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Abstract. We study uniform continuity of quasiconformal mappings onto δ-Gromov-hyperbolic

ϕ-John domains. The general ϕ-John case is also investigated.

1. Introduction

Gehring and Martio [4] have shown that if Ω′ ⊂ R
n is a uniform domain and

Ω ⊂ R
n is a John domain, then each quasiconformal mapping f : Ω′ → Ω is (globally)

Hölder continuous. Later, Koskela, Onninen and Tyson [20] enhanced the result by
removing the uniformity condition on the source domain Ω′, i.e. if Ω′ ⊂ R

n is a
bounded domain and if Ω ⊂ R

n is a John domain, then each quasiconformal mapping
f : Ω′ → Ω is (globally) Hölder continuous if Ω′ is equipped with the internal metric.

Recall that a bounded domain Ω ⊂ R
n is a John domain if there is a constant

C and a point x0 ∈ Ω so that, for each x ∈ Ω, one can find a rectifiable curve
γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0 and with

(1.1) Cd(γ(t), ∂Ω) ≥ l(γ([0, t]))

for each 0 < t ≤ 1. Alternatively, one may replace the right-hand side with |γ(t)−
x0| or with diam(γ([0, t])), see [22] and rectifiability of γ is not needed in these
two modifications to the above definition. Here John refers to F. John who used
this condition in his work on elasticity [18]; Martio and Sarvas [21] introduced this
terminology. The class of John domains includes all smooth domains, Lipschitz
domains and certain fractal domains (for example the snowflake domain).

Motivated by the recent studies on generalized quasidisks [8, 11], Guo and Koske-
la [9] have introduced the class of ϕ-John domains, which form a natural generaliza-
tion of John domains. Let ϕ be a continuous, increasing function with ϕ(0) = 0 and
ϕ(t) ≥ t for all t > 0. A bounded domain Ω is termed a ϕ-length John domain when
(1.1) is replaced with

(1.2) ϕ(Cd(γ(t), ∂Ω)) ≥ l(γ([0, t])).

The concepts of ϕ-dist and ϕ-diam John domains are defined analogously. A corre-
sponding curve γ is called a ϕ-dist (diam, length) John curve. In order to avoid com-
plicated formulations for our results, we assume in what follows that ϕ−1 is doubling
and that t 7→ t

ϕ−1(t)
is decreasing. Here doubling requires that ϕ−1(2t) ≤ Cϕ−1(t) for

some constant C and all t > 0. Our second condition is in practise harmless, but the
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doubling condition rules out the case of exponential exterior cusps. For ϕ(t) = t1/s,
s > 1, ϕ-length John domains are customarily called s-John domains [24].

To read our first main result below, recall that the internal metric dI on a domain
Ω ⊂ R

n is defined by taking the infimum of the lengths over all rectifiable curves in
Ω joining the desired pair of points. Observe that always

|f(x′)− f(y′)| ≤ dI(f(x
′), f(y′)).

Theorem 1.1. Let Ω′ ⊂ R
n be a bounded domain and let Ω ⊂ R

n be a domain
that is Gromov hyperbolic in the quasihyperbolic metric. Let f : Ω′ → Ω be a K-
quasiconformal mapping.

(1) If Ω is ϕ-length John, then f is uniformly continuous with a modulus of
continuity of the form

(1.3) dI(f(x
′), f(y′)) ≤ Cψ−1

(

C log(M/dI(x
′, y′))

)

,

where

(1.4) ψ(t) =

ˆ M

t

ds

ϕ−1(s)
.

(2) If Ω is ϕ-dist (diam) John and is bounded in the internal metric, then f is
uniformly continuous with a modulus of continuity of the form

(1.5) dI(f(x
′), f(y′)) ≤ Cψ−1

(

C log(M/dI(x
′, y′))

)

,

where

(1.6) ψ(t) =

ˆ M

t

sn−1ds

(ϕ−1(s))n
.

For a version of Theorem 1.1 in terms of growth conditions on the quasihyperbolic
metric, see [16]. Theorem 1.1 is not covered by those results (see e.g. [7, pp. 10–11])
and the observation that one can use the internal metric on the left-hand side in the
result in [16] goes back to Koskela and Nieminen [19].

The proof of Theorem 1.1 is based on a systematic study of ϕ-dist (diam, length)
John domains. In particular, it relies crucially on the fact established below that
the quasihyperbolic geodesics in a δ-Gromov-hyperbolic ϕ-John domain are ϕ-inner
uniform curves; see Section 3.1 below for the definition of δ-Gromov-hyperbolic do-
mains. In particular, the quasihyperbolic geodesics starting from the center in a
δ-Gromov-hyperbolic ϕ-John domain are ϕ-John curves. Since each domain that is
quasiconformally equivalent to a uniform domain is necessarily δ-Gromov hyperbolic
in the quasihyperbolic metric, this conclusion is of interest. Another important ingre-
dient is the use of geodesics towards bounds on the conformal capacity, see [14, 17, 20]
for more on this idea. The sharpness of the modulus estimates in Theorem 1.1 is
demonstrated in [9] in the planar case.

On the other hand, Theorem 1.1 does not hold if one drops the Gromov hyper-
bolicity assumption. In the model s-John case, by using an idea from [15], we obtain
our second main result.
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Theorem 1.2. Let Ω′ ⊂ R
n be a domain and Ω be an s-John domain with

s ∈ (1, 1 + 1
n−1

). Then each quasiconformal mapping f : Ω′ → Ω satisfies

(1.7) DI(f(x
′), f(y′)) ≤ C

(

log
1

CdI(x′, y′)

)− 1
s−1

for every pair x′, y′ of distinct points in Ω′, where DI is defined by taking the infimum
of the diameters over all rectifiable curves in Ω joining the desired pair of points.

The result in Theorem 1.2 is essentially sharp as the following two examples
indicates.

Example 1.3. [10, Theorem 1.2] There exist a bounded domain Ω′ ⊂ R
2, a

2-John domain Ω ⊂ R
2, and a quasiconformal mapping f : Ω′ → Ω such that f is

not uniformly continuous with respect to the metrics d(x, y) = |x − y| in Ω and dI
in Ω′.

Example 1.4. [10, Theorem 1.4] Let n ≥ 3. There exist a bounded domain Ω′ ⊂
R

n, a domain Ω ⊂ R
n that is s-John for any s ∈ (1+ 1

n−1
,∞), and a quasiconformal

mapping f : Ω′ → Ω such that f is not uniformly continuous with respect to the
metrics d(x, y) = |x− y| in Ω and dI in Ω′.

