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Abstract. The obstacle problem associated with p-harmonic functions is extended to un-

bounded open sets, whose complement has positive capacity, in the setting of a proper metric

measure space supporting a (p, p)-Poincaré inequality, 1 < p < ∞, and the existence of a unique

solution is proved. Furthermore, if the measure is doubling, then it is shown that a continuous

obstacle implies that the solution is continuous, and moreover p-harmonic in the set where it does

not touch the obstacle. This includes, as a special case, the solution of the Dirichlet problem for

p-harmonic functions with Sobolev type boundary data.

1. Introduction

The classical Dirichlet problem is the problem of finding a function that is har-
monic (i.e., a solution of the Laplace equation) in a given domain Ω ⊂ R

n and takes
prescribed boundary values. According to Dirichlet’s principle, this is equivalent to
minimizing the Dirichlet energy integral,

ˆ

Ω

|∇u|2 dx,

among all admissible functions.
A more general and nonlinear Dirichlet problem considers the p-Laplace equation,

∆pu := div(|∇u|p−2∇u) = 0,

where 1 < p <∞, which reduces to the usual Laplace equation when p = 2. This is
the Euler–Lagrange equation for the p-energy integral,

ˆ

Ω

|∇u|p dx.

A minimizer/weak solution is said to be p-harmonic if it is continuous.
The nonlinear potential theory of p-harmonic functions has been studied since the

1960s. Initially for Rn, and later generalized to weighted R
n, Riemannian manifolds,

and other settings. The interested reader may consult the monograph Heinonen–
Kilpeläinen–Martio [20] for a thorough treatment in weighted R

n.
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It is not clear how to employ partial differential equations in a general metric
measure space. However, by using the notion of minimal p-weak upper gradients
as substitutes for the modulus of the usual gradients, the variational approach of
minimizing the p-energy integral becomes available. This has led to the more recent
development of nonlinear potential theory on complete metric spaces equipped with
a doubling measure supporting a p-Poincaré inequality.

The purpose of this paper is to extend the so-called obstacle problem associated
with p-harmonic functions to allow for unbounded open sets with Dirichlet bound-
ary data. The obstacle problem has been studied for bounded sets in (weighted)
R
n (see, e.g., Heinonen–Kilpeläinen–Martio [20] and the references therein), and

later also for bounded sets in more general metric spaces (see, e.g., Björn–Björn [3],
[4], [5], Björn–Björn–Mäkäläinen–Parviainen [6], Björn–Björn–Shanmugalingam [8],
Kinnunen–Martio [25], Kinnunen–Shanmugalingam [26], and Shanmugalingam [31]).
The double obstacle problem has also been studied (see, e.g., Farnana [13, 14, 15, 16]
and Eleuteri–Farnana–Kansanen–Korte [12]).

The setting in which we will study the obstacle problem will be that of a proper
metric measure space X supporting a (p, p)-Poincaré inequality where we let Ω be
a nonempty (possibly unbounded) open subset of X such that the capacity of the
complement is positive (which is needed for the boundary data to make sense). Fur-
thermore, we let the obstacle ψ be an extended real-valued function and we assume
the boundary data f to be a function in Dp(Ω) (see Section 2 for definitions). In
this setting, we prove Theorem 3.4 which asserts that there exists a unique (up to
sets of capacity zero) solution of the Kψ,f (Ω)-obstacle problem whenever the set of
admissible functions is nonempty. Thus, instead of merely studying the Dirichlet
problem, we solve the associated obstacle problem of minimizing the p-energy inte-
gral among all functions that satisfy the given boundary condition and are greater
than or equal to ψ in Ω (perhaps with the exception of a set of capacity zero). This
problem reduces to the Dirichlet problem for p-harmonic functions with Sobolev type
boundary data when ψ ≡ −∞.

The existence part of the proof of Theorem 3.4 starts with a minimizing se-
quence of admissible functions {uj}

∞
j=1 that minimizes the p-energy integral. We let

wj = uj − f extended to zero outside Ω and exhaust X by an increasing sequence of
balls. The sequence {wj}

∞
j=1 is shown to be bounded on every ball by using Maz′ya’s

inequality and the boundedness of the corresponding sequence of minimal p-weak
upper gradients. Hence, by Mazur’s lemma, we can find convex combinations of
functions from {wj}

∞
j=1 that converge to an Lp-function in the smallest ball. Repeat-

edly, we can then find new convex combinations of the previous convex combinations
that converge to Lp-functions on larger and larger balls. Using these Lp-functions,
we construct a function u and show that the diagonal sequence of the sequences of
convex combinations converges to u− f . By estimating integrals of minimal p-weak
upper gradients from the diagonal sequence using Jensen’s inequality and induction,
we can use a consequence of Mazur’s lemma to show that u− f ∈ Dp

0(Ω) and hence
that u is an admissible function. In a similar way, using the obtained estimations,
we conclude the existence part by showing that u is indeed a minimizer.

The paper is organized as follows. In the next section, we establish notation,
review some basic definitions and results relating to Sobolev type spaces on metric
spaces. In Section 3, we define the obstacle problem that allow for unbounded open
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sets and prove the main result of this paper (Theorem 3.4). We also obtain some
further results. Finally, in Section 4, assuming X to be a complete p-Poincaré space
with a doubling measure, we show the existence of a unique lsc-regularized solution,
and, moreover, that if the obstacle is continuous, then the solution is continuous
and furthermore p-harmonic in the set where it does not touch the obstacle. As a
special case, this implies that there exists a unique solution of the Dirichlet problem
for p-harmonic functions with boundary values in Dp(Ω) taken in Sobolev sense. To
the best of the author’s knowledge, these results are new also for Rn.

2. Notation and preliminaries

We assume throughout the paper that (X,M, µ, d) is a metric measure space
(which we will refer to as X) equipped with a metric d and a measure µ such that

0 < µ(B) <∞

for all balls B ⊂ X (we make the convention that balls are nonempty and open).
The σ-algebra M on which µ is defined is the completion of the Borel σ-algebra.

We start with the assumption that 1 ≤ p < ∞. However, in the next section
(and for the rest of the paper), we will assume that 1 < p < ∞. The measure µ is
said to be doubling if there exists a constant Cµ ≥ 1 such that

0 < µ(2B) ≤ Cµµ(B) <∞

for all balls B ⊂ X. We use the notation that if B is a ball with radius r, then the
ball with radius λr that is concentric with B is denoted by λB.

Recall that the characteristic function χE of a set E is defined by χE(x) = 1 if
x ∈ E and χE(x) = 0 if x /∈ E. The set E is compactly contained in A if E (the
closure of E) is a compact subset of A. We denote this by E ⋐ A. The extended
real number system is denoted by R := [−∞,∞]. Recall also that f+ = max{f, 0}
and f− = max{−f, 0}, and hence that f = f+ − f− and |f | = f+ + f−.

By a curve in X, we mean a rectifiable nonconstant continuous mapping γ
from a compact interval into X. Since our curves have finite length, they may be
parametrized by arc length, and we will always assume that this has been done.

Unless otherwise stated, the letter C will be used to denote various positive
constants whose exact values are unimportant and may vary with each usage.

We follow Heinonen–Koskela [21], [22] in introducing upper gradients (Heinonen
and Koskela, however, called them very weak gradients).

Definition 2.1. A Borel function g : X → [0,∞] is said to be an upper gradient

of a function f : X → R whenever

(2.1) |f(x)− f(y)| ≤

ˆ

γ

g ds

holds for all pairs of points x, y ∈ X and every curve γ in X joining x and y. We
make the convention that the left-hand side is infinite if both terms are.

