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Abstract. We study properties of quasihyperbolic geodesics on Banach spaces. For example,

we show that in a strictly convex Banach space with the Radon–Nikodym property, the quasihy-

perbolic geodesics are unique. We also give an example of a convex domain Ω in a Banach space

such that there is no geodesic between any given pair of points x, y ∈ Ω. In addition, we prove that

if X is a uniformly convex Banach space and its modulus of convexity is of a power type, then every

geodesic of the quasihyperbolic metric, defined on a proper subdomain of X, is smooth.

1. Introduction

The quasihyperbolic metric in R
n is a generalization of the hyperbolic metric.

This metric was first studied in R
n by Gehring in joint publications [5, 6] with his

students Palka and Osgood in late 1970’s. Since its discovery, the quasihyperbolic
metric has been widely applied in the study of geometric function theory [7, 26]. At
the same time, many basic questions of the quasihyperbolic geometry have remained
open. Only very recently several authors have studied questions such as convexity
of balls of small radii, uniqueness of geodesics, and quasihyperbolic trigonometry of
plane domains. See for instance [1, 8, 9, 10, 14, 15, 21, 25]. We refer to [26] for the
basic properties of this metric in R

n.
In Banach spaces, the properties of the quasihyperbolic metric were first studied

by Väisälä in a series of articles in 1990’s [16, 17, 18, 19, 20]. The quasihyperbolic
metric is a crucial tool for studying quasiconformal mappings in the in finite dimen-
sional Banach spaces because quasiconformality is defined in terms of it. Moreover,
the basic tools of the finite dimensional theory in R

n, such as the conformal mod-
ulus and finite dimensional measure theory, are not available in the case of infinite
dimensional Banach spaces. See [11] for discussion and motivations on the topic.

A result of Gehring and Osgood shows that in domains of Rn there is always
a quasihyperbolic geodesic between any two points [5]. It was proved by Martin in
[13], that the quasihyperbolic geodesics in R

n are smooth. The proof makes use of
Möbius transformations, and it does not work in the Banach space setting. In this
paper, our aim is to generalize these results to the Banach space setting.
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A result of Martio and Väisälä [14] shows that if Ω is a convex domain of a
uniformly convex Banach space, then each pair of points x, y ∈ Ω is joined by a
unique quasihyperbolic geodesic. The existence argument is based on the fact that
each uniformly convex Banach space is reflexive and the unit ball of reflexive space
is compact in the weak topology. The geodesic is obtained from a sequence of short
paths.

The first of our main results, Theorem 2.1, shows by following the arguments of
our earlier paper [15] that in a convex domain Ω of a reflexive strictly convex Banach
space the quasihyperbolic geodesics are unique. The argument boils down to taking
averages of paths. We also prove by a counterexample that there does not necessarily
exist any quasihyperbolic geodesics between any two points in a convex domain of a
non-reflexive Banach space. This appears a somewhat surprising fact and it settles
a problem posed in [21] in the negative.

Finally, we show that quasihyperbolic geodesics in a uniformly convex Banach
space, with a power type modulus of convexity, are C1 smooth. This result generalizes
a classical theorem of Martin [13] in the Euclidean setting, as well as Väisälä’s recent
work in Hilbert spaces [22].

1.1. Preliminaries. Here we consider Banach spaces X over the real field. We
refer to [2], [3], [4], [12] and [26] for suitable background information.

Suppose that X is a Banach space with dimX ≥ 2, and let Ω ( X be an open
path-connected domain. We call a continuous function w : Ω → (0,∞) a weight

function. Then the w-length of a rectifiable arcs γ ⊂ Ω is defined by

ℓw(γ) =

ˆ

γ

w
(

γ(t)
)

dt.

We also define a (conformal) metric dw on Ω by

dw(x, y) = inf
γ
ℓw(γ)

where the infimum is taken over rectifiable arcs γ : [0, 1] → Ω joining x and y in Ω.
It is clear that dw defines a metric in Ω. If the infimum is attained for an arc γ, then
we call γ a dw-geodesic. Qualitatively, a geodesic is a path in a metric space which
has the least path length among the paths connecting its endpoints. In this paper
we do not require geodesics to be unique and it is easy to see that there does not
necessarily exist a geodesic between given two points.