Theorem 1.2 is covered by a more general result, namely Theorem 6.1 below,
that deals with more general ϕ-John domains. However, both the formulation and
the proof of Theorem 6.1 are more complicated.

This paper is organized as follows. Section 2 contains notation and the ba-
sic definitions. In Section 3, we characterize δ-Gromov-hyperbolic ϕ-John domains.
Section 4 and 5 contain some auxiliary results. We prove a more general version of
Theorem 1.2 in Section 6. Finally, in Section 7, we prove our main results.

2. Notation and definitions

The closure of a set U ⊂ R
n is denoted U and the boundary ∂U . The open ball

of radius r > 0 centered at x ∈ R
n is denoted by B(x, r) and in the case of the unit

ball we omit the centre and the radius, writing B := B(0, 1). In the planar case, we
write D for the unit disk. The boundary of B(x, r) will be denoted by S(x, r) and in
the case of the boundary of the unit ball, writing S := S(0, 1). The symbol Ω always
refers to a domain, i.e. a connected and open subset of Rn.

A domain bounded by a Jordan curve will be named Jordan domain. Recall that
a set E is called linearly locally connected (LLC) if there is a constant C ≥ 1 so that

• (LLC-1) each pair of points in B(x, r)∩E can be joined by an arc in B(x, Cr)∩
E, and

• (LLC-2) each pair of points in E\B(x, Cr) can be joined by an arc in E \
B(x, r).

We need a weaker version of this condition, which was introduced in [11]. We say
that Ω is (ϕ, ψ)-locally connected ((ϕ, ψ)-LC) if

• (ϕ-LC-1) each pair of points in B(x, r) ∩ Ω can be joined by an arc in
B(x, ϕ(r)) ∩ Ω, and

• (ψ-LC-2) each pair of points in Ω\B(x, r) can be joined by an arc in Ω \
B(x, ψ(r)),
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where ϕ, ψ : [0,∞) → [0,∞) are smooth increasing functions such that ϕ(0) = ψ(0) =
0, ϕ(r) ≥ r and ψ(r) ≤ r for all r > 0.

We say that Ω is ϕ-dist(diam, length) inner uniform, if there exists a constant
C > 0 such that each pair of points x1, x2 ∈ Ω can be joined by a curve γ in Ω for
which

(2.1) ϕ(Cd(γ(t), ∂Ω)) ≥ min
i=1,2

S(γ([xj , γ(t)]))

and

(2.2) dI(x1, x2) ≥ CS(γ)

with S(γ) equal to |γ(1) − γ(0)|, diam(γ) and l(γ), respectively. If ϕ(t) = t, we
recover the definition of an inner uniform domain.

Next, recall that the quasihyperbolic metric kΩ in a domain Ω ( R
n is defined

to be
kΩ(x, y) = inf

γ
kΩ-length(γ),

where the infimum is taken over all rectifiable curves γ in Ω which join x to y and

kΩ-length(γ) =

ˆ

γ

ds

d(x, ∂Ω)

denotes the quasihyperbolic length of γ in Ω. This metric was introduced by Gehring
and Palka in [6]. A curve γ joining x to y for which kΩ-length(γ) = kΩ(x, y) is called
a quasihyperbolic geodesic. Quasihyperbolic geodesics joining any two points of a
proper subdomain of Rn always exists; see [5, Lemma 1]. Given two points x, y ∈ Ω,
we denote by [x, y] the quasihyperbolic geodesic that joins x and y.

For an increasing function τ : [0,∞) → [0,∞) with τ(0) = 0, we denote by H∞
τ

the Hausdorff τ -content: H∞
τ (E) = inf

∑

i τ(ri), where the infimum is taken over all
coverings of E ⊂ R

n with balls B(xi, ri), i = 1, 2, . . . . When τ(t) = ts for some
0 < s <∞, we write H∞

s = H∞
τ .

For disjoint compact sets E and F in the domain Ω, we denote by Cap(E, F,Ω)
the conformal n-capacity of the pair (E, F ):

Cap(E, F,Ω) = inf
u

ˆ

Ω

|∇u(x)|n dx,

where the infimum is taken over all continuous functions u ∈ W 1,n
loc (Ω) which satisfy

u(x) ≤ 0 for x ∈ E and u(x) ≥ 1 for x ∈ F .
For K ≥ 1, a homeomorphism f : Ω′ → Ω is said to be K-quasiconformal if

1

K
Cap(E, F,Ω′) ≤ Cap(f(E), f(F ),Ω) ≤ KCap(E, F,Ω′)

for all disjoint compact sets E, F ⊂ Ω′.
Let Ω be a bounded domain in R

n, n ≥ 2. Then W = W(Ω) denotes a Whitney
decomposition of Ω, i.e. a collection of closed cubes Q ⊂ Ω with pairwise disjoint
interiors and having edges parallel to the coordinate axes, such that Ω = ∪Q∈WQ.
Also, the diameters of Q ∈ W are in the set {2−j : j ∈ Z} and satisfy the condition

diam(Q) ≤ dist(Q, ∂Ω) ≤ 4 diam(Q).

For j ∈ Z we define
Wj = {Q ∈ W : diam(Q) = 2−j}.
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Note that when we write f(x) . g(x), we mean that f(x) ≤ Cg(x) is satisfied for
all x with some fixed constant C ≥ 1. Similarly, the expression f(x) & g(x) means
that f(x) ≥ C−1g(x) is satisfied for all x with some fixed constant C ≥ 1. We write
f(x) ≈ g(x) whenever f(x) . g(x) and f(x) & g(x).

3. Characterization of δ-Gromov-hyperbolic ϕ-John domains

In this section, we study the relation between ϕ-John domains and ϕ-inner uni-
form domains. The aim is to show the following two results.

Theorem 3.1. Let Ω ⊂ R
n be a bounded domain that is δ-Gromov-hyperbolic

in the quasihyperbolic metric. Then the following statements hold:

(1) Ω is ϕ-dist John if and only if it is ϕ-diam John.
(2) If Ω is ϕ-diam John, then Ω is η-length John for

(3.1) η(t) = C

ˆ ϕ(Ct)

0

(

s

ϕ−1(s)

)n−1

ds,

provided this integral converges.

The statement (2) is essentially sharp in the sense that η defined in (3.1) is best
possible.

Theorem 3.2. Let Ω ⊂ R
n be a bounded domain that is δ-Gromov-hyperbolic

in the quasihyperbolic metric. Then the following statements are equivalent:

(1) Ω is ϕ-dist (diam, length) John;
(2) Ω is ϕ-dist (diam, length) inner uniform.

