k
j ) is identified with the

vector A
(

W ′

j

0

)
=
(

W ′

ja1
W ′

jc1

)
. Since the closed geodesic h′

A(l
k
j ) passes through the

cylinder R′
j exactly ♯(lkj ∩ h′

A(l
k
j )) times, we have ♯(lkj ∩ h′

A(l
k
j ))H

′
j ≤ W ′

jc1. Thus, by
the inequality (1), we have

♯
(
lkj ∩ h′

A(l
k
j )
)
≤ W ′

jc1/H
′
j ≤ 2mod(Ri)c1. �

Lemma 3.6. We have

♯
m′⋃

j=1

⋃

r=1,2

(
Lr
j ∩ h′

A(L
r
j)
)
≤

m∑

i=1

4mod(Ri)c1.
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Proof. Assume that σ(i) = j. By the same argument as in the proof of
Lemma 3.5, we have ♯

(
Lr
j ∩ h′

A(L
r
j)
)
≤ 2mod(Ri)c1. Therefore, the inequality

♯

m′⋃

j=1

⋃

r=1,2

(
Lr
j ∩ h′

A(L
r
j)
)
≤

m′∑

j=1

∑

r=1,2

♯
(
Lr
j ∩ h′

A(L
r
j)
)
≤

m∑

i=1

4mod(Ri)c1

holds. �

Proposition 3.7. We have

♯S(X, u) ≤ 2b0c1♯Ker(D)

m∑

i=1

(
♯Ker(D) +

3mod(Ri)

b0

)
.

Proof. By Lemma 3.4, Lemma 3.5 and Lemma 3.6, we have

♯S(X, u) ≤ ♯ϕ−1(Cross(A)) ≤ ♯Ker(D) · ♯Cross(A)

≤ ♯Ker(D)

m∑

i=1

2mod(Ri)c1

(⌈
b0♯Ker(D)

mod(Ri)

⌉
+ 2

)

≤ ♯Ker(D)

m∑

i=1

2mod(Ri)c1

(
b0♯Ker(D)

mod(Ri)
+ 3

)

= 2b0c1♯Ker(D)
m∑

i=1

(
♯Ker(D) +

3mod(Ri)

b0

)
. �

To prove Theorem 3.1 and 3.2, we estimate b0c1, ♯Ker(D), mod(Ri)
b0

, and b0
mod(Ri)

.

Lemma 3.8. We have

b0c1 ≤ Area (H/Γ(X, u)) .

Proof. We put P =
[(

1/
√
b0 0

0
√
b0

)]
. Then PAP−1 =

[(
a1 b1/b0
b0c1 d1

)]
and

PBP−1 =
[(

1 1
0 1

)]
. By the definition of the numbers c1 and b0, PBP−1 is primitive

in PΓ(X, u)P−1 and

b0c1 = inf
{
|c| :

[(
a b
c d

)]
∈ PΓ(X, u)P−1, c 6= 0

}
.

Therefore, applying Theorem 2.14 to the Fuchsian group PΓ(X, u)P−1, we have

b0c1 ≤ Area (H/Γ(X, u)) . �

For all i ∈ {1, · · · , m}, let s1i , s
2
i be the numbers of horizontal saddle connections

on two boundary components of Ri.

Lemma 3.9. We have

m∑

i=1

(
s1i + s2i

)
≤ 4(3g − 3 + n).

Proof. For each cylinder Ri, we take a segment in Ri connecting critical points in
two boundary components of Ri. Then these m segments and horizontal saddle con-
nections decompose X into m polygons. The set of vertices of the polygons coincides
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with C(X, u) and the number of horizontal saddle connections is
∑m

i=1 (s
1
i + s2i ) /2.

Hence, by the Euler characteristic, we have the equation

2− 2g = ♯C(X, u)−

(
m+

1

2

m∑

i=1

(
s1i + s2i

)
)

+m = ♯C(X, u)−
1

2

m∑

i=1

(
s1i + s2i

)
.

Therefore, the equation

m∑

i=1

(
s1i + s2i

)
= 2(2g − 2 + ♯C(X, u))

holds. Let q be the holomorphic quadratic differential on (X, u) such that q = dz2 for
(U, z) ∈ u. All points of X \ C(X, u) are not zeros of q. Every point of C(X, u) ∩X
is a zero of q and the orders of the punctures of X with respect to q are greater than
or equal to −1. By the Riemann–Roch theorem, the sum of orders of all zeros of q
is 4g − 4. Hence, ♯C(X, u) ≤ 4g − 4 + 2n and we obtain the claim. �

Lemma 3.10. We have

♯Ker(D) ≤ 4(3g − 3 + n).

Proof. Each element of Ker(D) is uniquely determined by the image of a sad-
dle connection and its orientation if it exists. Therefore, we obtain ♯Ker(D) ≤
m∑

i=1

(
s1i + s2i

)
≤ 4(3g − 3 + n). �

Lemma 3.11. For all i ∈ {1, · · · , m},

1

2
exp

(
−
5

e
(3g − 3 + n)

)
<

b0
mod(Ri)

< 2 exp

(
5

e
(3g − 3 + n)

)
Area (H/Γ(X, u))2

holds.