Recall that a Borel function g : X → Y is a function such that the inverse image
g−1(G) = {x ∈ X : g(x) ∈ G} is a Borel set for every open subset G of Y .

Observe that upper gradients are not unique (if we add a nonnegative Borel
function to an upper gradient of f , then we obtain a new upper gradient of f) and
that g ≡ ∞ is an upper gradient of all functions. Note also that if g and g̃ are upper
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gradients of u and ũ, respectively, then g − g̃ is not in general an upper gradient
of u − ũ. However, upper gradients are subadditive, that is, if g and g̃ are upper
gradients of u and ũ, respectively, and a ∈ R, then |a|g and g+ g̃ are upper gradients
of au and u+ ũ, respectively.

A drawback of upper gradients is that they are not preserved by Lp-convergence.
Fortunately, it is possible to overcome this problem by relaxing the condition, and
we therefore follow Koskela–MacManus [27] in introducing p-weak upper gradients.
To do this, we need the following definition.

Definition 2.2. Let Γ be a family of curves in X. The p-modulus of Γ is

Modp(Γ) := inf
ρ

ˆ

X

ρp dµ,

where the infimum is taken over all nonnegative Borel functions ρ such that

ˆ

γ

ρ ds ≥ 1

for all curves γ ∈ Γ. Whenever a property holds for all curves except for a curve
family of zero p-modulus, it is said to hold for p-almost every (p-a.e.) curve.

The p-modulus (as the module of order p of a system of measures) was defined
and studied by Fuglede [17]. Heinonen–Koskela [22] defined the p-modulus of a
curve family in a metric measure space and observed that the corresponding results
by Fuglede carried over directly.

The p-modulus has the following properties (as observed in [22]): Modp(∅) = 0,
Modp(Γ1) ≤ Modp(Γ2) whenever Γ1 ⊂ Γ2, and Modp

(⋃∞
j=1 Γj

)
≤

∑∞
j=1Modp(Γj). If

Γ0 and Γ are two curve families such that every curve γ ∈ Γ has a subcurve γ0 ∈ Γ0,
then Modp(Γ) ≤ Modp(Γ0). For proofs of these properties and all other results in
this section, we refer to Björn–Björn [4]. Some of the references that we mention
below may not provide a proof in the generality considered here, but such proofs are
given in [4].

Definition 2.3. A measurable function g : X → [0,∞] is said to be a p-weak

upper gradient of a function f : X → R if (2.1) holds for all pairs of points x, y ∈ X
and p-a.e. curve γ in X joining x and y.

Note that a p-weak upper gradient, as opposed to an upper gradient, is not

required to be a Borel function. It is convenient to demand upper gradients to be
Borel functions, since then the concept of upper gradients becomes independent of
the measure, and all considered curve integrals will be defined. The situation is a bit
different for p-weak upper gradients, as the curve integrals need only be defined for
p-a.e. curve, and therefore, it is in fact enough to require that p-weak upper gradients
are measurable functions. There is no disadvantage in assuming only measurability,
since the concept of p-weak upper gradients would depend on the measure anyway
(as the p-modulus depends on the measure). The advantage is that some results
become more appealing (see, e.g., Björn–Björn [4]).

Since the p-modulus is subadditive, it follows that p-weak upper gradients share
the subadditivity property with upper gradients.
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Definition 2.4. The Dirichlet space on X, denoted by Dp(X), is the space of all
extended real-valued functions on X that are everywhere defined, measurable, and
have upper gradients in Lp(X).

If E is a measurable set, then we can consider E to be a metric space in its own
right (with the restriction of d and µ to E). Thus, the Dirichlet space Dp(E) is also
given by Definition 2.4.

The local Dirichlet space is defined analogously to the local space Lploc(X), and
hence we say that a function f on X belongs to Dp

loc(X) if for every x ∈ X there is
a ball B such that x ∈ B and f ∈ Dp(B).

Lemma 2.4 in Koskela–MacManus [27] asserts that if g is a p-weak upper gradient
of a function f , then for all q such that 1 ≤ q ≤ p, there is a decreasing sequence
{gj}

∞
j=1 of upper gradients of f such that ‖gj − g‖Lq(X) → 0 as j → ∞. This implies

that a measurable function belongs to Dp(X) whenever it (merely) has a p-weak
upper gradient in Lp(X).

If u ∈ Dp(X), then u has a minimal p-weak upper gradient, denoted by gu, which
is minimal in the sense that gu ≤ g a.e. on X for all p-weak upper gradients g of u.
This was proved for p > 1 by Shanmugalingam [31] and for p ≥ 1 by Hajłasz [18].
The minimal p-weak upper gradient gu is a true substitute for |∇u| in metric spaces.

One of the important properties of minimal p-weak gradients is that they are local
in the sense that if two functions u, v ∈ Dp(X) coincide on a set E, then gu = gv a.e.
on E. Moreover, if U = {x ∈ X : u(x) > v(x)}, then guχU + gvχX\U is a minimal
p-weak upper gradient of max{u, v}, and gvχU + guχX\U is a minimal p-weak upper
gradient of min{u, v}. These results are from Björn–Björn [2].

It is well-known that the restriction of a minimal p-weak upper gradient to an
open subset remains minimal with respect to that subset. As a consequence, the
results above about minimal p-weak upper gradients can be extended to functions in
Dp

loc(X) having minimal p-weak upper gradients in Lploc(X).
With the help of upper gradients, it is possible to define a type of Sobolev space

on the metric space X. This was done by Shanmugalingam [30]. We will, however,
use a slightly different (semi)norm. The reason for this is that when we define the
capacity in Definition 2.6, it will then be subadditive.

Definition 2.5. The Newtonian space on X is

N1,p(X) := {u ∈ Dp
loc(X) : ‖u‖N1,p(X) <∞},

where ‖ · ‖N1,p(X) is the seminorm defined by

‖u‖N1,p(X) =

(
ˆ

X

|u|p dµ+

ˆ

X

gpu dµ

)1/p

.

We emphasize the fact that our Newtonian functions are defined everywhere, and
not just up to equivalence classes of functions that agree almost everywhere. This is
essential for the notion of upper gradients to make sense.

The associated normed space defined by Ñ1,p(X) = N1,p(X)/ ∼, where u ∼ v if
and only if ‖u − v‖N1,p(X) = 0, is a Banach space (see Shanmugalingam [30]). Note

that some authors denote the space of the everywhere defined functions by Ñ1,p(X),
and then define the Newtonian space, which they denote by N1,p(X), to be the
corresponding space of equivalence classes.
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The local space N1,p
loc (X) and the space N1,p(E) when E is a measurable set are

defined analogously to the Dirichlet spaces.
Recall that a metric space is said to be proper if all bounded closed subsets are

compact. In particular, this is true if it is complete and the measure is doubling. If
X is proper and Ω is an open subset of X, then f ∈ Lploc(Ω) if and only if f ∈ Lp(Ω′)
for all open Ω′ ⋐ Ω. This is the case also for Dp

loc and N1,p
loc .

Various definitions of capacities for sets can be found in the literature (see, e.g.,
Kinnunen–Martio [24] and Shanmugalingam [30]). We will use the following defini-
tion.

Definition 2.6. The (Sobolev) capacity of a set E ⊂ X is

Cp(E) := inf
u
‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

Whenever a property holds for all points except for points in a set of capacity
zero, it is said to hold quasieverywhere (q.e.). Note that we follow the custom of
refraining from making the dependence on p explicit here.