Theorem 3.1 and Theorem 3.2 can be regarded as higher-dimensional generaliza-
tions of the corresponding results in [9].

3.1. δ-Gromov-hyperbolic domains. Following [2], we say that a domain
Ω ⊂ R

n is δ-Gromov-hyperbolic (in the quasihyperbolic metric), δ ≥ 0, if for all
triples of quasihyperbolic geodesics [x, y], [y, z], [z, x] in Ω every point in [x, y] is
within distance δ from [y, z] ∪ [z, x] in the quasihyperbolic metric. The property is
often expressed by saying that geodesic triangles in Ω are δ-thin.

It is well-known that if Ω ⊂ R
n is δ-Gromov-hyperbolic, then the Gehring–

Hayman inequality holds in Ω. More precisely, there exists a constant C ≥ 1 such
that for every curve γ in Ω with end points x and y we have that

(3.2) l([x, y]) ≤ Cl(γ).

Moreover, the following separation property holds: there exists a constant C ≥ 1
such that for each pair of points x, y ∈ Ω, for each z ∈ [x, y], and for every curve γ
in Ω joining x to y it holds that

(3.3) BI(z, Cd(z, ∂Ω)) ∩ γ 6= ∅.

Above, BI(z, s) denotes the internal ball of radius s, i.e. set of points in Ω with
internal distance less than s from z. In particular,

(3.4) B(z, Cd(z, ∂Ω)) ∩ γ 6= ∅.

See [2] for the above mentioned facts.
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3.2. Relation of ϕ-John domain and ϕ-inner uniform domain. Recall
that we have assumed in the introduction that the gauge function ϕ satisfies that
ϕ(t) ≥ t and ϕ−1 is doubling.

Lemma 3.3. [9, Lemma 3.5] Let C1 ≥ 1, C2 ≥ 1, and C3 ≥ 1 be given. There
exists a constant C, depending only on C0, C1, C2 and C3, such that

(3.5) C1ϕ(C2t) + C3t ≤ ϕ(Ct)

for all t > 0. Above, C0 is the doubling constant of ϕ−1.

The following result generalizes the well-known fact that bounded inner uniform
domains are John.

Lemma 3.4. Let Ω ⊂ R
n be a bounded domain. Then Ω is ϕ-dist (diam, length)

John if and only if each pair of points can be joined by a curve satisfying the ϕ-dist
(diam, length) inner uniformity condition (2.1). In particular, bounded ϕ-dist (diam,
length) inner uniform domains are ϕ-dist (diam, length) John.

Proof. We only prove the length case, since the other cases can be proved sim-
ilarly. Let us suppose first that Ω is ϕ-length John with center x0. Let a1, a2 ∈ Ω.
We may connect each ai to x0 by a ϕ-length John curve γi, i = 1, 2. The desired
curve γ that satisfies the ϕ-length inner uniformity condition (2.1) can be chosen as
the union of γi’s in the sense that γ(a1, x0) = γ1(a1, x0) and γ(x0, a2) = γ(x0, a2).

The proof of the reverse direction can be found in [9, Proof of Lemma 4.3]. Note
that the refered proof above only deals with the case n = 2, but it carries through in
arbitrary dimensions. �

Next, we show that a bounded ϕ-John domain is necessarily ϕ-LC-2.

Lemma 3.5. Let Ω ⊂ R
n be a bounded ϕ-dist John domain. Then Ω is ϕ-LC-2.

Proof. The proof is essentially contained in [9, Proof of Theorem 1.1(1)]. One
only needs to use Lemma 3.4 to replace the corresponding Lemma 4.2 used in [9,
Proof of Theorem 1.1, part 1] and observe that the dimension n = 2 plays no role in
the proof. �

Lemma 3.6. Let Ω ⊂ R
n be a bounded ϕ-length John domain. Then Ω is

ϕ-LC-2 with respect to the internal metric, i.e. for all z ∈ Ω, r > 0, any two points
in Ω\BI(z, ϕ(Cr)) can be joined in Ω\BI(z, r).

Proof. By Lemma 3.3, we only need to show that for any z ∈ Ω and r > 0, at
most one component of Ω\BI(z, r) meets Ω\BI(z, 3ϕ(2Cr)). Towards this end, let

a1 and a2 be two points in Ω\BI(z, 3ϕ(2Cr)) which belongs to different components

of Ω\BI(z, r). Lemma 3.4 implies that we may find a curve γ joining a1 and a2 such
that for any t ∈ (0, 1),

min {l(γ([0, t])), l(γ([t, 1]))} ≤ ϕ(Cd(γ(t), ∂Ω)).

Let y ∈ γ ∩ BI(z, r). Since dI(y, ai) ≥ 3ϕ(2Cr)− r, the ball

B

(

y,
ϕ−1(3ϕ(2Cr)− r)

C

)
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lies in Ω. Since B(z, r) cannot be contained in Ω, this implies that

ϕ−1(3ϕ(2Cr)− r)

C
≤ 2r

or equivalently

3ϕ(2Cr)− r ≤ ϕ(2Cr),

which contradicts the assumption that ϕ(t) ≥ t. �

Note that one cannot conclude from Lemma 3.4 that Ω is ϕ-diam (length) inner
uniform whenever it is ϕ-diam (length) John, since the diameter (length) of the curve
from Lemma 3.4 that satisfies the ϕ-diam (length) inner uniformity condition (2.1)
is not necessarily bounded from above by a (universal) constant times the internal
distance. In fact, if E is any compact subset of the line segment [0, e1] ⊂ R

2, then
D\E is John, but it is not necessarily inner uniform. On the other hand, this is the
case if Ω is additionally assumed to be δ-Gromov-hyperbolic.

Proposition 3.7. Let Ω⊂R
n be a bounded δ-Gromov-hyperbolic ϕ-dist (length)

John domain. Then quasihyperbolic geodesics in Ω are ϕ-diam (length) inner uniform
curves. In particular, Ω is ϕ-diam (length) inner uniform.

Proof. First assume that Ω is ϕ-dist (length) John and fix x, y ∈ Ω. We want to
show that the quasihyperbolic geodesic [x, y] in Ω is the desired ϕ-diam inner uniform
curve. Note first that by the Gehring–Hayman inequality (3.2) we only need to verify
the inner uniformity condition (2.1) for [x, y].

