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Abstract. A degree c rotation set in [0, 1] is an ordered set {t1, . . . , tq} such that there is a
positive integer p such that cti(mod 1) = ti+p(mod q) for i = 1, . . . , q. The rotation number of the
set is defined to be p

q . Goldberg has shown that for any rational number p
q ∈ (0, 1) there is a unique

quadratic rotation set with rotation number p
q . This result was used by Goldberg and Milnor to

study Julia sets of quadratic polynomials [8].
In this work, we provide an alternate proof of Goldberg’s result which employs symbolic dynam-

ics. We also deduce a number of additional results from our method, including a characterization
of the values of the elements of the rotation sets.

1. Introduction

Let f be a complex polynomial in one variable and let z0 be a fixed point of f .
Then z0 ∈ K(f), the filled-in Julia set of f . Define the rational type T0 of z0 to be
the set of all rational angles θ, such that the external dynamic ray of angle θ lands
at z0. The fixed-point portrait of f , denoted by P (f), is the set of all such Tj, where
Tj is the rational type of the fixed point zj of f .

The above terminology was developed by Goldberg and Milnor in [8] as a way
of classifying polynomials of degree two or higher with connected Julia set. Their
main theorem establishes when a given fixed-point portrait is that of a critically
preperiodic polynomial, that is, a polynomial whose critical points are all strictly
preperiodic.

Central to the results of Goldberg and Milnor is the notion of a rotation set
(see Section 2), which Goldberg defines in [7]. The main theorem of Goldberg’s
paper establishes that a rotation set is uniquely determined by its rotation number
and deployment sequence. The quadratic case of this theorem, relating to rotation
sets under the doubling map, takes a particularly elegant form: for rational number
p
q
∈ (0, 1) there is a unique quadratic rotation set with rotation number p

q
.

Goldberg’s proof relies heavily on geometric arguments. It is noteworthy, how-
ever, that Goldberg’s result can be stated entirely without reference to complex
dynamics, or any sort of geometric interpretation. As such, it is logical to seek an
alternate proof which dispenses with this additional machinery. Our goal in this note
is to provide a proof of Goldberg’s main theorem on quadratic rotation sets using
purely symbolic arguments. We also show that such an approach can simplify some
of the auxiliary results in Goldberg and Milnor’s paper in the degree two case.
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2. The doubling map, rotation sets and the main theorem

Let t ∈ R/Z. Define the doubling map on R/Z as D(t) = 2t(mod 1). Let
t ∈ R/Z; we define the (forward) orbit of t under D as OrbD(t) :=

⋃
n≥0D

◦n(t). It is
easy to see that OrbD(t) is finite if and only if t is rational. We will say that a point t0
is periodic if there is a positive integer q such that D◦q (t0) = t0, and if t0 is periodic
we will let the period of t0 be the smallest such q, and say that t0 is q-periodic. The
orbit of such a point consists of q periodic points, each of period q, and is called a
cycle of period q. Note that D(t) has one fixed point at t = 0, or, equivalently, t = 1.
The following proposition is well known and its proofs and applications are plentiful,
for example, see [3, 5, 9].

Proposition 1. Let a, b ∈ Z+ with a < b. Then t0 = a
b
is periodic if and only if

b is odd.

Note that if t0 = a
2nr

where r is odd then D◦n(t0) is periodic. Let t0 be q-periodic.
Define the ordered orbit of t0, denoted by

−−→
OrbD (t0), as the set of all elements of

OrbD (t0) written in increasing order, that is,
−−→
OrbD (t0) = {t1, t2, t3, . . . , tq} where

each ti ∈ OrbD(t) and t1 < t2 < t3 < · · · < tq. We will say that
−−→
OrbD (t0) =

{t1, t2, t3, . . . , tq} is a rotation set if there exists a fixed positive integer p < q such
that for each ti, D (ti) = t(i+p)mod q. We will refer to the rational number p

q
as the

rotation number of the rotation set. To illustrate, let us note that if we take t0 = 1
5
,

we have

(1) OrbD

(
1

5

)
=

{
1

5
,
2

5
,
4

5
,
3

5

}
,
−−→
OrbD

(
1

5

)
=

{
1

5
,
2

5
,
3

5
,
4

5

}
.