For the weight function

w(x) =
1

dist(x, ∂Ω)
,

we denote dw = kΩ, and call kΩ the quasihyperbolic metric of Ω. The open quasihy-
perbolic balls are given by

D(x, r) = {y ∈ Ω: k(x, y) < r}.

The norm of a Banach space is said to be strictly convex if the unit sphere
contains no proper line segment, i.e. ‖x+ y‖ < 2 for ‖x‖ = ‖y‖ = 1, x 6= y.

The modulus of convexity δX(ǫ), 0 < ǫ ≤ 2, is defined by

δX(ǫ) = inf
{

1− ‖x+ y‖/2: x, y ∈ X, ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ǫ
}

.

A Banach space X is called uniformly convex if δX(ǫ) > 0 for ǫ > 0 (see Figure 1).
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Figure 1. The modulus of convexity controls the norm of averages of vectors.

A space X is uniformly convex of power type p ∈ [2,∞) if δX(ǫ) ≥ Kǫp for some
K > 0. For example any reflexive Lp space has this property.

A Banach space X is said to have the Radon–Nikodym property (RNP) if the
Radon–Nikodym theorem holds for X. That is, if each Banach-valued measure
µ : Σ → X, where Σ is a sigma algebra and |µ| < ∞, has the representation

µ(E) =

ˆ

E

φ(x) d|µ|(x),

for all E ∈ Σ and some Bochner integrable φ : Ω → X. All reflexive spaces and sep-
arable dual spaces have the RNP. For example, the space c0 of sequences converging
to 0 with the sup-norm fails the RNP.

A path γ : [0, 1] → X is differentiable at x0 ∈ (0, 1) if

γ′(x0) = lim
t→0

γ(x0 + t)− γ(x0)

t
exists in X.

A Banach space X has the RNP if and only if each absolutely continuous path
γ : [0, 1] → X is differentiable a.e. In such a case the fundamental theorem of analysis
holds:

γ(t)− γ(0) =

ˆ t

0

γ′ ds

where the integral is taken in the Bochner sense.

2. Existence and uniqueness of geodesics

In general domains the quasihyperbolic geodesics need not be unique. A simple
example is the space punctured at a point. For the uniqueness one needs additional
assumptions such as convexity. Another related topic is the convexity of balls with
small radii which was recently proved by Klén in the special case of the punctured
space [9, 10], and by Väisälä [24] for general plane domains.

By following the arguments in [15] one can check the following:

Theorem 2.1. In a convex domain Ω of a strictly convex Banach space with the

RNP the quasihyperbolic geodesics are unique.

Remark 2.2. The existence of geodesics in the reflexive case was given by
Väisälä in [21].

Proof of Theorem 2.1. For a path γ : [0, 1] → Ω and t1, t2 ∈ [0, 1] denote by
ℓqh(γ, t1, t2) the quasihyperbolic length of γ([t1, t2]). We write ℓqh(γ) for ℓqh(γ, 0, 1).

Suppose that γ1, γ2 : [0, 1] → Ω are two different quasihyperbolic geodesics con-
necting points x, y ∈ Ω. Then γ1(0) = γ2(0) = x, γ1(1) = γ2(1) = y, and
ℓqh(γ1) = ℓqh(γ2).

We will use the argument in the proof of [15, 4.3] but here the situation is a bit
easier, since the quasihyperbolic geodesics are assumed to exist.
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We may assume that

ℓqh(γ1, 0, t) = ℓqh(γ2, 0, t) = tℓqh(γ1) for all t ∈ [0, 1].

For s ∈ [0, 1], we define the average path γs by the formula

γs(t) = sγ2(t) + (1− s)γ1(t).