To this end, let z ∈ [x, y]. Note that Lemma 3.5 implies that Ω is ϕ-LC-2, i.e.
every two points in Ω\B(z, ϕ(Cd(z, ∂Ω))) can be joined in Ω\B(z, ϕ−1(C−1

1 ϕ(Cd(z,
∂Ω)))). On the other hand, the separation condition for [x, y] implies that there
exists a constant C ′ such that for every curve γ in Ω joining x to y it holds that

(3.6) B(z, C ′d(z, ∂Ω)) ∩ γ 6= ∅.

We claim that either x or y must be in B(z, ϕ(Cd(z, ∂Ω))) ∩ Ω, where C is chosen,
depending only on C1, C

′ and the doubling coefficient of ϕ, such that ϕ(Cd(z, ∂Ω)) ≥
C1ϕ(C

′d(z, ∂Ω)). If not, the ϕ-LC-2 condition would imply that x and y can be joined
in Ω outside the B(z, ϕ−1(C−1

1 ϕ(Cd(z, ∂Ω)))), which contradicts (3.6). This in return
implies that [x, y] satisfies (2.1).

The proof of the ϕ-length John case can be proceeded similarly and one only
needs to use the fact that Ω is ϕ-LC-2 with respect to the internal metric, which is
provided by Lemma 3.6. �

Proposition 3.8. Let Ω ⊂ R
n be a bounded δ-Gromov-hyperbolic ϕ-dist (diam,

length) John domain. Then quasihyperbolic geodesics starting from the center are
ϕ-dist (diam, length) John curves in Ω.

Proof. We only prove the dist case since the other two cases can be proved
similarly. Let λ = diamΩ

2
. Then there exists a constant C > 0, depending only on x0,

Ω and ϕ, such that B(x0,
ϕ−1(λ/2)

C
) ⊂ Ω. On the other hand, since Ω is ϕ-dist John,

diamΩ ≤ 2ϕ(Cλ). Let y ∈ Ω. By Proposition 3.7, [y, x0] is a ϕ-dist inner uniform

curve. Let x ∈ [y, x0]. We may assume that |x− y| > |x− x0|. If |x− x0| <
ϕ−1(λ/2)

2C
,
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then d(x, ∂Ω) ≥ ϕ−1(λ/2)
2C

. It follows that

ϕ(2Cd(x, ∂Ω)) ≥ λ/2 ≥
|x− y|

4
.

In the other case, |x− x0| ≥
ϕ−1(λ/2)

2C
. Then the inner uniformity gives that

ϕ(Cd(x, ∂Ω)) ≥ |x− x0| ≥
ϕ−1(λ/2)

2C
≥
ϕ−1(λ/2)

4Cλ
|x− y|.

The claim follows from Lemma 3.3. �

Proposition 3.7 can be proved without appealing to Lemma 3.5 if we know that
quasihyperbolic geodesics starting from the center are ϕ-John curves in Ω.

Lemma 3.9. Let Ω ⊂ R
n be a bounded δ-Gromov-hyperbolic ϕ-dist (diam,

length) John domain. If quasihyperbolic geodesics starting from the center are ϕ-
dist (diam, length) John curves in Ω , then quasihyperbolic geodesics joining any two
points in Ω are ϕ-dist (diam, length) inner uniform curves.

Proof. We only consider the length case since the proofs for the other cases are
similar. Let x, y ∈ Ω. We want to show that [x, y] is the desired ϕ-length inner
uniform curve.

To this end, let us fix a point ω ∈ [x, y] with ω 6= x, y. Then [x, x0], [y, x0]
and [x, y] form a quasihyperbolic triangle in Ω and hence there exists a point z ∈
[x, x0] ∪ [y, x0] such that

kΩ(ω, z) ≤ δ <∞.

As a consequence, there exists a constant M > 0, depending only on δ, such that

dI(ω, z) ≤M min
{

d(ω, ∂Ω), d(z, ∂Ω)
}

,

and d(ω, ∂Ω) ≥ 1
M
d(z, ∂Ω). If l([y, z]) & l([ω, z]), then the length-Gehring–Hayman

implies that

l([ω, y]) . l([ω, z]) + l([y, z]) . l([y, z]) ≤ ϕ(d(z, ∂Ω)) ≤ ϕ(Md(x, ∂Ω)).

If l([y, z]) . l([ω, z]), then the length-Gehring–Hayman implies that

l([ω, y]) . l([ω, z]) + l([y, z]) . l([ω, z]) . dI(ω, z) . d(ω, ∂Ω). �

Remark 3.10. Proposition 3.7, Proposition 3.8 and Lemma 3.9 give a short
positive answer to Heinonen’s question [13, Question 2], previously solved in [2].

We next show that in a bounded δ-Gromov-hyperbolic ϕ-length John domain,
the length of a quasihyperbolic geodesic can be controlled by its diameter.

Proposition 3.11. Let Ω ⊂ R
n be a bounded δ-Gromov-hyperbolic ϕ-length

John domain. Then

(3.7) l(γ) ≤ ϕ(C diam(γ))

for any quasihyperbolic geodesic γ in Ω, where C is a constant depending only on
the associated data.

Proof. Let γ = [x, y] ⊂ Ω be a quasihyperbolic geodesic joining x to y. Choose
z ∈ γ such that

l([x, z]) = l([z, y]).
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By Proposition 3.7, γ is a ϕ-length inner uniform curve and hence

min{l([x, u], l([u, y])} ≤ ϕ(Cd(u, ∂Ω))

for any u ∈ γ. We consider two cases.
Case 1: max{|x − z|, |y − z|} ≥ d(z, ∂Ω). Without loss of generality, we may

assume that |x− z| ≥ d(z, ∂Ω). Since diam([x, z]) ≥ |x− z|, we easily obtain that

ϕ(C diam([x, z])) ≥ ϕ(Cd(z, ∂Ω)) ≥ l([x, z]).

Therefore,

l(γ) = 2l([x, z]) ≤ 2ϕ(C diam(γ)).

Case 2: max{|x − z|, |y − z|} < d(z, ∂Ω). In this case, x, y ∈ B(z, d(z, ∂Ω))
and hence the line segments xz and zy are contained in Ω. The Gehring–Hayman
inequality (3.2) implies that

l([x, z]) ≤ C|x− z|.

Therefore,

l(γ) = 2l([x, z]) ≤ C diam(γ).