Since D(t1) = D(1
5
) = 2

5
= t2 while D(t2) = D(2

5
) = 4

5
= t4, we see that

−−→
OrbD

(
1
5

)
is not a rotation set. As a matter of fact, the reader may want to verify that there
exists no rotation set whose elements have denominator 5. On the other hand, let us
take t0 = 5

31
. Then

(2) OrbD

(
5

31

)
=

{
5

31
,
10

31
,
20

31
,

9

31
,
18

31

}
,
−−→
OrbD

(
5

31

)
=

{
5

31
,

9

31
,
10

31
,
18

31
,
20

31

}
.

It may now easily be checked that
−−→
OrbD

(
5
31

)
is a rotation set with rotation

number 2
5
. As another example, note that

−−→
OrbD

(
1
31

)
is a rotation set with rotation

number 1
5
. It is a worthwhile and somewhat illuminating exercise to find the rotation

sets for rotation numbers 3
5
and 4

5
. Clearly, then, some rational values give rise to

rotation sets, while others do not. A consequence of our work below is a charac-
terization, in terms of binary expansions, of which values yield rotation sets. For
tj, tk ∈ {t1, t2, t3, . . . , tq}, we define γ(tj, tk) = minm>0(j + m)mod q = k to be the
forward distance between indices of tj, tk. The following proposition helps justify the
terms rotation set and rotation number.

Proposition 2. Let t0 be q-periodic. The following are equivalent.

(i)
−−→
OrbD (t0) = {t1, t2, t3, . . . , tq} is a rotation set.

(ii) For any tj, tk ∈ {t1, t2, t3, . . . , tq}, γ(D(tj), D(tk)) = γ(tj, tk).

We omit the straightforward proof. The following is a key characterization of
rotation sets.



Rotation numbers and symbolic dynamics 229

Proposition 3. Let t0 be q-periodic. Then
−−→
OrbD (t0) = {t1, t2, t3, . . . , tq} is a

rotation set if and only if tq − t1 < 1
2
.

We will give a simple proof of this result in the following section. We are now
ready to state our main theorem, which was given as a special case of Theorem 7 in
[7].

Theorem 1. Let p, q ∈ Z+ with p and q relatively prime, and p < q. Then there
exists a unique rotation set whose rotation number is p

q
.

The remainder of this paper will be devoted to proving this theorem and related
discussions. This result allows us to refer to such a set as Rot2

(
p
q

)
. We will call this

the p
q
-rotation set of degree 2.

Interest in this result has arisen at least partially due to its importance in complex
dynamics. In [8], Goldberg and Milnor used rotation sets to study fixed points of
quadratic polynomials. Given a quadratic polynomial with connected Julia set, a
fixed point of f is rationally visible if it is the landing point of an external ray with
rational angle. Goldberg and Milnor proved that a rationally visible fixed point is
either hit by the 0-ray, or by the set of all rays whose angles are the elements of a
quadratic rotation set. For example, the Julia set of the polynomial e(2πi)

2
5 z + z2 is

shown in Figure 1 below. The fixed point 0 is rationally visible, and the angles of
the rays landing at 0 are the elements of the rotation set given in (2).

Figure 1. The Julia set of e(2πi)
2
5 z + z2. Note the angles of the external rays landing at the

origin are the elements of Rot2
(
2
5

)
. Letting R1 be the ray of angle 5

31 , R2 the ray of angle 9
31 and so

on, every application of the complex map rotates the five external rays, mapping each Ri to Ri+2;
after five iterations, all five external rays return to their original position.

3. Binary string interpretations

We begin with the proof of Proposition 3.

