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Abstract. We describe the limit zero distributions of sequences of polynomials with positive

coefficients.

1. Introduction and results

In this paper we answer the following question of Zeitouni and Ghosh [8], which
arises in the study of zeros of random polynomials [4].

Let P be a polynomial. Consider the discrete probability measure µ[P ] in the
plane which has an atom of mass m/ degP at every zero of P of multiplicity m. It
is called the “empirical measure” in the theory of random polynomials.

Let µn be a sequence of empirical measures of some polynomials with positive
coefficients, and suppose that µn → µ weakly. The question is how to characterize
all possible limit measures µ. We give such a characterization in terms of logarithmic
potentials.

Theorem 1. For a measure µ to be a limit of empirical measures of polynomials

with positive coefficients, it is necessary and sufficient that the following conditions

are satisfied: µ is symmetric with respect to the complex conjugation, µ(C) ≤ 1, and

the potential

(1.1) u(z) =

ˆ

|ζ|≤1

log |z − ζ | dµ(ζ) +

ˆ

|ζ|>1

log

∣

∣

∣

∣

1−
z

ζ

∣

∣

∣

∣

dµ(ζ)

has the property

(1.2) u(z) ≤ u(|z|).

The potential in Theorem 1 converges for every positive measure with the prop-
erty µ(C) <∞ to a subharmonic function u 6≡ −∞. If

ˆ

|ζ|>1

log |ζ | dµ(ζ) <∞ or

ˆ

|ζ|<1

log
1

|ζ |
dµ(ζ) <∞,

then the definition of u in Theorem 1 can be simplified to
ˆ

C

log |z − ζ | dµ(ζ) or

ˆ

C

log

∣

∣

∣

∣

1−
z

ζ

∣

∣

∣

∣

dµ(ζ),
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respectively. When these integrals exist, they differ from the potential (1.1) only by
additive constants.

Obrechkoff [7] proved that empirical measures of polynomials with non-negative
coefficients satisfy

(1.3) µ({z ∈ C\{0} : | arg z| ≤ α}) ≤
2α

π
µ(C\{0}), 0 ≤ α ≤ π/2.

We call this the Obrechkoff inequality. The limits of these measures also satisfy (1.3).
Combining our result with Obrechkoff’s theorem we conclude that (1.2) and sym-

metry of the measure imply (1.3). In particular we find that Obreschkoff’s inequality
is satisfied not only by polynomials with non-negative coefficients, but more generally
by polynomials satisfying

(1.4) |f(z)| ≤ f(|z|), z ∈ C.

The converse does not hold; that is, the inequalities (1.4) and (1.2) do not follow
from Obrechkoff’s inequality. Indeed, let

P (z) = (z2 + 1)m(z2 − 2z cos β + 1)

This polynomial has roots of multiplicity m at ±i, and simple roots at exp(±iβ).
Obrechkoff’s inequality is satisfied if β ≥ π/(2m + 2). On the other hand, P (1) <
|P (−1)| for all m and β ∈ (0, π/2).

We note that Obrechkoff’s inequality is best possible [3]. For other results on the
roots of polynomials with positive coefficients we refer to [1].

An important ingredient in our proof is the following theorem of De Angelis [2].

Theorem A. Let

(1.5) f(z) = a0 + . . .+ adz
d, a0 > 0, ad > 0,

be a real polynomial. The following conditions are equivalent:

(i) There exists a positive integer m such that all coefficients of fm are strictly

positive.

(ii) There exists a positive integer m0 such that for all m ≥ m0, all coefficients of

fm are strictly positive.

(iii) The inequalities

(1.6) |f(z)| < f(|z|), z 6∈ [0,∞),

and

(1.7) a1 > 0, ad−1 > 0

hold.

Acknowledgment. We thank Ofer Zeitouni for helpful comments on this paper,
as well as John P. D’Angelo, David Handelman and Alan Sokal for useful discussions
on Theorem A.

2. Proof of Theorem 1

We use some facts about subharmonic functions and potential theory which can
be found in [6]. For the reader’s convenience, they are stated in the Appendix.

We recall that the Riesz measure of a subharmonic function u is (2π)−1∆u, where
the Laplacian is understood as a Schwartz distribution. In particular the empirical
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measure of a polynomial P of degree d is the Riesz measure of the subharmonic func-
tion (log |P |)/d. For the general properties of convergence of subharmonic functions
we refer to [6, Theorem 3.2.13]. This result will be used repeatedly and is stated for
the convenience of the reader as Theorem B in the Appendix.