The claim then follows from Lemma 3.3. �

3.3. Proofs of Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1. Part (1) follows directly from Proposition 3.7 and
Lemma 3.4. Part (2) follows by an obvious modification to [9, Proof of Theorem 1.1,
part 2]. �

Proof of Theorem 3.2. The claim is a direct consequence of Lemma 3.4 and
Proposition 3.7. �

4. Estimates for the number of Whitney

cubes intersecting a ϕ-John shadow

Let Ω ⊂ R
n be a ϕ-John domain with center x0. Let W = W(Ω) be a Whitney

decomposition of Ω. Fix a set E ⊂ Ω. When ω ∈ E, we fix a ϕ-John curve Jϕ(ω, x0)
joining ω to x0 in Ω. We then define

P (ω) = {Q ∈ W : Q ∩ Jϕ(ω, x0) 6= ∅}.

Write

P (E) =
⋃

ω∈E

P (ω).

The ϕ-John shadow SE(Q) of a cube Q ∈ W on the set E is now defined by

(4.1) SE(Q) = {ω ∈ E : Q ∈ P (ω)}.

Lemma 4.1. Let Ω ⊂ R
n be a ϕ-dist John domain, and let W be a Whitney

decomposition of Ω. Then

diam(SE(Q)) ≤ 2ϕ(5C diam(Q))

for each Q ∈ W.
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Proof. Let ω ∈ S(Q). We may find a ϕ-dist John curve γ joining ω to x0 in Ω so
that γ(tQ) ∈ Q for some tQ ∈ [0, l(γ)]. It follows that

(4.2) d(ω,Q) ≤ d(ω, γ(tQ)) ≤ ϕ(Cd(γ(tQ), ∂Ω)) ≤ ϕ(5C diam(Q)).

The claim follows immediately from (4.2) and the triangle inequality. �

Lemma 4.2. Let Ω ⊂ R
n be a ϕ-dist John domain, and let W be a Whitney

decomposition of Ω. Let E ⊂ Ω. Then there exists a positive constant C, depending
only on n, such that for each j ∈ Z and ω ∈ E,

(4.3) #{Q ∈ Wj : ω ∈ SE(Q)} ≤ C
(ϕ(6C · 2−j)

2−j

)n

.

Proof. If ω ∈ SE(Q), then Q ∈ P (ω). By (4.2), we obtain that

(4.4) Q ⊂ B(ω, ϕ(6C diam(Q))).

Now, fix ω ∈ E, j ∈ Z and write

aj = #{Q ∈ Wj : ω ∈ SE(Q)} = #{Q ∈ Wj : Q ∈ P (ω)}.

Noticing that the cubes Q ∈ Wj are essentially disjoint, we have

aj ·2
−jn = C(n)

∑

Q∈Wj∩P (ω)

|Q| ≤ C(n)|B(ω, ϕ(6C diam(Q)))| ≤ C(n)ϕ(6C ·2−j)n. �

Lemma 4.2 can be improved if we add more assumptions for the function ϕ. More
precisely, we have the following result.

Lemma 4.3. Let Ω ⊂ R
n be a ϕ-length John domain, and let W be a Whitney

decomposition of Ω. Let E ⊂ Ω. If

ϕ−1(a · b) ≥ Cϕ−1(a) · ϕ−1(b)

and
∑∞

i=1
2i

ϕ−1(2i)
<∞, then

(4.5) #{Q ∈ ∪j
i=1Wi : ω ∈ SE(Q)} ≤ C

ϕ(2−j)

2−j
.

Proof. If ω ∈ SE(Q), then Q ∈ P (ω). Let γ be a ϕ-John curve joining ω to x0.
Let r = 2−j . Divide γ, starting from ω, into pieces of length ϕ(r), 2ϕ(r), . . . ,

2iϕ(r), . . . . This is a finite sequence since Ω is bounded. It is obvious that at most

C ϕ(r)
r

Whitney cubes with diameter greater than r intersect the first piece of γ.
Measuring in terms of arc length, the piece corresponding 2iϕ(r) is at least

ϕ(r) + 2ϕ(r) + · · ·+ 2i−1ϕ(r) ≈ 2iϕ(r)

away from ω, and so its distance to the boundary is at least

ϕ−1(2iϕ(r)) & ϕ−1(2i)r

by condition (1.2) for ϕ. Hence it is covered by no more than C 2iϕ(r)
ϕ−1(2i)r

Whitney cubes

that intersect γ. Thus the total number of Whitney cubes with diameter greater than
r does not exceed

C
(ϕ(r)

r
+

∞
∑

i=1

2iϕ(r)

ϕ−1(2i)r

)

.
ϕ(r)

r
. �
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Note that we have excluded the simplest John case, namely ϕ(t) ≈ t, in Lem-
ma 4.3. The reason is that Lemma 4.2 is already sharp in the John case. Of course,
one can easily adapt the estimate from the proof of Lemma 4.3 as well.

Corollary 4.4. Under the assumptions of Lemma 4.3, we have that

∑

Q∈
⋃j

i=1 Wi

µ(SE(Q)) ≤ C
ϕ(2−j)

2−j
µ(E)

for any Borel measure µ on ∂Ω.

Proof. Lemma 4.3 implies that

∑

Q∈
⋃j

i=1 Wi

µ(SE(Q)) =

ˆ

E

∑

Q∈
⋃j

i=1 Wi

χSE(Q)(ω) dµ(ω) ≤ C
ϕ(2−j)

2−j
µ(E). �

5. Growth of quasihyperbolic metric in ϕ-John domains

In this section, we provide upper bounds for quasihyperbolic metric in ϕ-John
domains.

Lemma 5.1. Let Ω ⊂ R
n be a ϕ-length John domain with center x0. Then

there exists a positive constant C, depending only on the data, such that

(5.1) kΩ(x, x0) ≤ C

ˆ ϕ(C diamΩ)

d(x,∂Ω)

1

ϕ−1(t)
dt+ 1.

Proof. Let x ∈ Ω. We may connect x and x0 with a ϕ-length John curve γ.
Suppose first that

l(γ(x, x0)) ≤
1

2
d(x, ∂Ω).

If y ∈ γ(x, x0), then

d(y, ∂Ω) ≥ d(x, ∂Ω)− l(γ(x, y)) ≥
1

2
d(x, ∂Ω)

and we obtain

kΩ(x, x0) ≤

ˆ

γ

ds

d(y, ∂Ω)
≤ 2

ˆ l(γ(x,x0))

0

ds

d(x, ∂Ω)
≤ 2

l(γ(x, x0))

d(x, ∂Ω)
≤ 1.

Next, we consider the case that

l(γ(x, x0)) >
1

2
d(x, ∂Ω).

Choose a point y0 ∈ γ such that

l(γ(x, y0)) =
1

2
d(x, ∂Ω).