Proof of Proposition 3. Suppose first that tq ≥ t1 + 1/2. Then tq ≥ 1/2 and
t1 ≤ 1/2, so that D(t1) = 2t1 ≤ 2tq − 1 = D(tq). This violates (ii) from Proposition
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2, since γ(tq, t1) = 1, and the only way that we could have γ(D(tq), D(t1)) = 1 with
D(tq) ≥ D(t1) is if D(tq) = tq, D(t1) = t1. Thus, {t1, t2, t3, . . . , tq} is not a rotation
set. Conversely, suppose tq < t1+1/2. For t′, t′′ ∈ [0, 1), let I(t′, t′′) be [t′, t′′] if t′ ≤ t′′

and {t ∈ [0, 1); t ≥ t′ or t ≤ t′′} if t′ > t′′. Let tj, tk ∈ {t1, t2, t3, . . . , tq}, and set m =
γ(tj, tk). Then A = {tj, t(j+1)mod q, . . . , t(j+m−1)mod q, tk} is a cyclicly ordered set, and
I(tj, tk) ∩ {t1, t2, t3, . . . , tq} = A. It is clear that D(A) = {D(tj), D(t(j+1)mod q), . . . ,
D(t(j+m−1)mod q), D(tk)} is cyclicly ordered as well. Furthermore, since tq − t1 < 1/2,
D is injective on [t1, tq], so that I(D(tj), D(tk))∩{t1, t2, t3, . . . , tq} = D(A). It follows
that γ(D(tj), D(tk)) = m = γ(tj, tk), and thus {t1, t2, t3, . . . , tq} is a rotation set by
(ii) of Proposition 2. �

We begin our efforts towards the goal of proving Theorem 1 by recalling that
periodic points under D can be expressed as rational numbers with odd denomina-
tors. It will be convenient for our purposes to express fractions as repeating binary
decimals. The following well known proposition characterizes the binary expansions
of rational numbers with odd denominators. Varying versions, proofs and examples
of this proposition may be found in several symbolic dynamics articles, such as [1] or
[2]. The proof is included to further motivate the subsequent discussion.

Proposition 4. Let a
b
be a rational number in [0, 1) with GCD(a, b) = 1. Then

the binary expansion of a
b
is of the form .SSSSS . . ., where S is a finite block of 0

and 1’s if and only if b is odd.

Proof. Consider a rational number of the form c
d

= .SSSSS . . ., with q denoting
the length of the string S. Then the binary expansion of (2q− 1) c

d
is S. We conclude

that a
b
being of the form .SSSSS . . . is equivalent to being equal to a rational number

with denominator equal to 2q−1 for some integer q, which is equivalent to b dividing
2q − 1. It is clear that this can only occur if b is odd. To show sufficiency, we must
show that any arbitrary odd b divides 2q − 1, for some q. To see that this must be
so, note that we can find m > n such that 2m ≡ 2n (mod b). 2 is always invertible in
the ring Z/bZ when b is odd, so we can conclude that 2m−n ≡ 1 (mod b), and thus
b|(2m−n − 1). �

This proposition shows that we may reformulate the discussion of rotation sets
in terms of binary strings. It should also be noted that, in the symbolic dynamics
context, the binary expansion of points in [0, 1) defines a factor map from Σ∗2 onto
the circle. Let Σ∗2 be the space of repeating one-sided infinite binary sequences. That
is, every X ∈ Σ∗2 can be realized as the concatenation SSSSS . . ., where S is a finite
block of 0 and 1’s. We will write S = 1a10b11a20b2 . . . 1ak0bk to signify the string
formed by a1 1’s followed by b1 0’s, followed by a2 1’s, etc. Let σ be the usual left
shift map on Σ∗2, given by σ (x1x2x3 . . .) = x2x3x4 . . .. To every X ∈ Σ∗2 we will
associate the finite string SX = x1x2x3...xq of length q, where SX is the shortest
possible repeating block of X. Conversely, given a finite binary string S, let XS be
the periodic binary sequence given by the concatenation SSS.... Let S and T be
two different strings of length q. Then we will say that S is cyclically equivalent to
T if S is a cyclic permutation of T , or equivalently if there exists a p < q such that
σp (XT ) = XS. In this case we will write S ∼ T , and we will denote the equivalence
class of S under this relation by [S]. We will call the corresponding sequences XS