Remark. Theorem 3.2 is immediately proved from Lemma 3.11.

To prove Lemma 3.11, we consider the Landau function G(n). The Landau
function G(n) is the greatest order of an element of the symmetric group Sn of
degree n.

Remark. Landau [Lan03] showed that

lim
n→∞

log(G(n))√
n log(n)

= 1

and Massias [Mas84] showed that

log(G(n)) ≤ 1.05313 . . .
√
n log(n)

with equality at n = 1319766. In this paper, we apply the following inequality which
is easily proved

(2) G(n) ≤ exp
(n
e

)
.

This inequality is better than Massias’s if n ≤ 27.
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Proof of Lemma 3.11. Take hA, hB ∈ Aff+(X, u) with D(hA) = A,D(hB) = B.
There exists m0 ≤ G(m) such that hm0

B (Ri) = Ri for all i ∈ {1, · · · , m}. Then h2m0

B

preserves each boundary component of Ri. For each i, we choose αr
i ≤ sri (r = 1, 2)

such that h
2m0α1

iα
2

i

B fixes each boundary component of Ri pointwise. Set

α = 2m0

m∏

i=1

α1
iα

2
i .

By Lemma 3.9 and the inequality (2), we have

α ≤ 2G(m)
m∏

i=1

s1i s
2
i ≤ 2 exp

(m
e

){ m∑

i=1

(
s1i + s2i

)
/2m

}2m

(3)

≤ 2 exp

(
1

e
(3g − 3 + n)

){
2(3g − 3 + n)

m

}2m

< 2 exp

(
5

e
(3g − 3 + n)

)
.

Let Ci be a horizontal closed geodesic in the cylinder Ri for each i ∈ {1, · · · , m}.
Then hα

B is a composition of right hand Dehn twists along Ci (i = 1, · · · , m). Hence,
for every i ∈ {1, · · · , m}, there exists ni ≥ 1 such that αb0 = ni mod(Ri). Thus

mod(Ri)

b0
=

α

ni
< 2 exp

(
5

e
(3g − 3 + n)

)
.

Next, let us consider the affine map h = h−1
A ◦ hα

B ◦ hA. The derivative of h is

D(h) = A−1BαA =

[(
1 + αb0c1d1 αb0d

2
1

−αb0c
2
1 1− αb0c1d1

)]
.

Identifying the closed geodesic Ci with the vector

(
Wi

0

)
, the closed geodesic h(Ci)

is identified with the vector D(h)

(
Wi

0

)
=

(
Wi(1 + αb0c1d1)

−Wiαb0c
2
1

)
. Since the closed

geodesic h(Ci) intersects each cylinder Rj exactly ♯ (h(Ci) ∩ Cj) times, we have

Wiαb0c
2
1 =

m∑

j=1

♯ (h(Ci) ∩ Cj)Hj

for all i ∈ {1, · · · , m}. Then we have

mod(Ri)αb0c
2
1 =

1

Hi

m∑

j=1

♯ (h(Ci) ∩ Cj)Hj ≥ ♯ (h(Ci) ∩ Ci)

= ♯
(
hα
B

(
hA (Ci)

)
∩ hA (Ci)

)
≥ 1

since hA (Ci) intersects at least one of the Cj’s and hα
B fixes all boundary components

of Rj’s. Therefore, by Lemma 3.8 and the inequality(3), we have

b0
mod(Ri)

=
(b0c1)

2

mod(Ri)b0c
2
1

< 2 exp

(
5

e
(3g − 3 + n)

)
Area (H/Γ(X, u))2 . �

Proof of Theorem 3.1. Since m is the number of cylinders of a cylinder decompo-
sition of (X, u), we have m ≤ 3g−3+n. By Proposition 3.7, Lemma 3.8, Lemma 3.10,
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and Lemma 3.11, we have

♯S(X, u) ≤ 2b0c1♯Ker(D)
m∑

i=1

(
♯Ker(D) +

3mod(Ri)

b0

)

< 32π(2p− 2 + k)(3g − 3 + n)2
{
2(3g − 3 + n) + 3 exp

(
5

e
(3g − 3 + n)

)}
. �

Let Γ be a finite index subgroup of Γ(X, u) which is of signature (p′, k′ : ν ′
1, · · · , ν

′
k′)

(ν ′
i ∈ {2, 3, · · · ,∞}). Let (M ′, π′, B′) be a holomorphic family of Riemann surfaces

corresponding to Γ as in Section 2. By the same argument as above, we obtain the
following corollary.

Corollary 3.12. The number of holomorphic sections of the holomorphic family

(M ′, π′, B′) of Riemann surfaces of type (g, n) over B′ is at most

32π(2p′ − 2 + k′) dimM(g, n)2
{
2 dimM(g, n) + 3 exp

(
5

e
dimM(g, n)

)}
.
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