If y ∈ γ(y0, x0), then

d(y, ∂Ω) ≥
1

C
ϕ−1(l(γ(x, y)))
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and hence

kΩ(x, x0) ≤

ˆ
1
2
d(x,∂Ω)

0

ds

d(x, ∂Ω)− s
+ C

ˆ l(γ)

1
2
d(x,∂Ω)

ds

ϕ−1(s)

≤ log 2 + C

ˆ ϕ(C diamΩ)

d(x,∂Ω)

ds

ϕ−1(s)
. �

An obvious modification of the above proof gives the following estimate.

Lemma 5.2. Let Ω ⊂ R
n be a ϕ-length inner uniform domain. Then there

exists a positive constant C, depending only on the data, such that

(5.2) kΩ(x, y) ≤ C

ˆ CdI (x,y)

min{d(x,∂Ω),d(y,∂Ω)}

1

ϕ−1(t)
dt+ 2

for each pair x, y of points in Ω.

Lemma 5.3. Let Ω ⊂ R
n be a δ-Gromov-hyperbolic ϕ-dist John domain with

center x0. Then there exists a positive constant C, depending only on the data, such
that

(5.3) kΩ(x, x0) ≤ C

ˆ CdI (x,x0)

d(x,∂Ω)

tn−1

(ϕ−1(t))n
dt.

Proof. By Proposition 3.8, quasihyperbolic geodesics starting from the center in
Ω are ϕ-dist John curves and note that the quasihyperbolic metric is comparable to
the number of Whitney cubes that intersect the quasihyperbolic geodesic. The proof
of [11, Lemma 3.7] applies with obvious modifications. �

6. Modulus of continuity of quasiconformal

mappings between general domains

We consider in this section the modulus of continuity of quasiconformal mappings
between more general domains in R

n.

Theorem 6.1. Let Ω′ ⊂ R
n be a domain and Ω be a ϕ-length John domain.

Suppose that there exist a constant λ > 0 such that the function g = (ϕ−1)λ is
concave and a constant µ such that ϕ(t) ≤ Ctµ for t ∈ (0, 1). Moreover, assume
p := λ

n−1
− 1 + µ > 0. If ϕ satisfies the assumptions in Lemma 4.3, then each

quasiconformal mapping f : Ω′ → Ω satisfies

(6.1) DI(f(x
′), f(y′)) ≤ CΛ−1

(

log
1

CdI(x′, y′)

)1−n

,

where Λ(t) =
(

ϕ−1(t)
)λ
tp(1−n).

Remark 6.2. One can easily formulate the corresponding result for a ϕ-dist
John domain using the estimates for the number of Whitney cubes in ϕ-dist John
domains established in Section 4.

Let us consider our model s-John case in Theorem 6.1. In this case, ϕ(t) = t1/s

for t ∈ (0, 1) and we may choose λ = µ = 1
s
. Then

p > 0 if and only if
1

s(n− 1)
− 1 +

1

s
> 0,
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which is further equivalent to

s < 1 +
1

n− 1
.

Note also that the assumptions in Lemma 4.3 are fulfilled and hence we recover
Theorem 1.2.

Theorem 6.3. Let Ω ⊂ R
n be a ϕ-length John domain with diameter one

satisfying all the assumptions of Theorem 6.1. Let Q0 denote the Whitney cube
containing the (John) center x0. Then there exists a constant C such that

Cap(E,Q0,Ω) ≥ CΛ(diamE)

for all continua E ⊂ Ω.

Proof. Let Ω ⊂ R
n, n ≥ 2, be a ϕ-length John domain with diameter one and

let E ⊂ Ω be a continuum. Let u ∈ W 1,n(Ω) be a test function for the n-capacity of
the pair (Q0, E).

For each x ∈ E, we define a subpath P ′(x) of P (x) as follows: P ′(x) = {Qs, . . . ,
Qf} consists of a chain of Whitney cubes, which begins with the terminal cube
Qs = Q(x) and continues back along the path P (x) until it reaches the first cube
Qf for which diam(Qf ) ≥

1
5
diamE. Since adjacent Whitney cubes Q1 and Q2 have

diamQ1 ≤ 5 diamQ2, we must have diamQ ≤ diamE for all Q ∈ P ′(x).
We claim that, without loss of generality, we can assume that uQ(x) ≥ 2/3 and

uQf
≤ 1/3. First, suppose that uQ(x) < 2/3 for some x ∈ E. Then it follows from

known results [15, Theorem 5.9] that

(6.2)

ˆ

Ω

|∇u(x)|n dx ≥
1

C

(

log
1

diamE

)1−n

.

Next suppose that the final cube Qf in the path P ′(x) satisfies uQf
> 1/3. Then

we have two cubes Q0 and Qf in the domain Ω and a continuous W 1,n-function u
satisfying u = 0 on Q0 and uQf

> 1/3. In this case, we may invoke [17, Theorem 6.1]
to deduce that

ˆ

Ω

|∇u(x)|n dx ≥
1

C

(

log
1

diamQf

)1−n

≥
1

C

(

log
1

diamE

)1−n

since diamQf ≥ 1
5
diamE.

Therefore, we may assume that uQ(x) ≥ 2/3 and uQf
≤ 1/3. In this situation,

a straightforward chaining argument involving the Poincaré inequality on Whitney
cubes along the path P ′(x) yields the estimate

(6.3) 1 ≤ C
∑

Q∈P ′(x)

diamQ −

ˆ

Q

|∇u(y)| dy.

Now choose a Frostman measure µ on the continuum E with growth function

g(r) =
(

ϕ−1(r)
)λ

, i.e. a Borel measure supported on E satisfying

(6.4) µ(E ∩ B(x, r)) ≤ g(r)

for all balls B(x, r) and

µ(E) ≥
1

C(n)
H∞

g (E).
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Since g is concave by assumptions, we further have

(6.5) µ(E) ≥
1

C(n)
g(diamE).

Integrating (6.3) over the set E with respect to the Frostman measure µ and
applying Hölder’s inequality, we see that

µ(E) ≤ C

ˆ

E

∑

Q∈P ′(x)

(
ˆ

Q

|∇u(y)|n dy

)1/n

dµ(x).

We now interchange the order of summation and integration to deduce that

µ(E) ≤ C
∑

Q∈W,diamQ≤diamE

µ(SE(Q))

(
ˆ

Q

|∇u(y)|n dy

)1/n

.