Now suppose that x1, x2, x1 6= x2 are points such that for some r0 ∈ (0, 1),
γ1(r0) = x1 and γ2(r0) = x2. As in [15, 4.3], we obtain the estimate

ℓqh(γs, 0, r0) ≤ sℓqh(γ2, 0, r0) + (1− s)ℓqh(γ1, 0, r0)

= ℓqh(γ1, 0, r0) = ℓqh(γ2, 0, r0).
(2.1)

On the other hand, by a similar argument, we have

ℓqh(γs, r0, 1) ≤ ℓqh(γ1, r0, 1) ≤ ℓqh(γ2, r0, 1) for all s ∈ [0, 1],

and thus equality holds in (2.1). It follows that the boundary of the quasihyperbolic
ball D(x, r0) contains a line segment [x1, x2]. This is a contradiction because in the
proof of [15, Theorem 4.1] it was established that the inequality [15, (4.6)] is strict
in a strictly convex Banach space with the RNP, and thus, the quasihyperbolic balls
are strictly convex (cf. the proof of [23, Theorem 2.3]). �

Similarly as in the argument in [15, 4.3] we see that if the distance function d
is strictly concave (excluding possibly finitely many points of the space), then the
quasihyperbolic geodesics are unique.

As mentioned previously, it is known that in any convex domain of a reflexive
space there is always a quasihyperbolic geodesic between two points. If the space
has the property of being strictly convex (with respect to a given norm), then the
quasihyperbolic geodesic is unique. It turns out here, somewhat surprisingly, that if
one removes the reflexivity assumption, then the statement does not remain valid,
even for half spaces.

Theorem 2.3. Let (fn) ∈ ℓ1\c00, Ω = {(xn) ∈ c0 :
∑

fnxn > 0} and we consider

Ω in the quasihyperbolic metric. Given any pair of distinct points x, y ∈ Ω there is

no quasihyperbolic geodesic between them.

Denote by X∗ the dual of a Banach space X. First, let us recall the following
well-known fact:

Fact 2.4. Let f ∈ X∗, ‖f‖ = 1, and x ∈ X. Then f(x) = dist(x,Ker(f)).

Proof. It suffices to check the claim in the case f(x) = 1. Given δ > 0, there is
y ∈ X with ‖y‖ < 1 + δ and f(y) = 1. Writing x = y + k for some k ∈ Ker(f) we
observe that

dist(x,Ker(f)) = dist(y,Ker(f)) ≤ dist(y, {0}) = ‖y‖ < 1 + δ.

On the other hand, if dist(x,Ker(f)) < 1, then there exists z ∈ X, ‖z‖ < 1, and
h ∈ Ker(f) such that x = z + h. This is impossible, since f(x) = f(z) = 1 and
‖f‖ = 1 by the assumptions. �

Proof of Theorem 2.3. Without loss of generality we may assume, by rotating
the coordinates if necessary, that f = (fn) ∈ ℓ1 is coordinatewise non-negative. We
may also assume that ‖f‖ = 1. Observe that 〈f, x〉 = dist‖·‖(x, ∂Ω) for x ∈ Ω
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according to Fact 2.4. We denote by M ⊂ N the infinite subset of indices m such
that fm > 0.

Fix x = (xn), y = (yn) ∈ Ω, x 6= y. Assume to the contrary to the statement
of the theorem that γ : [0, 1] → Ω is a quasihyperbolic geodesic joining x and y. Let
n ∈ N be such that xn − yn 6= 0. By symmetry we may assume that this difference
is positive. We write xn − yn = δ > 0.

We may assume that γ is parametrized by its norm length. Clearly ℓ‖·‖(γ) ≥ δ.
Next we define a sequence (γk) of modifications of γ for k = 1, 2, . . .. Let e∗n : c0 →

R be the functional given by e∗n(z) = zn for each z ∈ c0. For each n ∈ N, let
αn : [0, 1] → R be the polygonal line defined by the following conditions: αn(0) =
αn(1) = min(xn, yn) and αn(1/2) = min(xn, yn) + δ/2. Note that the absolute value
of the slope of αn is δ (which is defined for values t 6= 0, 1/2, 1). We let γk be such that
e∗n(γk(t)) = max(e∗n(γ(t)), αn(t)) for 1 ≤ n ≤ k, t ∈ [0, 1] and e∗n(γk(t)) = e∗n(γ(t)) for
n > k and t ∈ [0, 1] (see Figure 2).