Trivially, we have Cp(∅) = 0, and Cp(E1) ≤ Cp(E2) whenever E1 ⊂ E2. Further-
more, the proof in Kinnunen–Martio [24] for capacities for Hajłasz–Sobolev spaces
on metric spaces can easily be modified to show that Cp is countably subadditive,
that is, Cp

(⋃∞
j=1Ej

)
≤

∑∞
j=1Cp(Ej). Note that Cp is finer than µ in the sense that

the capacity of a set may be positive even when the measure of the same set equals
zero.

Shanmugalingam [30] showed that if two Newtonian functions are equal almost
everywhere, then they are in fact equal quasieverywhere. This result extends to
functions in Dp

loc(X).
For E ⊂ X, we let ΓE denote the family of all curves in X that intersect E.

Lemma 3.6 in Shanmugalingam [30] asserts that Modp(ΓE) = 0 whenever Cp(E) = 0.
This implies that two functions have the same set of p-weak upper gradients whenever
they are equal quasieverywhere.

To be able to compare boundary values of Dirichlet functions (and of Newtonian
functions), we introduce the following spaces.

Definition 2.7. The Dirichlet space with zero boundary values in A \ E, for
subsets E and A of X, where A is measurable, is

Dp
0(E;A) := {f |E∩A : f ∈ Dp(A) and f = 0 in A \ E}.

The Newtonian space with zero boundary values in A \ E, denoted by N1,p
0 (E;A), is

defined analogously. We let Dp
0(E) and N1,p

0 (E) denote Dp
0(E;X) and N1,p

0 (E;X),
respectively.

The assumption “f = 0 in A \E” can in fact be replaced by “f = 0 q.e. in A \E”
without changing the obtained spaces.

It is easy to verify that the function spaces that we have introduced are vector
spaces and lattices. This means that if both u and v belong to one of these spaces
and a, b ∈ R, then au+ bv, max{u, v}, and min{u, v} belong to the same space, and
furthermore, as a direct consequence, the same is true for u+, u−, and |u|.

The following lemma is useful for asserting that certain functions belong to a
Dirichlet space with zero boundary values.
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Lemma 2.8. Let E ⊂ X be measurable and let u ∈ Dp(E). If there exist two

functions u1, u2 ∈ Dp
0(E) such that u1 ≤ u ≤ u2 q.e. in E, then u ∈ Dp

0(E).

This was proved for Newtonian functions in open sets in Björn–Björn [3], and
with trivial modifications, it provides a proof for the version of the lemma that we
need in this paper. For the reader’s convenience, we give the proof here.

Proof. Let v1, v2 ∈ Dp(X) be such that v1|E = u1, v2|E = u2, and v1 = v2 = 0
outside E. Moreover, let g1, g2 ∈ Lp(X), be upper gradients of v1 and v2, respectively.
Let g ∈ Lp(E) be an upper gradient of u and define

v =

{
u in E,

0 in X \ E,
and g̃ =

{
g1 + g2 + g in E,

g1 + g2 in X \ E.

To complete the proof, it suffices to show that g̃, which belongs to Lp(X), is a p-weak
upper gradient of v.

Let E ′ ⊂ E with Cp(E
′) = 0 be such that u1 ≤ u ≤ u2 in E \ E ′. Let γ be

an arbitrary curve in X \ E ′ with endpoints x and y. Then Modp(ΓE′) = 0, so the
following argument asserts that g̃ is a p-weak upper gradient of v.

If γ ⊂ E \ E ′, then

|v(x)− v(y)| = |u(x)− u(y)| ≤

ˆ

γ

g ds ≤

ˆ

γ

g̃ ds.

On the other hand, if x, y ∈ X \ E, then

|v(x)− v(y)| = 0 ≤

ˆ

γ

g̃ ds.

Hence, by splitting γ into two parts, and possibly reversing the direction, we may
assume that x ∈ E \ E ′ and y ∈ X \ E. It follows that

|v(x)− v(y)| = |u(x)| ≤ |v1(x)|+ |v2(x)| = |v1(x)− v1(y)|+ |v2(x)− v2(y)|

≤

ˆ

γ

g1 ds+

ˆ

γ

g2 ds ≤

ˆ

γ

g̃ ds. �

Proposition 2.9. If Ω ⊂ X is open, then Dp
0(Ω) = Dp

0(Ω; Ω).

The proof is very similar to the proof of Lemma 2.8 (see, e.g., Proposition 2.39
in Björn–Björn [4] for a corresponding proof for Newtonian functions).

The following two results from Björn–Björn–Parviainen [7] (Lemma 3.2 and Corol-
lary 3.3), following from Mazur’s lemma (see, e.g., Theorem 3.12 in Rudin [29]), will
play a major role in the existence proof for the obstacle problem.

Lemma 2.10. Assume that 1 < p < ∞. If gj is a p-weak upper gradient of uj,
j = 1, 2, ..., and both {uj}

∞
j=1 and {gj}

∞
j=1 are bounded in Lp(X), then there exist

functions u, g ∈ Lp(X), convex combinations vj =
∑Nj

i=j aj,iui with p-weak upper

gradients g̃j =
∑Nj

i=j aj,igi, j = 1, 2, ..., and a subsequence {ujk}
∞
k=1, such that

(a) both ujk → u and gjk → g weakly in Lp(X) as k → ∞;
(b) both vj → u and g̃j → g in Lp(X) as j → ∞;
(c) vj → u q.e. as j → ∞;
(d) g is a p-weak upper gradient of u.
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Recall that a1v1 + ··· + anvn is said to be a convex combination of v1, ... , vn
whenever ak ≥ 0 for all k = 1, ... , n and a1 + ··· + an = 1.

Corollary 2.11. Assume that 1 < p < ∞. If {uj}
∞
j=1 is bounded in N1,p(X)

and uj → u q.e. on X as j → ∞, then u ∈ N1,p(X) and
ˆ

X

gpu dµ ≤ lim inf
j→∞

ˆ

X

gpuj dµ.

In general, the upper gradients of a function give no control over the function.
This is obviously so when there are no curves. Requiring a Poincaré inequality to
hold is one possibility of gaining such a control by making sure that there are enough
curves connecting any two points.

Definition 2.12. Let q ≥ 1. We say that X supports a (q, p)-Poincaré inequality

(or that X is a (q, p)-Poincaré space) if there exist constants CPI > 0 and λ ≥ 1
(dilation constant) such that

(2.2)

(
ˆ

B

|u− uB|
q dµ

)1/q

≤ CPI diam(B)

(
ˆ

λB

gp dµ

)1/p

for all balls B ⊂ X, all integrable functions u on X, and all upper gradients g of u.

In (2.2), we have used the convenient notation,

uB :=

ˆ

B

u dµ :=
1

µ(B)

ˆ

B

u dµ.

We write p-Poincaré inequality instead of (1, p)-Poincaré inequality for short, and if
X supports a p-Poincaré inequality, we say that X is a p-Poincaré space. By using
Hölder’s inequality, one can show that if X supports a (q, p)-Poincaré inequality,
then X supports a (q̃, p̃)-Poincaré inequality for all q̃ ≤ q and p̃ ≥ p. From the next
section on, we will assume that X supports a (p, p)-Poincaré inequality. Then we
have the following useful assertion which implies that a function can be controlled by
its minimal p-weak upper gradient. This was proved for Euclidean spaces by Maz′ya
(see, e.g., [28]), and later J. Björn [9] observed that the proof goes through also for
metric spaces. The following version is from Björn–Björn [4] (Theorem 5.53).