Applying Hölder’s inequality again leads to

µ(E) ≤ C

(

∑

Q∈W,diamQ≤diamE

µ(SE(Q))
n/(n−1)

)
n−1
n
(

∑

Q∈W

ˆ

Q

|∇u(y)|n dy

)1/n

≤ C

(

∑

Q∈W,diamQ≤diamE

µ(SE(Q))
n/(n−1)

)
n−1
n (
ˆ

Ω

|∇u(y)|n dy

)1/n

.

(6.6)

We require an estimate for terms of the form

∑

Q∈W,diamQ≤diamE

µ(SE(Q))
1+δ

with δ = 1
n−1

, which we give in the following lemma.

Lemma 6.4. Let Ω be a ϕ-length John domain in R
n with diameter one.

Suppose that µ is a Borel measure on R
n which satisfies the growth condition

µ(B(x, r)) ≤ g(r). Then there exists a constant C such that

∞
∑

j=j0

∑

Q∈Wj

µ(SE(Q))
1+δ ≤ Cµ(E)2−j0p,

with j0 ≤ C log(1/ diamE) so that diamQ ≤ diamE implies that Q ∈ Wj for some
j ≥ j0.

By Lemma 6.4 and (6.6),

µ(E)n ≤ Cµ(E)n−12−j0p(n−1)

ˆ

Ω

|∇u|n.

It follows that
ˆ

Ω

|∇u|n ≥ Cµ(E)2−j0p(1−n) ≥ C
(

ϕ−1(diamE)
)λ

· (diamE)p(1−n). �
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Proof of Lemma 6.4. The growth condition on µ implies that

∑

Q∈W,diamQ≤diamE

µ(SE(Q))
1+δ ≤

∞
∑

j=j0

∑

Q∈Wj

µ(SE(Q))µ(SE(Q))
δ

≤
∞
∑

j=j0

∑

Q∈Wj

µ(SE(Q))g(diamSE(Q))
δ

≤
∞
∑

j=j0

∑

Q∈Wj

µ(SE(Q))g
(

Cϕ(diamQ)
)δ

≤ C

∞
∑

j=j0

∑

Q∈Wj

(2−j)λδµ(SE(Q)).

Set aj =
∑

Q∈Wj
µ(SE(Q)) and let Aj = a1+ · · ·+aj . We apply summation by parts

to obtain
∞
∑

j=j0

(2−j)λδaj ≤
∞
∑

j=j0

(

(2−j)λδ − (2−j−1)λδ
)

Aj .

Corollary 4.4 implies that Aj ≤ C ϕ(2−j)
2−j µ(E) for each j and so

∑

Q∈W,diamQ≤diamE

µ(SE(Q))
1+δ ≤ Cµ(E)

∞
∑

j=j0

(

(2−j)λδ − (2−j−1)λδ
)ϕ(2−j)

2−j

≤ Cµ(E)
∞
∑

j=j0

2−jp ≤ Cµ(E)2−j0p,

by our assumptions in Theorem 6.1. �

Proof of Theorem 6.1. This follows directly from Theorem 6.3 and the arguments
used in the beginning of the proof of Theorem 1.1 below; see also [16, Proof of
Theorem 1.1]. �

7. Proofs of the main results

Proof of Theorem 1.1. Let Ω ⊂ R
n be a bounded δ-Gromov-hyperbolic ϕ-

length John domain with center x0. Since Ω is bounded, we may scale Ω to have
diameter one. Let W(Ω) be a Whitney decomposition of Ω. Fix a Whitney cube
F = Q0 ∈ W(Ω) with center x0 and let F ′

0 = f−1(F ). Since F = Q0 is a Whitney
cube, 3

2
Q0 ⊂ Ω. Let F ′ = f−1(3

2
Q0). By elementary properties of quasiconformal

mappings, there exists τ = τ(n,K) > 0 so that the set of points x ∈ R
n with

dist(x, F ′
0) ≤ τ diamF ′

0 is contained in F ′.
Let x, y ∈ Ω′. Note that f is automatically Hölder continuous in the internal

metric as a map from the compact subset F ′ ⊂ Ω with the Euclidean (hence also the
internal) metric into Ω; the Hölder data depends only on n,K and dist(f−1(x0), ∂Ω

′).
Thus we may assume that either x or y is in Ω′\F ′; without loss of generality let this
be the case for x.

Next, note that if dI(x, y) & τ diamF ′
0, then

(7.1)
dI(f(x), f(y))

dI(x, y)α
≤ C

M

(diamF ′
0)

α
. 1
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for any choice of α. Thus it suffices to verify (1.3) in the case dI(x, y) ≤
1
2
τ diamF ′

0 .
dist(x, F ′

0). Let [f(x), f(y)] be the quasihyperbolic geodesic in Ω that connects f(x)
and f(y). Write E ′ = f−1([f(x), f(y)]). Then diamE ′ . dI(x, y) ≤

1
2
τ diamF ′

0. A
simple calculation shows that diamE ′ ≤ 1

2
τ diamF ′

0 <
1
2
dist(E ′, F ′

0). A fundamental
property of the conformal capacity states that in this case

(7.2) Cap(E ′, F ′
0,Ω

′) ≤ C

(

log
dist(E ′, F ′

0)

diamE ′

)1−n

.

Now we need to estimate Cap([f(x), f(y)], F,Ω) from below. Let us consider the
quasihyperbolic triangle

[x0, f(x)] ∪ [f(x), f(y)] ∪ [f(y), x0].

Let z be the midpoint of [f(x), f(y)] with respect to arc length. Since Ω is δ-Gromov-
hyperbolic, we find ω in the union of the other two sides of the triangle so that
kΩ(z, ω) ≤M and dI(z, ω) ≤Md(z, ∂Ω), where we may assume that M ≥ 1. Assume,
without loss of generality that ω ∈ [f(y), x0].

Suppose first that d(z, ∂Ω) ≤ 1
4a2M

l([f(x), f(y)]), where a is the constant from
the Gehring–Hayman inequality (3.2). Then an elementary computation shows that
necessarily

l([f(y), ω]) ≥
1

4a
l([f(x), f(y)]).

Using Proposition 3.8 and Lemma 5.1, we conclude that

kΩ(z, x0) ≤ kΩ(z, ω) + kΩ(ω, x0) ≤M + C

ˆ l([f(y),x0]

l([f(x),f(y))/4a

ds

ϕ−1(s)
+ 1

≤ C ′

ˆ l([f(y),x0]

l([f(x),f(y))/4a

ds

ϕ−1(s)
,

where the last inequality follows from the reductions in our first paragraph.
Suppose then that d(z, ∂Ω) ≥ 1

4a2M
l([f(x), f(y)]). Using Lemma 5.1 for [z, x0],

we conclude that

kΩ(z, x0) ≤

ˆ l([z,x0])

l([f(x),f(y)])/4a2M

ds

ϕ−1(s)
+ 1.