(t))γk

α n(t)

0 1

e (n
*

Figure 2. Modifications of γ projected on a single coordinate.

Claim: The inequality ℓ‖·‖(a, b, γk) ≤ ℓ‖·‖(a, b, γ) holds for 0 ≤ a < b ≤ 1. Indeed,
by approximation it suffices to check that the above claim holds in the case where γ
is a polygonal line with finitely many, say, p line segments. This, in turn, reduces to
studying such paths supported in only finitely many, say, m first coordinates.

Denote by c00(m) = [ei : 1 ≤ i ≤ m] ⊂ c0 the corresponding subspace. Since
c00(m) is reflexive, being finite-dimensional, it possesses the RNP, and thus we may
consider

γ(t) = γ(0) +

ˆ t

0

γ′(s) ds.

Since the path γ is a polygonal line having only finitely many supporting coordinates
and line segments, we may find a finite decomposition 0 = t0 < t1 < . . . < tl = 1 of
[0, 1] in such a way that e∗i (γk(t)) = αi(t) for all t ∈ [tj , tj+1] or e∗i (γk(t)) = e∗i (γk(t))
for all t ∈ [tj , tj+1] (or both) for each j. Recall that the norm in c00(m) is ‖x‖ =
max1≤i≤m |xi|. By using that |α′

i(t)| = δ ≤ ‖γ′(t)‖ for a.e. t we obtain the claim.
Note that

∑

i∈N

fie
∗
i (γk(t)) ≥

∑

i∈N

fie
∗
i (γ(t)),

for each k and t, by the construction of the paths γk. Thus, by applying the above
claim we obtain ℓqh(γk) ≤ ℓqh(γ) for k, since 1/〈f, γ〉 is exactly the quasihyperbolic
weight of a path γ. Moreover, since (fn) ∈ ℓ1\c00 and γ(1/2) ∈ c0 and γk(1/2) → δ/2
as k → ∞ it follows that

lim
k→∞

∑

i∈N

fie
∗
i (γk(1/2)) >

∑

i∈N

fie
∗
i (γ(1/2)).

This means that ℓqh(γk) < ℓqh(γ) for k large enough. This provides us with a con-
tradiction, since γ was assumed to be a quasihyperbolic geodesic. �
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Suppose that X is a Banach space with dimX ≥ 2, and let Ω ( X be an open
path-connected domain. Recall that a domain Ω is geodesic if for every pair of points
x, y ∈ Ω there exists a geodesic connecting x and y.

Conjecture 2.5. We conjecture that a strictly convex Banach space is reflexive
if and only if each of its open half spaces is geodesic in the quasihyperbolic metric.
As it was established above, the ’only if’ direction holds (since reflexivity implies the
RNP).

In the non-strictly convex case the geodesics of half spaces need not be unique,
even in finite dimensional setting. For example, let Ω = {(x, y) ∈ R

2 : y > 0} ⊂
c00(2) (with the sup-norm). Then the straight line between (0, 1) and (0, 2) is a
quasihyperbolic geodesic. Note that the polygonal line between these two points
passing through (1/2, 3/2) is also a quasihyperbolic geodesic.

Without giving a proof we note that the above half-space example on c0 can be
modified in such a way that the Banach space can be taken to be even strictly convex.
Indeed, a well-known equivalent strictly convex norm ||| · ||| on c0 is given by

|||(xn)|||
2 = ‖(xn)‖

2
c0 +

∞
∑

n=1

2−n|xn|
2

and (fn) ∈ ℓ1, ‖(fn)‖ = 1, can be selected in such a way that lim supn fn/2
−n = ∞.