The function u given by (1.1) satisfies

(2.1) u(z) ≤ O(log |z|), z → ∞.

In turn, it is well known that every subharmonic function u in the plane which
satisfies (2.1) can be represented in the form (1.1) plus a constant. We will call
functions of this form simply “potentials”; see, for example [5, Theorem 4.2] (case
q = 0).

Proof of Theorem 1. For a subharmonic function u we put

B(r, u) = max
|z|≤r

u(z)

and notice that condition (1.2) can be rewritten as

(2.2) B(r, u) = u(r), r ≥ 0,

in view of the Maximum Principle. This implies that u(r) is strictly increasing for
non-constant subharmonic functions u satisfying (1.2). Moreover, the Hadamard
Three Circles Theorem implies that u(r) = B(r, v) is convex with respect to log r, so
u(r) is continuous for r > 0.

First we prove the necessity of our conditions. Let fn be a sequence of poly-
nomials with non-negative coefficients. Then un = log |fn|/ deg fn are subharmonic
functions whose Riesz measures µn are the empirical measures of fn. As the µn are
probability measures, every sequence contains a subsequence for which the weak limit
µ exists. This µ evidently satisfies µ(C) ≤ 1, and µ is symmetric with respect to com-
plex conjugation. Consider the potential u defined by (1.1). This is a subharmonic
function, u 6≡ −∞, and we have un + cn → u for suitable constants cn.

For a complete discussion of the mode of convergence here we refer to the Ap-
pendix; what we need is that un(r)+ cn → u(r) at every point r > 0 and for all other
points

lim sup
n→∞

un(z) + cn ≤ u(|z|).

As the polynomials fn have non-negative coefficients, they satisfy (1.4), and the un
satisfy (1.2). Thus u satisfies (1.2).

In the rest of this section we prove sufficiency. We start with a measure µ such
that the associated potential u in (1.1) satisfies (1.2) and

(2.3) u(z) = u(z).

The idea is to approximate u by potentials of the form (log |fn|)/ deg fn, where the
fn are polynomials with real coefficients that satisfy the assumptions of Theorem A.
Applying Theorem A we find that fm

n has positive coefficients for some m. But fm
n

has the same empirical measure as fn, which is close to µ.
If u(z) = k log |z|, then we approximate u with

un(z) = kn log |z|+ (1− kn) log |z + n|,

where kn is a sequence of rational numbers such that kn → k, 0 ≤ kn ≤ 1. For the
rest of the proof we assume that u(z) is not of the form k log |z|.
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The approximation of u will be performed in several steps. In each step we modify
the function obtained on the previous step, and starting with u obtain subharmonic
functions u1, . . . , u5. The corresponding Riesz measures will be denoted by ν1, . . . , ν5.
Each modification will preserve the asymptotic inequality (2.1).

1. Fix ε > 0 and define

u1(z) = max{u(zeiα) : |α| ≤ ε}.

It is easy to see that u is the potential of some finite measure, and that u1 → u when
ε → 0. This implies that the Riesz measure of u1 is close (in the weak topology) to
that of u.

Evidently, u1 satisfies (1.2) and (2.3), and u1(re
iθ) = u(r) for |θ| ≤ ε. Thus

u1(re
iθ) = u(r) does not depend on θ for |θ| ≤ ε.

2. Choose δ ∈ (0, ε) and consider the solution v of the Dirichlet problem in the
sector

D = {z : | arg z| < δ}

with boundary conditions u1(z) and satisfying v(z) = O(log |z|) as z → ∞. To prove
the existence and uniqueness of v, we map D conformally onto the upper half-plane,
and apply Poisson’s formula to solve the Dirichlet problem. The growth restriction
near ∞ ensures that the solution of the Dirichlet problem is unique.

Let u2 be the result of “sweeping out the Riesz measure” of u1 out of the sector
D. This means that

u2(z) =

{

v(z) for z ∈ D,

u1(z) otherwise.

Evidently, u2 is subharmonic in the plane and satisfies (2.3). We shall prove that u2
also satisfies the strict version of (1.2), namely

(2.4) u2(z) < u2(|z|) for z /∈ [0,∞).