and XT cyclically equivalent as well, and similarly denote the equivalence class of
such sequences [XS] or [XT ]. Let Σ̂∗2 denote the space of equivalence classes in Σ∗2.
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For any finite string S, set M(S) = .SSS . . ., that is, M(S) is the rational
number whose binary expansion consists of a decimal point following by infinitely
repeated copies of S. For example, M(101) = .101101101 . . . = 5

7
. In general, if the

length of S is q then M(S) can be expressed as a fraction with denominator 2q − 1.
Likewise, for X ∈ Σ∗2 let M(X) = M(SX). Given [X] ∈ Σ̂∗2, let Xmax denote the
maximal element of [X], that is, the member of [X] such that M(Xmax) ≥M(Y ) for
all Y ∈ [X]. Let Xmin be the minimal element of [X], defined analogously. Let the
width of the class [X] be defined to be d(Xmax, Xmin) = M(Xmax) −M(Xmin). We
should note here that we are implicitly appealing to the fact that the lexicographic
ordering of sequences in Σ∗2 corresponds to geometric ordering on [0, 1). We will call
[X] admissible if d(Xmax, Xmin) < 1

2
. Let Cp

q be the set of all equivalence classes of
the form [XS], where S is a binary string of length q containing p 1’s. Proposition
3 reveals the following to be simply a restatement of Theorem 1 in the language of
binary strings.

Theorem 2. Let p
q
∈ [0, 1] be a rational number. Then Cp

q contains a unique
admissible equivalence class [X].

Note that it is not assumed here that GCD(p, q) = 1, although it will be shown
in the next theorem that it is enough to consider only that case. We will see in
what follows that our proof gives somewhat more information about the admissible
equivalence class than is stated in Theorem 2. Call two strings S and T converses
of each other if they are each equal to the other with its digits reversed; in other
words, S read left to right is equal to T read right to left. So, for example, 01001 and
10010 are converses of each other. A string which is its own converse will be called a
palindrome. An example of this would be 10101. For a finite binary string S let the
density of S be defined to be p

q
, where q is the length of S and p is the number of 1’s

in S. The following is immediate from the methods we will use to prove Theorem 2.

Theorem 3. Let p
q
∈ (0, 1). Let [X] be the unique admissible equivalence class

in Cp
q which is guaranteed by Theorem 2. Suppose that Xmax =x1x2 . . . xq and

Xmin =y1y2 . . . yq. Then the following hold.

i) x1 = 1, xq = 0, y1 = 0, yq = 1, and xi = yi for 2 ≤ i ≤ q − 1.
ii) SXmax and SXmin

are converses, or equivalently, x2x3 . . . x(q−1) is a palindrome.
iii) If [XS] ∈ Cnp

nq for any positive integer n is admissible, then S = T n with
[XT ] the admissible class in Cp

q ; that is, S is the concatenation of n copies of
a string of length q containing p 1’s corresponding to the unique admissible
element in Cp

q . Thus, for any rational p
q
∈ [0, 1], with p and q relatively prime,

there is a unique admissible equivalence class in Σ̂∗2 with density p
q
, and this

can be found in Cp
q .