Theorem 2.13. (Maz′ya’s inequality) If X supports a (p, p)-Poincaré inequality,

then there exists a constant CMI > 0 such that
ˆ

2B

|u|p dµ ≤
CMI(diam (B)p + 1)µ(2B)

Cp(B ∩ S)

ˆ

2λB

gpu dµ,

whenever B ⊂ X is a ball, u ∈ N1,p
loc (X), and S = {x ∈ X : u(x) = 0}.

The following result from Björn–Björn [4] (Proposition 4.14) is also a useful
consequence of the (p, p)-Poincaré inequality.

Proposition 2.14. If X supports a (p, p)-Poincaré inequality and Ω ⊂ X is

open, then Dp
loc(Ω) = N1,p

loc (Ω).

3. The obstacle problem

In this section, we assume that 1 < p < ∞, that X is proper and supports a
(p, p)-Poincaré inequality with dilation constant λ, and that Ω ⊂ X is nonempty,
open, and such that Cp(X \ Ω) > 0.
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Kinnunen–Martio [25] defined an obstacle problem for Newtonian functions in
open sets in a complete p-Poincaré space with a doubling measure. They proved
that there exists a unique solution whenever the set is bounded and such that the
complement has positive measure and the set of feasible solutions is nonempty (The-
orem 3.2 in [25]). Shanmugalingam [30] had earlier solved the Dirichlet problem (i.e.,
the obstacle problem with obstacle ψ ≡ −∞).

Roughly, Kinnunen and Martio defined their obstacle problem as follows.

Definition 3.1. Let V be a nonempty bounded open subset of X with Cp(X \

V ) > 0. For ψ : V → R and f ∈ N1,p(V ), define

KB

ψ,f(V ) = {v ∈ N1,p(V ) : v − f ∈ N1,p
0 (V ) and v ≥ ψ q.e. in V }.

A function u is a solution of the KB

ψ,f(V )-obstacle problem if u ∈ KB

ψ,f(V ) and
ˆ

V

gpu dµ ≤

ˆ

V

gpv dµ

for all v ∈ KB

ψ,f(V ).

They required that µ(X\V ) > 0 and merely that v ≥ ψ a.e. instead of q.e., which
does not matter if the obstacle ψ is in Dp

loc(V ), since then v ≥ ψ a.e. implies that v ≥
ψ q.e. This follows from Corollary 3.3 in Shanmugalingam [30]; see also Corollary 1.60
in Björn–Björn [4]. However, the distinction may be important. For example, ifK is a
compact subset of V such that Cp(K) > µ(K) = 0, then the solution of the KB

χK ,0
(V )-

obstacle problem takes the value 1 on K, whereas the solution of the corresponding
obstacle problem defined by Kinnunen–Martio [25] is the trivial solution (because
their candidate solutions do not “see” this obstacle). Moreover, it is possible to
have no solution of the KB

ψ,f(V )-obstacle problem when there is a solution of the
corresponding obstacle problem defined in [25] (see, e.g., the discussion following
Definition 3.1 in Farnana [13]).

See also Farnana [13, 14, 15, 16] for the double obstacle problem, and Björn–
Björn [5] for the obstacle problem on nonopen sets.

Now we define the obstacle problem without the boundedness requirement.

Definition 3.2. Let V ⊂ X be nonempty, open, and such that Cp(X \ V ) > 0.

(Note that V is allowed to be unbounded.) For ψ : V → R and f ∈ Dp(V ), define

Kψ,f(V ) = {v ∈ Dp(V ) : v − f ∈ Dp
0(V ) and v ≥ ψ q.e. in V }.

We say that a function u is a solution of the Kψ,f (V )-obstacle problem (with obstacle

ψ and boundary values f) if u ∈ Kψ,f (V ) and
ˆ

V

gpu dµ ≤

ˆ

V

gpv dµ

for all v ∈ Kψ,f(V ). We let Kψ,f(Ω) be denoted by Kψ,f for short when V = Ω.

Observe that we only define the obstacle problem for V with Cp(X \ V ) > 0.
Otherwise the condition u− f ∈ Dp

0(V ) becomes empty, since then Dp
0(V ) = Dp(V ).

Note also that we solve the obstacle problem for boundary data f ∈ Dp(V ).
Because such a function is not defined on ∂V , we do not really have boundary values,
and hence the definition should be understood in a weak Sobolev sense.
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Remark 3.3. If f ∈ N1,p(V ) and V is bounded, then Proposition 2.7 in Björn–
Björn [5] asserts that Dp

0(V ) = N1,p
0 (V ), and hence we have Kψ,f(V ) = KB

ψ,f(V ).
Thus, Definition 3.2 is a generalization of Definition 3.1 to Dirichlet functions and to
unbounded sets.

The main result in this paper shows that the Kψ,f -obstacle problem has a unique
solution under the natural condition of Kψ,f being nonempty.

Theorem 3.4. Let ψ : Ω → R and let f ∈ Dp(Ω). Then there exists a unique

(up to sets of capacity zero) solution of the Kψ,f -obstacle problem whenever Kψ,f 6= ∅.

The standing assumption that X is proper is needed only in the end of the
existence part of the proof.

In the uniqueness part of the proof, we use the fact that Lp(Ω) is strictly convex.
Clarkson [11] introduced the notions of strict convexity and uniform convexity (the
latter being a stronger condition), and proved that all Lp-spaces, 1 < p < ∞, are
uniformly convex. A Banach space Y (with norm ‖ · ‖) is strictly convex if x = cy
for some constant c > 0 whenever x and y are nonzero and ‖x+ y‖ = ‖x‖+ ‖y‖. In
particular, x = y whenever ‖x‖ = ‖y‖ =

∥∥1
2
(x+ y)

∥∥ = 1.
The idea used in the uniqueness part of the proof comes from Cheeger [10].

Proof. (Existence) We start by choosing a ball B ⊂ X such that Cp(B \ Ω) > 0
and B ∩ Ω 6= ∅. Clearly, we have B ⊂ 2B ⊂ 3B ⊂ ··· ⊂ X =

⋃∞
t=1 tB. Let

I = inf
v

ˆ

Ω

gpv dµ,

where the infimum is taken over all functions in Kψ,f . Clearly, we have 0 ≤ I < ∞.
Let {uj}

∞
j=1 ⊂ Kψ,f be a minimizing sequence such that

Ij :=

ˆ

Ω

gpuj dµց I as j → ∞.

Let wj ∈ Dp(X) be such that wj = uj − f in Ω and wj = 0 outside Ω, j = 1, 2, ... .
We claim that both {wj}

∞
j=1 and {gwj

}∞j=1 are bounded in Lp(tB) for each t ≥ 1. To
show that, we first observe that gwj

≤ (guj + gf)χΩ a.e., and hence

‖gwj
‖Lp(X) ≤ ‖guj‖Lp(Ω) + ‖gf‖Lp(Ω) ≤ ‖gu1‖Lp(Ω) + ‖gf‖Lp(Ω) =: C ′ <∞.

Let t ≥ 1 be arbitrary and let S =
⋂∞
j=1{x ∈ X : wj(x) = 0}. Then

Cp(tB ∩ S) ≥ Cp(tB \ Ω) ≥ Cp(B \ Ω) > 0.