Now the ϕ-length John assumption together with Proposition 3.8 implies that
l([z, x0]), l([f(y), x0] ≤ M ′ for some M ′ <∞. Since ϕ−1 is doubling, we thus conclude
from the previous two paragraphs that

kΩ(z, x0) ≤ C ′′

ˆ M ′

l([f(x),f(y)])

ds

ϕ−1(s)
.

Let u be an admissible function for Cap([f(x), f(y)], F,Ω). Let Qz be the Whit-
ney cube that contains z and we study two cases. First, we assume that |uQz

| < 2
3
.

Then necessarily |uF − uQz
| ≥ 1

3
> 0. It follows from a standard chaining argument

involving the Poincaré inequality on Whitney cubes that
ˆ

Ω

|∇u|ndx & kΩ(x0, z)
1−n,
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see e.g. [16, p. 28]. Next, we assume that uQz
≥ 2

3
. Note that u|E ≤ 0, where

E = [f(x), f(y)] ∩Qz, and that diamE ≥ diamQz, one easily deduces that
ˆ

Ω

|∇u|ndx & 1,

see [17]. Therefore

(7.3) Cap([f(x), f(y)], F,Ω) &

(

ˆ M ′

l([f(x),f(y)])

ds

ϕ−1(s)

)1−n

.

The desired estimate in the ϕ-length John case follows by combining (7.2) and (7.3).
For the ϕ-dist John case we argue analogously, replacing length by distance in

the definition of z. The only substantial change is that, in the estimate for kΩ(z, x0),
we apply Lemma 5.3 to conclude that

kΩ(z, x0) ≤ C̃

ˆ M ′

l([f(x),f(y)])

sn−1 ds

(ϕ−1(s))n
.

This gives the desired estimate by the above argument. �

Proof of Theorem 1.2. The proof relies on the arguments contained in [12]. We
present the details here for completeness.

Note that we only need a capacity estimate of the form as in Theorem 6.3,

i.e. Cap(E,Q0,Ω)
1

(n−1)(s−1) ≥ C diamE for all continua E ⊂ Ω. To this end, let
u ∈ C∞(Ω) be a test function. Let W = W(Ω) be a Whitney decomposition of Ω.
Let Qi, i = 1, . . . , m be those Whitney cubes that intersect E. It is clear that

diamE ≤
m
∑

i=1

diamQi.

Fix one such Whitney cube Qi0 and let xi0 be its center. Fix s ∈ (1, 1 + 1
n−1

) and

∆ > 0 small so that (s−1)(n−1)+∆ ≤ 1. As before, we may assume that uQi0
≥ 1

2
.

Let Qj
i0
, j = 1, . . . , k be the Whitney cubes in P (xi0) with Qk

i0
= Qi0 . The chaining

argument involving Poincaré inequality gives us the similar estimate

1 .

k
∑

j=1

diamQj
i0
−

ˆ

Qj
i0

|∇u(y)| dy.

Hölder’s inequality implies

1 .

(

k
∑

j=0

r
(1−κ)n/(n−1)
j

)(n−1)/n( k
∑

j=0

rκn−n
j

ˆ

Qj
i0

|∇u|n

)1/n

,

where rj = diamQj
i0

and κ = s+n−1−∆
sn

. Using Lemma 4.3, one can easily conclude

k
∑

j=0

r
(1−κ)n/(n−1)
j < C.
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Indeed, the number of ri with 2−(j+1) ≤ ri ≤ 2−j does not exceed C2j(s−1)/s, and
hence

k
∑

i=0

r
(1−κ)n/(n−1)
i ≤ C

∞
∑

j=0

2j(s−1)/s2−j(1−κ)n/(n−1) = C

∞
∑

j=0

2−j ∆
s(n−1) < C.

Therefore,

(7.4)

k
∑

j=0

rκn−n
j

ˆ

Qj
i0

|∇u|n ≥ C,

where the constant C depends only on n, ∆ and the constant from s-John condition.
By the s-John condition Crj ≥ |xi0 − y|s, for y ∈ Qj

i0
, and since κn − n < 0

according to our choice, we obtain

rκn−n
j . |xi0 − y|s(κn−n)

for y ∈ Qj
i0
. For y ∈ Qi

i0
∩ (2j+1Qi0\2

jQi0), we have |xi0 − y| ≈ 2jrk and hence for
such y,

(7.5) rκn−n
i . (2jrk)

s(κn−n).

Combining (7.4) with (7.5) leads to

1 .

k
∑

j=0

rκn−n
j

ˆ

Qj
i0

|∇u|n . (rk)
s(κn−n)

ˆ

Qi0

|∇u|n

+

| log rk|
∑

j=0

(2jrk)
s(κn−n)

ˆ

(2j+1Qi0
\2jQi0

)∩Ω

|∇u|n

.

| log rk|+1
∑

l=0

(2lrk)
s(κn−n)

ˆ

2lQi0
∩Ω

|∇u|n.

On the other hand,

| log rk|+1
∑

l=0

(2lrk)
∆ < r∆k

| log rk|+1
∑

l=−∞

2l∆ < C.

Comparing the above two estimates, we conclude that there exists an l such that

(2lrk)
∆ . (2lrk)

s(κn−n)

ˆ

2lQi0
∩Ω

|∇u|n.

It follows that,
ˆ

Ω∩2lQi0

|∇u|n & (2lrk)
s(n−κn)+∆.

In other words, there exists an Rx ≥ d(x, ∂Ω)/2 with

(
ˆ

Ω∩B(x,Rx)

|∇u|n
)

1
(n−1)(s−1)+∆

& Rx.
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Applying the Vitali covering lemma to the covering {B(x,Rx)}x∈E of the set E, we
can select pairwise disjoint balls B1, . . . , Bk, . . . such that E ⊂

⋃∞
i=1 5Bi. Let ri

denote the radius of the ball Bi. Then

diamE ≤
∞
∑

i=1

diam 5Bi = 5
∞
∑

i=1

ri .
∞
∑

i=1

(
ˆ

Ω∩Bi

|∇u|n
)

1
(n−1)(s−1)+∆

The desired capacity estimate follows by noticing the elementary inequality

∑

i

api .

(

∑

i

ai

)p

, p ≥ 1.

�
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