This theorem allows us to prove information about the geometry of a rotation set.
Making the obvious identification between R/Z and the circle T, of circumference
1, we see Proposition 3 guarantees that a rotation set, Rot2(p/q), is located entirely
in an arc of length less than a half. By combining part (i) and (ii) of this theorem,
we see the shortest arc containing Rot2(p/q) is of length 1

2
− 1

2q−1 . Indeed, in binary
form SXmax = 1P0 and SXmin

= 0P1, for where P a palindrome of length q−2, giving
M(Xmax)−M(Xmin) = .01q−101q−1 . . . = 1

2
− 1

2q−1 .
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Furthermore, a rotation set partitions T into a disjoint series of arcs; namely
the connected components of T\Rot2(p/q). Indeed, given two adjacent elements,
ti, ti+1 ∈ Rot2(p/q), with indices reduced mod q, these arcs are just the intervals
Vi := I(ti, ti+1). The length of Vi is hence given by l(Vi) = (ti+1 − ti) for i =
1, . . . , q − 1, and l(Vq) = 1 + t1 − tq. We then have

Proposition 5. The arc of greatest length is Vq, and its forward image under
doubling, Vp, is the arc of shortest length. Moreover, the length of Vi is given by

l(Vi) =
2n−1

2q − 1
mod 1,

where i = np(mod q) and 1 ≤ n ≤ q.

Proof. Since M(Xmax) −M(Xmin) = .01q−101q−1 . . ., it follows Vq has the com-
plementary length of .10q−110q−1 . . .. Since any ti ∈ Rot2(p/q) can be written of the
form ti = D◦n(tq) for some n, it follows l(Vi) = 2nl(Vq) mod 1. The lengths of the
Vi’s are thus the elements of Rot2(1/q), the largest of which is l(Vq) = .10q−110q−1 . . .
and the smallest of which is its image under doubling, l(Vp) = .0q−110q−11 . . .. �

We recall that Goldberg and Milnor [8] use rotation sets to study fixed points
of quadratic polynomials. Given a polynomial f(z) = z2 + c with connected Julia
set, a fixed point of f is rationally visible if it is the landing point of an external
ray with rational angle. Goldberg and Milnor prove a rationally visible fixed point is
either hit by the 0-ray, or by all of the elements of a rotation set Rot2(

p
q
). These rays

partition C into sectors. The sectors have angular width equal to the lengths of the
Vi given above. Furthermore, Goldberg and Milnor proved that the sector of smallest
angular width contains the critical value c and the rays bounding this sector are the
only two parameter rational rays to land at c. This smallest sector in our notation is
Vp = (tp, tp+1). The critical point, 0, is contained in sector of largest angular width,
corresponding in our notation to Vq = (tq, t1).

4. Proofs of Theorems 2 and 3

The cases p
q

= 0 and p
q

= 1 are trivial, so we will assume p
q
∈ (0, 1). We proceed

by induction on q. The case q = 2 is trivial. Assume validity for all values less
than q. Let q = hp + v be the Euclidean representation of q, such that h and v are
nonnegative integers with 0 ≤ v < p. Let A = 10h−1 and a = 10h. We will proceed
through several lemmas.

Lemma 1. If an equivalence class [X] does not contain a representative formed
by concatenating A’s and a’s, then [X] is not admissible.

Proof. First let us note that we can choose a representative X such that SX starts
with 1, and can therefore be written SX = 10r110r2 . . . 10rp ,where r1, . . . , rp are non-
negative integers(which may be 0). We are therefore trying to prove that rj = h−1 or
h for all j. Notice that if rj < h for all j, the string would have length less than or equal
to hp which is less than q, and if rj ≥ h for all j, the string would have length greater
than or equal to (h + 1)p which is greater than q. This observation gives us a lower
bound on Xmax and an upper bound on Xmin, as follows. By rotating if necessary we
can assume that r1 ≤ h − 1, so that M(Xmax) ≥ .10h−110q−(h+1)10h−110q−(h+1) . . ..
Similarly, we can rotate so that r1 ≥ h, rotate one more place to obtain a string be-
ginning with h 0’s, and then M(Xmin) ≤ .0h1q−h0h1q−h . . .. Notice that these bounds
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for M(Xmax) and M(Xmin) have a distance less than 1/2 between them, but just
barely. Now, suppose that there is some rj greater than or equal to h + 1. Then
in the same manner we can bound M(Xmin) ≤ .0h+11q−(h+1)0h+11q−(h+1) . . ., which
is no longer within 1/2 of the lower bound for M(Xmax), and [X] is therefore not
admissible. Likewise, if there is some rj less than h − 1, we obtain M(Xmax) ≥
.10h−210q−h10h−210q−h . . ., which is no longer within 1/2 of the bound for M(Xmin),
and [X] is not admissible. Thus, rj = h or h− 1 for all j. �

We see from this that we need only consider equivalence classes which contain
an element formed by concatenating A’s and a’s. Suppose [X] is such an equivalence
class. SXmax must begin with a 1, and so can be written as SXmax = Y1Y2...Yp, where
each of the Yj’s is either A or a. On the other hand, SXmin

must begin with a 0. To
express Xmin in a similar fashion let Ac = 0h−11 and let ac = 0h1. If Xmin ended in
a 0, then we would have D(M(Xmin)) < M(Xmin), which contradicts the choice of
Xmin as the minimal representative. Thus, SXmin

ends in a 1, and can therefore be
expressed as a concatenation of Ac’s and ac’s. It is evident that we need to be able
to determine how the distance function behaves on strings in the form of SXmax and
SXmin

. If Yj = A(resp. a) we will use the notation Yjc to denote Ac(resp. ac).

Lemma 2. Suppose that SY = Y1Y2...Yp, where each of the Yj’s is either A or a,
and SZ = Z1Z2...Zp, where each of the Z’s is either Ac or ac. Then d(Y, Z) < 1/2 if
and only if one of the following conditions holds:

i) Y1c = Z1.
ii) Y1 = a, Z1 = Ac.
iii) Y1 = A, Z1 = ac, and Yj = a, Zj = Ac, where j is the smallest index greater

than 1 for which Y c
j 6= Zj.

Proof. Since M(Y ) > M(Z), d(Y, Z) < 1/2 if, and only if, M(Z) > M(Y )−1/2.
Suppose that Y and Z satisfy (iii), so SY = 10h−1Y2 . . . Yp, SZ = 0h1Z2 . . . Zp. Now,
Y2...Yp can be written as 1Y c

2 . . . Y
c
p−10

r, where r is either h or h−1. We are therefore
comparing 10h−11Y c

2 . . . Y
c
p−10

r with 0h1Z2 . . . Zp. Note thatM(10h−11Y c
2 . . . Y

c
p−10

r)−
1/2 = M(0h1Y c

2 . . . Y
c
p−10

r). Since Yj = ac and Zj = Ac, we see that M(0h1Y c
2 . . .

Y c
p−10

r) < M(0h1Z2 . . . Zp), so that d(Y, Z) < 1/2. That (i) and (ii) imply d(Y, Z) <
1/2 is similar, but simpler. The only other case to consider is when Y1 = A, Z1 = ac,
and Yj = A and Zj = ac, where j is the smallest index greater than 1 for which
Y c
j 6= Zj. The same argument shows that in this case d(Y, Z) > 1/2. Note that if
Y c
1 6= Z1, then there must be a j > 1 such that Y c

j 6= Zj, since the number of A’s
present in Y must equal the number of Ac’s in Z, due to the fact that Y and Z have
the same length. We have therefore exhausted all cases. This completes the proof of
Lemma 2. �

There is a very convenient symmetry to Lemma 2 which is based on the fact that
Lemma 2 is essentially a statement about binary strings on symbols, one of which, A,
is greater than the other, a. The statement of the theorem holds if we replace every
A or Ac with a 1 and every a or ac with a 0. Let us isolate this as a new lemma,
the proof of which we omit due to the fact that it is essentially identical to that of
Lemma 2.