Maz′ya’s inequality (Theorem 2.13) asserts that there exists a constant CtB > 0 such
that

ˆ

2tB

|wj|
p dµ ≤ Cp

tB

ˆ

2λtB

gpwj
dµ.

This implies that we also have

(3.1) ‖wj‖Lp(tB) ≤ CtB‖gwj
‖Lp(X) ≤ CtBC

′ =: C ′
tB <∞,

and the claim follows.
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Consider the ball B. Lemma 2.10 asserts that we can find a function ϕ1 ∈ Lp(B)
and convex combinations

(3.2) ϕ1,j =

N1,j∑

k=j

a1,j,kwk ∈ Dp(X), j = 1, 2, ... ,

such that ϕ1,j → ϕ1 q.e. in B as j → ∞. Because ϕ1,j = 0 outside Ω, we must have
ϕ1 = 0 q.e. in B \ Ω, and hence we may choose ϕ1 such that ϕ1 = 0 in B \ Ω. Let
v1,j = f + ϕ1,j |Ω. Then

v1,j = f +

N1,j∑

k=j

a1,j,kwk|Ω =

N1,j∑

k=j

a1,j,k(f + wk|Ω) =

N1,j∑

k=j

a1,j,kuk ≥ ψ q.e. in Ω.

We also have

gv1,j ≤

N1,j∑

k=j

a1,j,kguk a.e. in Ω and gϕ1,j
≤

N1,j∑

k=j

a1,j,kgwk
a.e. on X.

A sequence of convex combinations of functions taken from a bounded sequence must
also be bounded, and therefore we can apply Lemma 2.10 repeatedly here. Hence,
for every n = 2, 3, 4, ... , we can find a function ϕn ∈ Lp(nB) such that ϕn = 0 in
nB \ Ω and convex combinations

(3.3) ϕn,j =

Nn,j∑

k=j

an,j,kϕn−1,k ∈ Dp(X), j = 1, 2, ... ,

such that ϕn,j → ϕn q.e. in nB as j → ∞. Let vn,j = f + ϕn,j|Ω. Then

vn,j =

Nn,j∑

k=j

an,j,k(f + ϕn−1,k|Ω) =

Nn,j∑

k=j

an,j,kvn−1,k ≥ ψ q.e. in Ω,

and also

gvn,j
≤

Nn,j∑

k=j

an,j,kgvn−1,k
a.e. in Ω and gϕn,j

≤

Nn,j∑

k=j

an,j,kgϕn−1,k
a.e. on X.

Let u = f + ϕ|Ω, where ϕ is the function on X defined by

ϕ(x) =

∞∑

n=1

ϕn(x)χnB\(n−1)B(x), x ∈ X.

We shall now show that u truly is a solution of the Kψ,f -obstacle problem. To do
that, we first establish that u ∈ Kψ,f , and then show that u is indeed a minimizer.
Because ϕ = u− f in Ω and ϕ = 0 outside Ω, it suffices to show that ϕ ∈ Dp(X) in
order to establish that u− f ∈ Dp

0(Ω) and u ∈ Dp(Ω).
Consider the diagonal sequences {vn,n}

∞
n=1 and {ϕn,n}

∞
n=1. Observe that the latter

is bounded in Lp(tB) for each t ≥ 1 since ‖ϕn,j‖Lp(tB) ≤ C ′
tB for all n and j, by (3.1),

(3.2), and (3.3).
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We claim that ϕn,n → ϕ q.e. on X as n → ∞. To prove that, we start by fixing
an integer n ≥ 1 and consider nB. Then

|ϕn+1 − ϕn| ≤ |ϕn+1 − ϕn+1,j|+ |ϕn+1,j − ϕn|

≤ |ϕn+1 − ϕn+1,j|+

Nn+1,j∑

k=j

an+1,j,k|ϕn,k − ϕn| → 0

q.e. in nB as j → ∞. Thus, ϕn+1 = ϕn q.e. in nB for n = 1, 2, ....
By definition, we have ϕ = ϕ1 in B. Now assume that ϕ = ϕn q.e. in nB for

some positive integer n. By definition also, we have ϕ = ϕn+1 in (n+ 1)B \ nB, and
because ϕn+1 = ϕn q.e. in nB, it follows that ϕ = ϕn+1 q.e. in (n + 1)B. Hence, by
induction, we have ϕ = ϕn q.e. in nB for n = 1, 2, ....

For n = 1, 2, ..., let En be the subset of nB where ϕn,j → ϕn = ϕ as j → ∞ and
let E =

⋃∞
n=1(nB \ En). By subadditivity, we have Cp(E) ≤

∑∞
n=1Cp(nB \ En) = 0.

Let x ∈ X \E be given. Clearly, x ∈ mB and ϕ(x) = ϕm(x) for some positive integer
m. Given ε > 0, choose J such that j ≥ J implies that

|ϕm,j(x)− ϕm(x)| < ε.

Assume that for some n ≥ m, we have |ϕn,j(x)− ϕm(x)| < ε for j ≥ J . Then

|ϕn+1,j(x)− ϕm(x)| ≤

Nn+1,j∑

k=j

an+1,j,k|ϕn,k(x)− ϕm(x)| < ε

for j ≥ J . By induction, it follows that |ϕn,j(x)− ϕm(x)| < ε for n ≥ m and j ≥ J ,
and hence, for n ≥ max{m, J}, we have

|ϕn,n(x)− ϕ(x)| = |ϕn,n(x)− ϕm(x)| < ε.

We conclude that ϕn,n → ϕ q.e. on X, and also that vn,n → u q.e. in Ω, as n→ ∞.
By using Jensen’s inequality, we can see that

ˆ

Ω

gpv1,j dµ ≤

ˆ

Ω

(N1,j∑

k=j

a1,j,kguk

)p

dµ ≤

N1,j∑

k=j

a1,j,k

ˆ

Ω

gpuk dµ ≤

ˆ

Ω

gpuj dµ

and

ˆ

X

gpϕ1,j
dµ ≤

ˆ

X

(N1,j∑

k=j

a1,j,kgwk

)p

dµ ≤

N1,j∑

k=j

a1,j,k

ˆ

Ω

(guk + gf)
p dµ

≤ 2p
N1,j∑

k=j

a1,j,k

ˆ

Ω

(gpuk + gpf) dµ ≤ 2p
ˆ

Ω

(gpuj + gpf) dµ.

Assume that for some positive integer n, it is true that
ˆ

Ω

gpvn,j
dµ ≤

ˆ

Ω

gpuj dµ and

ˆ

X

gpϕn,j
dµ ≤ 2p

ˆ

Ω

(gpf + gpuj ) dµ.
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Then

ˆ

Ω

gpvn+1,j
dµ ≤

ˆ

Ω

(Nn+1,j∑

k=j

an+1,j,kgvn,k

)p

dµ ≤

Nn+1,j∑

k=j

an+1,j,k

ˆ

Ω

gpvn,k
dµ

≤

Nn+1,j∑

k=j

an+1,j,k

ˆ

Ω

gpuk dµ ≤

ˆ

Ω

gpuj dµ

and

ˆ

X

gpϕn+1,j
dµ ≤

ˆ

X

(Nn+1,j∑

k=j

an+1,j,kgϕn,k

)p

dµ ≤

Nn+1,j∑

k=j

an+1,j,k

ˆ

X

gpϕn,k
dµ

≤ 2p
Nn+1,j∑

k=j

an+1,j,k

ˆ

Ω

(gpf + gpuk) dµ ≤ 2p
ˆ

Ω

(gpf + gpuj ) dµ.