Note that |||(fn)|||
∗ ≤ 1, so that dist(x,Kerf) ≥ 〈f, x〉.

3. Smoothness of quasihyperbolic geodesics

The modulus of convexity δX of Banach space is not necessarily convex. However,
it has a largest convex minorant δ. It is easy to see that this is strictly positive if δX
is such. In what follows we will use the greatest convex minorant δ in the place of
δX. A modulus of convexity δX is said to have a power type if there is p ≥ 2 such
that δX(ǫ) ≥ cǫp for some c > 0. In such a case we will apply the convex lower bound
cǫp in place of δX. See also Figure 1.

Recall that a function f is Hölder continuous if its modulus of continuity ν
satisfies ν(ǫ) ≤ cǫp for some c, p > 0.

Theorem 3.1. Let X be a uniformly convex Banach space whose modulus of

convexity has a power type. Let dw be as above. We assume that w is Hölder

continuous on compact sets. Then every dw-geodesic γ is C1 excluding the endpoints.

It turns out during the course of the proof that it suffices only to consider suitable
compact sets containing the path. Thus we have the following corollary.

Corollary 3.2. Let X be a Banach space as above. Then each quasihyperbolic

geodesic γ ⊂ Ω ⊂ X is C1-smooth.

The argument for the general Banach space here is necessarily different compared
to an inner product space setting because there are no concepts such as angles.

We will first give some auxiliary facts before the proof of the theorem. By a
Banach space-valued random variable we mean a Bochner measurable mapping from
a probability space to a Banach space. In what follows X1 and X2 are i.i.d. X-valued
random variables with ‖X1‖ = 1 a.s. In particular, these random variables have
(finite) expectations.
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Lemma 3.3. (Jensen type inequality) Suppose that X1 and X2 are i.i.d. X-

valued random variables with ‖X1‖ = 1 a.s., and let φ : X → R be a convex function.

Then

Eφ(X1 −EX1) ≤ Eφ(X1 −X2).

Proof. Since X1 and X2 are independent, we may consider P = P1 ⊗P2, where
P1 and P2 support the corresponding random variables. Observe that

Eφ(X1 −X2) = Eφ(X1 −EX1 + EX1 −X2)

=

ˆ

(
ˆ

φ(X1 − EX1 + EX2 −X2) dP2

)

dP1

≥

ˆ

φ(X1 − EX1) dP1 = Eφ(X1 −EX1),

where the inequality follows from Jensen’s inequality, since E(X2 − EX2) = 0. �

Lemma 3.4. Suppose that X1 and X2 are i.i.d. X-valued random variables with

‖X1‖ = 1 a.s. Then

‖EX1‖ ≤ 1− δ(E‖X1 −X2‖).

Proof. Observe that

‖EX1‖ ≤ E
‖X1 +X2‖

2
≤ E(1− δ(‖X1 −X2‖))

= 1−E(δ(‖X1 −X2‖)) ≤ 1− δ(E(‖X1 −X2‖)).

We applied Jensen’s inequality and the convexity of δ in the last estimate. �

Proof of Theorem 3.1. Let γ : [a, b] → Ω be a (rectifiable) quasihyperbolic
geodesic parameterized by the norm length. We aim to show that the restriction
γ|(a,b) has a continuous derivative.

Since the image of γ is compact, its distance to the boundary ∂Ω is strictly
positive, say d > 0. Let

T : {(s, t, p) ∈ [a, b]2 × [0, 1] : s ≤ t} → X, T (s, t, p) = pγ(s) + (1− p)γ(t).

Note that this is a uniformly continuous mapping and that the preimage

T−1({x ∈ X: dist(x, γ([a, b])) < d/2)

is an open neighborhood of the subset {(t, t, p) ∈ [a, b]2 × [0, 1]}. Since γ is param-
eterized by its norm-length, it follows that T is uniformly continuous and therefore
there is r0 > 0 such that

{(t,min(t+ r, b), p) : t ∈ [a, b], p ∈ [0, 1], 0 ≤ r ≤ r0}

⊂ T−1({x ∈ X: dist(x, γ([a, b])) < d/2).
(3.1)

Let C be the image of the left hand set under the mapping T (see Figure 3). Note
that C is a compact set as a continuous image of one.