Lemma 3. Suppose that Y = Y1Y2 . . . Yp, where each of the Yj’s is either 1
or 0, and Z = Z1Z2 . . . Zp, where each of the Z’s is either 1 or 0. Suppose that
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M(Y ) > M(Z). Then d(Y, Z) < 1/2 if and only if one of the following conditions
holds:

i) Y1 = Z1.
ii) Y1 = 1, Z1 = 0, Yj = 0 and Zj = 1, where j is the smallest index greater than

1 for which Yj 6= Zj.

We are now ready to complete the proof of Theorem 1. We can apply the in-
duction hypothesis to obtain a unique admissible equivalence class [W ] in Cv

p . Let
W = W1 . . .Wp, where each Wj is either 1 or 0. Let [X] be the equivalence class in
Cp
q containing the element X = W ′

1 . . .W
′
p, where eachW ′

j = A ifWj = 1 andW ′
j = a

if Wj = 0. The claim now is that [X] is the unique admissible equivalence class in
Cp
q . Let Wmax = Y1 . . . Yp, Wmin = Z1 . . . Zp, where each of the Yj’s and Zj’s is either

1 or 0. Then it follows that Xmax = Y ′1 . . . Y
′
p and Xmin = (Z ′)c1 . . . (Z

′)cp. Comparing
Lemma 2 and Lemma 3 we see that the fact that d(Wmax,Wmin) < 1/2 implies that
d(Xmax, Xmin) < 1/2. Uniqueness and statement (ii) regarding converses and palin-
dromes all follow from the corresponding properties of the admissible element in Cv

p ,
and therefore Cp

q contains a unique equivalence class with the required properties.
This completes the induction. Statement (iii) of Theorem 3 is a simple consequence
of uniqueness: if [XT ] is admissible in Cp

q , then letting S = T n gives an admissible
class [XS] ∈ Cnp

nq , which is unique by the prior argument. This completes the proof
of Theorems 2 and 3. �

Acknowledgements. We’d like to thank Linda Keen for many helpful discussions.
The third author is grateful for support from Australian Research Council grants
DE140101201 and DP140100559.

References

[1] Ashley, J.: Marker automorphisms of the one-sided d-shift. - Ergodic Theory Dynam. Systems
10, 1990, 247–262.

[2] Blanchard, P., R. Devaney, and L. Keen: Complex dynamics and symbolic dynamics. - In:
Symbolic dynamics and its applications, edited by S.G. Williams, Proc. Sympos. Appl. Math.
60, 2004, 37–60.

[3] Branner, B.: The Mandelbrot set. - In: Chaos and fractals: The mathematics behind the
computer graphics, edited by R. Devaney and L. Keen, Proc. Sympos. Appl. Math. 39, 1988,
75–106.

[4] Bullet, S., and P. Sentenac: Ordered orbits of the shift, square roots, and the devil’s
staircase. - Math. Proc. Cambridge Philos. Soc. 115, 1994, 451–481.

[5] Carleson, L., and T.W. Gamelin: Complex dynamics. - Springer-Verlag, New York, 1995.

[6] Flek, R.: On the dynamics of quasi-self-matings of generalized starlike complex quadratics and
the structure of the mated Julia sets. - C.U.N.Y. Thesis, 2009.

[7] Goldberg, L.R.: Fixed points of polynomial maps. I. Rotation subsets of the circle. - Ann.
Sci. Éc. Norm. Supér. 25, 1992, 679–685.

[8] Goldberg, L.R., and J. Milnor: Fixed points of polynomial maps. Part II. Fixed point
portraits. - Ann. Sci. Éc. Norm. Supér. 26, 1993, 51–98.

[9] Keen, L.: Julia sets. - In: Chaos and fractals: The mathematics behind the computer graphics,
edited by R. Devaney and L. Keen, Proc. Sympos. Appl. Math. 39, 1988, 57–73.

Received 9 October 2013 • Accepted 4 August 2014