By induction, and letting j = n, it follows that
ˆ

Ω

gpvn,n
dµ ≤

ˆ

Ω

gpun dµ and

ˆ

X

gpϕn,n
dµ ≤ 2p

ˆ

Ω

(gpf + gpun) dµ, n = 1, 2, ... .

Fix an integer m ≥ 1. Since {ϕn,n}
∞
n=1 and {gϕn,n

}∞n=1 are bounded in Lp(mB)
and ϕn,n → ϕ q.e. in mB as n → ∞, Corollary 2.11 asserts that ϕ ∈ N1,p(mB).
This implies that ϕ ∈ Dp

loc(X). Note that gϕ and gϕn,n
are minimal p-weak upper

gradients of ϕ and ϕn,n, respectively, with respect to mB. Hence, by Corollary 2.11
again, it follows that

ˆ

mB

gpϕ dµ ≤ lim inf
n→∞

ˆ

mB

gpϕn,n
dµ ≤ lim inf

n→∞

ˆ

X

gpϕn,n
dµ

≤ 2p lim inf
n→∞

ˆ

Ω

(gpf + gpun) dµ = 2p
ˆ

Ω

gpf dµ+ 2pI.

Letting m→ ∞ yields
ˆ

X

gpϕ dµ = lim
m→∞

ˆ

mB

gpϕ dµ ≤ 2p
ˆ

Ω

gpf dµ+ 2pI <∞,

and hence ϕ ∈ Dp(X). We conclude that u− f ∈ Dp
0(Ω) and u ∈ Dp(Ω).

Let An = {x ∈ Ω: vn,n(x) < ψ(x)} for n = 1, 2, ..., and let A =
⋃∞
n=1An. Then,

since vn,n → u q.e. in Ω as n → ∞, it follows that u ≥ ψ q.e. in Ω \ A. Because
vn,n ≥ ψ q.e. in Ω, we have Cp(An) = 0, and hence Cp(A) = 0 by the subadditivity
of the capacity. Thus, u ≥ ψ q.e. in Ω, and we conclude that u ∈ Kψ,f .

Proposition 2.14 asserts that f ∈ N1,p
loc (Ω), and hence f ∈ Lp(Ω′) for all open

Ω′ ⋐ Ω. Let

Ωt =
{
x ∈ tB ∩ Ω: inf

y
d(x, y) > δ/t

}
, 1 ≤ t <∞,

where the infimum is taken over all y ∈ ∂Ω and δ > 0 is chosen small enough so
that Ω1 6= ∅. Then we have Ω1 ⋐ Ω2 ⋐ ··· ⋐ Ω =

⋃∞
t=1Ωt. Moreover, {vn,n}

∞
n=1 is

bounded in Lp(Ωt), since

‖vn,n‖Lp(Ωt) ≤ ‖ϕn,n‖Lp(Ωt) + ‖f‖Lp(Ωt) ≤ C ′
tB + ‖f‖Lp(Ωt) <∞.
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Fix an integer m ≥ 1. Since {vn,n}
∞
n=1 and {gvn,n

}∞n=1 are bounded in Lp(Ωm),
vn,n → u q.e. in Ωm as n→ ∞, and gu and gvn,n

are minimal p-weak upper gradients
of u and vn,n, respectively, with respect to Ωm, by Corollary 2.11, it follows that
ˆ

Ωm

gpu dµ ≤ lim inf
n→∞

ˆ

Ωm

gpvn,n
dµ ≤ lim inf

n→∞

ˆ

Ω

gpvn,n
dµ ≤ lim inf

n→∞

ˆ

Ω

gpun dµ = I.

Letting m→ ∞ completes the existence part of the proof by showing that

I ≤

ˆ

Ω

gpu dµ = lim
m→∞

ˆ

Ωm

gpu dµ ≤ I.

(Uniqueness) Suppose that u′ and u′′ are solutions to the Kψ,f -obstacle problem.
We begin this part by showing that gu′ = gu′′ a.e. in Ω. Clearly, 1

2
(u′ + u′′) ∈ Kψ,f ,

and hence

‖gu′‖Lp(Ω) ≤ ‖g 1

2
(u′+u′′)‖Lp(Ω) ≤

∥∥1
2
(gu′ + gu′′)

∥∥
Lp(Ω)

≤ 1
2
‖gu′‖Lp(Ω) +

1
2
‖gu′′‖Lp(Ω) = ‖gu′′‖Lp(Ω) = ‖gu′‖Lp(Ω).

Thus, gu′ = gu′′ a.e. in Ω by the strict convexity of Lp(Ω).
Now we show that gu′−u′′ = 0 a.e. in Ω. Fix a real number c and let

u = max{u′,min{u′′, c}}.

The following shows that u ∈ Kψ,f . Clearly, u ∈ Dp(Ω). Furthermore, we have
u ≥ u′ ≥ ψ q.e. in Ω, and u− f ∈ Dp

0(Ω) by Lemma 2.8, since

u− f ≤ max{u′, u′′} − f = max{u′ − f, u′′ − f} ∈ Dp
0(Ω)

and u− f ≥ u′ − f ∈ Dp
0(Ω).

Let Uc = {x ∈ Ω: u′(x) < c < u′′(x)}. Then we have gu = 0 a.e. in Uc because
Uc ⊂ {x ∈ Ω: u(x) = c}. The minimizing property of gu′ then implies that

ˆ

Ω

gpu′ dµ ≤

ˆ

Ω

gpu dµ =

ˆ

Ω\Uc

gpu dµ =

ˆ

Ω\Uc

gpu′ dµ,

as gu = gu′ = gu′′ a.e. in Ω \ Uc. Hence, gu′ = gu′′ = 0 a.e. in Uc for all c ∈ R, and
since

{x ∈ Ω: u′(x) < u′′(x)} ⊂
⋃

c∈Q

Uc,

we have gu′ = gu′′ = 0 a.e. in {x ∈ Ω: u′(x) < u′′(x)}. Analogously, the same is true
for {x ∈ Ω: u′(x) > u′′(x)}, and hence

gu′−u′′ ≤ (gu′ + gu′′)χ{x∈Ω: u′(x)6=u′′(x)} = 0 a.e. in Ω.

Because u′ − u′′ = u′ − f − (u′′ − f) ∈ Dp
0(Ω), there exists w ∈ Dp(X) such that

w = u′ − u′′ in Ω and w = 0 outside Ω. We have gw = gu′−u′′χΩ = 0 a.e.

Let S̃ = {x ∈ X : w(x) = 0} and let t ≥ 1 be arbitrary. Then

Cp(tB ∩ S̃) ≥ Cp(tB \ Ω) ≥ Cp(B \ Ω) > 0.

Maz′ya’s inequality (Theorem 2.13) applies to w, and hence there exists a constant

C̃tB > 0 such that
ˆ

tB∩Ω

|u′ − u′′|p dµ ≤

ˆ

2tB

|w|p dµ ≤ C̃tB

ˆ

2λtB

gpw dµ = 0.

This implies that u′ = u′′ q.e. in tB ∩ Ω.
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Let Vm = {x ∈ mB ∩ Ω: u′(x) 6= u′′(x)}, m = 1, 2, ..., and let V =
⋃∞
m=1 Vm.