Since X has the RNP, being reflexive, we can recover γ by Bochner integrating
its (vector-valued) derivative γ′. By the parameterization of γ we have that ‖γ′‖ = 1
a.e. Define T : [a, b]× [0, 1] → X by

Th(t) =

´

[a,b]∩[t−h,t+h]
γ′(s) ds

m([a, b] ∩ [t− h, t+ h])
for t ∈ [a, b], 0 < h < 1,
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Ω

γ

C

Figure 3. The considerations reduce to a compact set of small-width averages of γ.

where m denotes the usual Lebesgue measure. Note that

Th(t) =
1

2h

ˆ

[t−h,t+h]

γ′ ds

if [t− h, t+ h] ⊂ [a, b] which is the essential case here. Also note that

T (t− h, t+ h, 1/2)− γ(t− h) =
1

2

ˆ t+h

t−h

γ′ ds = hTh(t).

By the Lebesgue differentiation theorem limh→0+ Th(t) = γ′(t) for a.e. t. Thus,
without loss of generality may assume by redefining γ′ that these coincide everywhere
and we write T0 ≡ γ′.

By a standard argument involving approximation of γ′ by simple functions we
observe that for a fixed h > 0 the map [a, b] → X, t 7→ Th(t) is continuous.

Therefore it suffices to check that

lim
h→0+

sup
t∈[a1,b1]

‖Th(t)− γ′(t)‖ = 0

for any closed interval [a1, b1] ⊂ (a, b) because then γ′ will be continuous on [a1, b1]
and the statement of the theorem follows. To this end, we are actually required to
verify that Th/2n , considered as mappings [a1, b1] → X, form a Cauchy sequence in
C([a1, b1],X). It suffices to establish an estimate

(3.2)
1

2h

ˆ t+h

t−h

‖Th(t)− γ′(s)‖ ds ≤ β(h)

where β(h) tends to 0 suitably rapidly as h → 0 (not depending on t ∈ [a1, b1]).
Indeed, we will check that Th/2n is C([a1, b1],X)-Cauchy. Note that

‖Th(t)− Th/2(t)‖ =

∥

∥

∥

∥

1

2h

ˆ t+h

t−h

γ′(s) ds−
1

h

ˆ t+h/2

t−h/2

γ′(s) ds

∥

∥

∥

∥

=

∥

∥

∥

∥

1

2h

ˆ

t−h≤s≤1−h/2∨t+h/2≤s≤t+h

γ′(s) ds−
1

2h

ˆ t+h/2

t−h/2

γ′(s) ds

∥

∥

∥

∥



On quasihyperbolic geodesics in Banach spaces 171

=
1

2h

∥

∥

∥

∥

ˆ

t−h≤s≤1−h/2∨t+h/2≤s≤t+h

γ′(s)− Th(t) ds−

ˆ t+h/2

t−h/2

γ′(s)− Th(t) ds

∥

∥

∥

∥

≤
1

2h

ˆ t+h

t−h

‖γ′(s)− Th(t)‖ ds ≤ β(h).

Now (Th/2n) is Cauchy, since

(3.3) ‖Th − Th/2n‖ ≤

n
∑

i=1

‖Th/2i−1 − Th/2i‖ ≤

∞
∑

i=0

β(h/2i) < ∞

where the convergence of the right hand sum will be established subsequently.

γ(t−h)

(t+h)

γ

γ
(t−h)γ

sT (t)h+

Figure 4. An approximation of a path γ by using the moving average Th of γ′.

Put h0 = r0/2 and observe that (see Figure 4)

{γ(t− h) + sTh(t) : 0 ≤ s ≤ 2h} ⊂ C

for 0 ≤ h ≤ h0, [t−h, t+h] ⊂ [a, b]. Note that w|C is Hölder continuous and let ν(ǫ)
be the modulus of continuity of w|C . Thus ν(ǫ) ≤ c1ǫ

r for some r > 0 and ν(ǫ) → 0
as ǫ → 0.