Then u′ = u′′ in Ω \ V . Since Cp(Vm) = 0 for all m, the subadditivity of the capacity
implies that Cp(V ) = 0, hence u′ = u′′ q.e. in Ω. We conclude that the solution of
the Kψ,f -obstacle problem is unique (up to sets of capacity zero). �

If v = u q.e. in Ω and u is a solution of the Kψ,f -obstacle problem, then so is v.
Indeed, v = u q.e. implies that gu is a p-weak upper gradient of v. Thus, v ∈ Dp(Ω)
and
´

Ω
gpv dµ ≤

´

Ω
gpu dµ. Clearly, we have v ≥ ψ q.e., and since Lemma 2.8 asserts

that v − f ∈ Dp
0(Ω), it follows that v ∈ Kψ,f .

The following criterion for the existence of a unique solution is easy to prove.

Proposition 3.5. If ψ, f ∈ Dp(Ω), then Kψ,f 6= ∅ if and only if (ψ − f)+ ∈
Dp

0(Ω).

Proof. Suppose that Kψ,f 6= ∅ and let v ∈ Kψ,f . Since (v − f)+ ∈ Dp
0(Ω) and

0 ≤ (ψ − f)+ ≤ (v − f)+ q.e. in Ω,

Lemma 2.8 asserts that (ψ − f)+ ∈ Dp
0(Ω).

Conversely, suppose that (ψ − f)+ ∈ Dp
0(Ω). Let v = max{ψ, f}. Then we have

v ∈ Dp(Ω), v − f = (ψ − f)+, and v ≥ ψ in Ω. Thus, v ∈ Kψ,f . �

The following comparison principle (for the version of the obstacle problem de-
fined in Kinnunen–Martio [25]) was obtained in Björn–Björn [3]. Their proof (with
trivial modifications) is valid also for our obstacle problem.

Lemma 3.6. Let ψj : Ω → R and fj ∈ Dp(Ω) be such that Kψj ,fj 6= ∅, and let

uj be a solution of the Kψj ,fj -obstacle problem for j = 1, 2. If ψ1 ≤ ψ2 q.e. in Ω and

(f1 − f2)+ ∈ Dp
0(Ω), then u1 ≤ u2 q.e. in Ω.

Proof. Let h = u1 − f1 − u2 + f2. Then h ∈ Dp
0(Ω) and

−(f1 − f2)+ − h− = −max{−(f2 − f1), 0} −max{−h, 0}

= min{f2 − f1, 0}+min{h, 0} ≤ min{f2 − f1, h} ≤ h.

Since −(f1 − f2)+ − h− ∈ Dp
0(Ω), Lemma 2.8 asserts that min{f2 − f1, h} ∈ Dp

0(Ω).
Let u = min{u1, u2}. Then u ∈ Dp(Ω), and because u2 ≥ ψ2 ≥ ψ1 q.e. in Ω, we

clearly have u ≥ ψ1 q.e. in Ω. Moreover, as u1 − f1 = u2 − f2 + h, we have

u− f1 = min{u1, u2} − f1 = min{u1 − f1, u2 − f1}

= min{u2 − f2 + h, u2 − f1} = u2 − f2 +min{h, f2 − f1}.

Hence, u− f1 ∈ Dp
0(Ω), and we conclude that u ∈ Kψ1,f1.

Let v = max{u1, u2}. Then v ∈ Dp(Ω) and v ≥ ψ2 q.e. in Ω. Because

v − f2 = max{u1 − f2, u2 − f2} = max{u1 − f2, u1 − f1 − h}

= u1 − f1 +max{f1 − f2,−h} = u1 − f1 −min{f2 − f1, h},

we see that v − f2 ∈ Dp
0(Ω), and hence v ∈ Kψ2,f2 .

Let E = {x ∈ Ω: u2(x) ≤ u1(x)}. Since u2 is a solution of the Kψ2,f2-obstacle
problem, we have

ˆ

Ω

gpu2 dµ ≤

ˆ

Ω

gpv dµ =

ˆ

E

gpu1 dµ+

ˆ

Ω\E

gpu2 dµ,
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which implies that
ˆ

E

gpu2 dµ ≤

ˆ

E

gpu1 dµ.

By using the last inequality, we see that
ˆ

Ω

gpu dµ =

ˆ

E

gpu2 dµ+

ˆ

Ω\E

gpu1 dµ ≤

ˆ

E

gpu1 dµ+

ˆ

Ω\E

gpu1 dµ =

ˆ

Ω

gpu1 dµ.

Since u ∈ Kψ1,f1 and u1 is a solution of the Kψ1,f1-obstacle problem, this inequality
implies that also u is a solution. Thus, u1 = u q.e. in Ω, and we conclude that u1 ≤ u2
q.e. in Ω. �

The following local property of solutions of the obstacle problem can be useful.
In some situations it may let us use results from the theory for bounded sets. This
is the case when proving Theorems 4.4 and 4.5.

Proposition 3.7. Let ψ : Ω → R and f ∈ Dp(Ω) be such that Kψ,f 6= ∅, and let

u be a solution of the Kψ,f -obstacle problem. If Ω′ ⊂ Ω is open, then u is a solution

of the Kψ,u(Ω
′)-obstacle problem. Moreover, if Ω′ ⋐ Ω, then u is a solution also of

the KB

ψ,u(Ω
′)-obstacle problem.

Proof. Let Ω′ ⊂ Ω be open. Clearly, u ∈ Kψ,u(Ω
′). Let v ∈ Kψ,u(Ω

′) be arbitrary.
To complete the first part of the proof, it is sufficient to show that

(3.4)

ˆ

Ω′

gpu dµ ≤

ˆ

Ω′

gpv dµ.

Let E = Ω \ Ω′ and extend v to Ω by letting v = u in E. Then v ≥ ψ q.e.
in Ω′ and v = u ≥ ψ q.e. in E. Furthermore, because v − u ∈ Dp

0(Ω
′), we have

v = (v − u) + u ∈ Dp(Ω) and v − f = (v − u) + (u − f) ∈ Dp
0(Ω), and hence we

conclude that v ∈ Kψ,f .
Since u is a solution to the Kψ,f -obstacle problem, we have

(3.5)

ˆ

Ω′

gpu dµ+

ˆ

E

gpu dµ =

ˆ

Ω

gpu dµ ≤

ˆ

Ω

gpv dµ =

ˆ

Ω′

gpv dµ+

ˆ

E

gpv dµ.

As u = v in E implies that gu = gv a.e. in E, we have
ˆ

E

gpv dµ =

ˆ

E

gpu dµ ≤

ˆ

Ω

gpu dµ <∞.

Subtracting the integrals over E in (3.5) yields (3.4).
For the second part, assume that Ω′ ⋐ Ω and let v ∈ KB

ψ,u(Ω
′) be arbitrary.

Clearly, v ∈ Kψ,u(Ω
′). The first part of the proof asserts that u is a solution of the

Kψ,u(Ω
′)-obstacle problem and therefore (3.4) holds. By Proposition 2.14, we have

u ∈ N1,p
loc (Ω), and hence u ∈ N1,p(Ω′). Thus, u ∈ KB

ψ,u(Ω
′) and the proof is complete.

�

There are many equivalent definitions of (super)minimizers in the literature (see
Proposition 3.2 in A. Björn [1]). The first definition for metric spaces was given by
Kinnunen–Martio [25]. We will follow Björn–Björn–Mäkäläinen–Parviainen [6], and
we also follow the custom of not making the dependence on p explicit in the notation.
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Definition 3.8. Let V ⊂ X be nonempty and open. We say that u ∈ N1,p
loc (V )

is a superminimizer in V if

(3.6)

ˆ

ϕ 6=0

gpu dµ ≤

ˆ

ϕ 6=0

gpu+ϕ dµ

holds for all nonnegative ϕ ∈ N1,p
0 (V ). Furthermore, u is said to be a minimizer in

V if (3.6) holds for all ϕ ∈ N1,p
0 (V ).

According to Proposition 3.2 in A. Björn [1], it is in fact only necessary to test
(3.6) with (all nonnegative and all, respectively) ϕ ∈ Lipc(V ).

As a direct consequence of Proposition 3.7 together with Proposition 9.25 in
Björn–Björn [4], we have the following result.

Proposition 3.9. If u is a solution of the Kψ,f -obstacle problem, then u is a

superminimizer in Ω.

4. Lsc-regularized solutions and p-harmonic solutions

In this section, we make the rather standard assumptions that 1 < p < ∞, that
X is a complete p-Poincaré space, and that µ is doubling. Moreover, we assume that
Ω ⊂ X is nonempty, open, and such that Cp(X \ Ω) > 0.

When µ is doubling, it is true that X is proper if and only if X is complete,
and also that X supports a (p, p)-Poincaré inequality if and only if X supports a p-
Poincaré inequality (the necessity follows from Hölder’s inequality, and the sufficiency
was proved in Hajłasz–Koskela [19]; see also Corollary 4.24 in Björn–Björn [4]). Thus,
the difference between the standing assumptions of this section and of the previous
is that here we make the additional assumption that µ is doubling.

Note that under these assumptions, Poincaré inequalities are self-improving in
the sense that X supports a q-Poincaré inequality for some q < p (this was proved
by Keith–Zhong [23]). Hence, in this section, we make the same assumptions as
Kinnunen–Martio [25], and we can therefore use Theorems 5.1 and 5.5 from [25].

Theorem 4.1. If ψ : Ω → R and f ∈ Dp(Ω) are such that Kψ,f 6= ∅, then there

exists a unique lsc-regularized solution of the Kψ,f -obstacle problem.

The lsc-regularization of a function u is the (lower semicontinuous) function u∗

defined by

u∗(x) := ess lim inf
y→x

u(y) := lim
r→0

ess inf
B(x,r)

u.

Proof. Theorem 3.4 asserts that there exists a solution u of the Kψ,f -obstacle
problem and that all solutions are equal to u q.e. in Ω. By Proposition 3.9, u is a
superminimizer in Ω, and hence by Theorem 5.1 in Kinnunen–Martio [25], we have
u∗ = u q.e. in Ω. Thus, u∗ is the unique lsc-regularized solution of the Kψ,f -obstacle
problem. �

The following comparison principle improves upon Lemma 3.6.

Lemma 4.2. Let ψj : Ω → R and fj ∈ Dp(Ω) be such that Kψj ,fj 6= ∅, and

let uj be the lsc-regularized solution of the Kψj ,fj -obstacle problem for j = 1, 2. If

ψ1 ≤ ψ2 q.e. in Ω and (f1 − f2)+ ∈ Dp
0(Ω), then u1 ≤ u2 in Ω.
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Proof. Lemma 3.6 asserts that u1 ≤ u2 q.e. in Ω, and since both u1 and u2 are
lsc-regularized, it follows that for all x ∈ Ω, we have

u1(x) = ess lim inf
y→x

u1(y) ≤ ess lim inf
y→x

u2(y) = u2(x). �

Definition 4.3. Let V ⊂ X be nonempty and open. We say that u ∈ N1,p
loc (V )

is p-harmonic in V if it is a continuous minimizer in V .

Kinnunen–Martio [25] proved that the solution u of their obstacle problem is
continuous in Ω and is a minimizer in the open set {x ∈ Ω: u(x) > ψ(x)} whenever
the obstacle ψ is continuous in Ω (Theorem 5.5 in [25]). This is true also for the
KB

ψ,f(Ω)-obstacle problem (see, e.g., Theorem 8.28 in Björn–Björn [4]), and also, as
we shall see, for our obstacle problem (that allows for unbounded sets).

Theorem 4.4. Let ψ : Ω → [−∞,∞) be continuous and let f ∈ Dp(Ω) be such

that Kψ,f 6= ∅. Then the lsc-regularized solution u of the Kψ,f -obstacle problem is

continuous in Ω and p-harmonic in the open set A = {x ∈ Ω: u(x) > ψ(x)}.

We also have the following corresponding pointwise result.

Theorem 4.5. Let ψ : Ω → [−∞,∞) and f ∈ Dp(Ω) be such that Kψ,f 6= ∅.

Then the lsc-regularized solution of the Kψ,f -obstacle problem is continuous at x ∈ Ω
if ψ is continuous at x.

Proof. Let x ∈ Ω be a given point where ψ is continuous. Let Ω′ ⋐ Ω be
open and containing x, and let u be the lsc-regularized solution of the Kψ,f -obstacle
problem. Proposition 3.7 asserts that u is a solution of the KB

ψ,u(Ω
′)-obstacle problem.

By Theorem 8.29 in Björn–Björn [4] (which is a special case of Corollary 3.4 in
Farnana [16]), it follows that u is continuous at x. �

Proof of Theorem 4.4. The first part follows directly from Theorem 4.5. Now
we prove that u is a minimizer in A. The set A is open since ψ and u are continuous.
Choose a ball B ⊂ A and let

An :=
{
x ∈ nB ∩ A : inf

y
d(x, y) > δ/n

}
, n = 1, 2, ... ,

where the infimum is taken over all y ∈ ∂A and δ > 0 is chosen small enough so
that A1 6= ∅. Clearly, A1 ⋐ A2 ⋐ ··· ⋐ A =

⋃∞
n=1An. For each n = 1, 2, ... ,

Proposition 3.7 asserts that u is a solution of the KB

ψ,u(An)-obstacle problem, and
therefore u is p-harmonic in An according to Theorem 5.5 in Kinnunen–Martio [25].
It follows that u is p-harmonic in A (see, e.g., Theorem 9.36 in Björn–Björn [4]). �

Due to Theorem 4.4, the following definition makes sense.

Definition 4.6. The p-harmonic extension HΩf of a function f ∈ Dp(Ω) to Ω
is the continuous solution of the K−∞,f(Ω)-obstacle problem.

Note that Definition 4.6 is a generalization of Definition 8.31 in Björn–Björn [4]
to Dirichlet functions and to unbounded sets (see Remark 3.3).

Since HΩf is the unique p-harmonic function in Ω such that f −HΩf ∈ Dp
0(Ω),

we have solved the Dirichlet problem for p-harmonic functions in open sets with
boundary values in Dp(Ω) taken in Sobolev sense. We conclude this paper with a
short proof of the following comparision principle.
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Lemma 4.7. If f1, f2 ∈ Dp(Ω) and (f1 − f2)+ ∈ Dp
0(Ω), then HΩf1 ≤ HΩf2 in

Ω.

The same conclusion holds if f1, f2 ∈ Dp(Ω) and f1 ≤ f2 q.e. on ∂Ω.

The first part is just a special case of Lemma 4.2.

Proof. We prove the second part. Clearly, (f1 − f2)+ ∈ Dp(Ω). Since f1 ≤ f2
q.e. on ∂Ω, we have (f1 − f2)+ = 0 q.e. on Ω \ Ω, and hence (f1 − f2)+ ∈ Dp

0(Ω; Ω).
Since Dp

0(Ω) = Dp
0(Ω; Ω) according to Proposition 2.9, the result follows from the

first part. �
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