Since γ is a dw-geodesic we have that

(w(γ(t))− ν(h))

ˆ t+h

t−h

‖dγ‖ ≤ (w(γ(t− h)) + ν(2h))2h‖Th(t)‖

≤ (w(γ(t)) + ν(3h))2h‖Th(t)‖.

(3.4)

The above estimate uses the facts that ‖γ(t)− γ(s)‖ ≤ h for |t− s| ≤ h and |γ(t−
h)− (γ(t−h)+sTh(t))| ≤ 2h for 0 ≤ s ≤ 2h. Note that s 7→ γ(t−h)+sTh(t) defines
a straight line [γ(t − h), γ(t + h)] and 2h‖Th(t)‖ is the length of the line. It follows
that

(3.5)
1

2h

ˆ t+h

t−h

‖dγ‖ − ‖Th(t)‖ ≤

(

w(γ(t)) + ν(3h)

w(γ(t))− ν(h)
− 1

)

≤
2ν(3h)

w0

for a suitable w0 > 0 and sufficiently small h > 0. Note that since C is compact the
weight w attains its minimum on C which must be greater than 0. In what follows
we will consider only h such that the last inequality above holds. For convenience
we will abbreviate the last term of the above inequality by µ(h) = 2ν(3h)/w0.

Note that

(3.6)
1

2h

ˆ t+h

t−h

‖dγ‖ − ‖Th(t)‖ =
1

2h

ˆ t+h

t−h

‖dγ‖ −
1

2h
‖γ(t+ h)− γ(t− h)‖ ≤ µ(h)
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where µ(h) does not depend on t and µ(h) ց 0 as h → 0.
Therefore on [t − h, t + h] the path γ has ’µ-asymptotically’ the same length as

its linear approximation s 7→ γ(t−h)+sTh(t), s ∈ [0, 2h]. This is controlled by ν(h).
The philosophy is that if the space is uniformly convex then γ is heavily penalized
for squiggling around its linear approximation. We will justify (3.2) by using (3.6)
and the modulus of uniform convexity.

To finish the argument, let us consider the state space [t − h, t + h]2 with the
probability measure

m(A) =
1

2h

ˆ t+h

t−h

1

2h

ˆ t+h

t−h

1A(s, r) dr ds.

Put X1(s, r) = γ′(s) and X2(s, r) = γ′(r) and of course we implicitly assume these
random variables depend on t and h, although the estimates depend on h only.
According to (3.6) we obtain that ‖EX1‖ ≥ 1−µ(h) so that δX(E‖X1−X2‖) ≤ µ(h)
according to Lemma 3.4. Here we used the lemma with δ(ǫ) = cǫp, which is convex
since we may take p ≥ 2. Thus c(E‖X1−X2‖)

p ≤ µ(h) so that by applying Lemma 3.3
we get

E‖X1 − EX1‖ ≤ E‖X1 −X2‖ ≤
1

c
(µ(h))

1

p ≤ c2h
r
p = β(h),

the last equality being a definition. Observe that
∞
∑

i=1

β(h/2i) =
∞
∑

i=1

c2(h/2
i)

r
p

converges as a geometric series with ratio 1/2
r
p . We note that

E‖X1 −EX1‖ =
1

2h

ˆ t+h

t−h

‖γ′(s)− Th(t)‖ ds,

so that we have verified (3.2) and (3.3). �

It was recently brought to our attention that Väisälä has independently arrived
at a result similar the one above by a different argument [24].

We call a curve γ : R → Ω a local quasihyperbolic geodesic if for each a, b ∈
R, a < b, the restriction γ|[a,b] is a quasihyperbolic geodesic between γ(a) and γ(b).
The above result extends naturally to the local quasihyperbolic geodesics as well.

Acknowledgments. We thank J. Väisälä and M. Vuorinen for their helpful com-
ments on this paper.
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