In order to do so, we note first that u1 is not harmonic in any neighborhood of the
positive ray. This follows since u1(r) is not of the form u1(r) = c log r and u1(re

iθ)
does not depend on θ for |θ| ≤ ε. Because u1 is subharmonic and v is harmonic this
implies that v(r) > u1(r) for r > 0. As u1 satisfies (1.2) we see that u2 satisfies (2.4)
for δ ≤ | arg z| ≤ π. In order to prove that u2 satisfies (2.4) also for | arg z| ≤ δ, let
G be the plane cut along the negative ray and define

ψα(z) = zα/π for z ∈ G,

with the branch of the power chosen such that ψ(z) > 0 for z > 0. We claim that
for α ∈ (δ, ε), the function vα = u2 ◦ φα, extended by continuity to the negative ray,
is subharmonic in the plane. Indeed, near the negative ray this function does not
depend on arg z and it is subharmonic at all points except the negative ray, thus it
is also subharmonic in a neighborhood of the negative ray.

The limit of these subharmonic functions vα as α→ δ+0 is the function vδ which
is thus subharmonic. But the Riesz measure of this function vδ is supported on the
negative ray, thus

vδ(z) =

ˆ

1

0

log |z + t| dν(t) +

ˆ ∞

1+

log
∣

∣

∣
1 +

z

t

∣

∣

∣
dν(t),
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with some non-negative measure ν. It is evident from this expression that for every
r > 0 the function t 7→ vδ(re

it) is strictly decreasing on [0, π].
Thus for every r > 0, our function t 7→ u2(re

it) is strictly decreasing in the
interval [0, δ]. This, together with the fact that u2 satisfies (2.3), completes the proof
that u2 satisfies (2.4).

3. Now we approximate our function u2 by a function u3 which is harmonic near
0. We set

u3(z) = u2(z + ε).

Then u3 is harmonic near the origin, and using (2.4) and monotonicity of u2 on the
positive ray, we obtain

u3(z) = u2(z + ε) < u2(|z + ε|) ≤ u2(|z|+ ε) = u3(|z|)

for z 6= [0,∞), so (2.4) is satisfied by u3.

4. The subharmonic function u3 we constructed has the following properties:

a) it satisfies (2.4),
b) it is harmonic near the origin,
c) it is harmonic in a neighborhood of the positive ray.

To construct a function which, in addition, is also harmonic near ∞ we consider the
function

v(z) = u3(1/z) + k log |z|,

where k = ν3(C). It is easy to see that this function is subharmonic, if we extend
it to 0 appropriately. Notice that v satisfies (2.4), and it is harmonic in an angular
sector containing the positive ray (in fact in the sector | arg z| < δ). The function
w(z) = v(z + ε) also satisfies (2.4) by the same argument that we used in Step 3
to show that u3 satisfies (2.4). Moreover, it is harmonic near the origin and near
infinity. Thus the function

u4(z) = w(1/z) + k log |z|

has all properties a), b), c) and in addition

d) it is harmonic in a punctured neighborhood of infinity.

5. As u4 is harmonic in a neighborhood of the origin, it has a representation

u4(z) = u4(0) +

ˆ

log

∣

∣

∣

∣

1−
z

ζ

∣

∣

∣

∣

dν4(ζ).

As u4 satisfies (2.3), we can write

u4(x+ iy) = u4(0) + cx+O(z2), z = x+ iy → 0,

where

c =
d

dx

(
ˆ

log

∣

∣

∣

∣

1−
x

ζ

∣

∣

∣

∣

dν4(ζ)

)
∣

∣

∣

∣

x=0

= −

ˆ

Re ζ

|ζ |2
dν4(ζ).

Property (2.4) of u4 implies that c ≥ 0. We may achieve c > 0 by adding to u4
the potential ε log |1+z|. This procedure changes c to c+ε. This also makes positive
the linear term in the expansion at ∞. Thus we obtain a function u5, close to our
original potential u in the weak topology, which besides (2.3) and (2.4) also satisfies

u5(x+ iy) = ν5(C) log |z|+ b/x+O(z−2), z → ∞,(2.5)

u5(x+ iy) = u5(0) + ax+O(z2), z = x+ iy → 0,(2.6)
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with positive constants a and b.

6. In our final step we replace the Riesz measure of u5 by a nearby discrete
probability measure with finitely many atoms, each having rational mass.

Let µ be the Riesz measure of u5. If µ(C) < 1 we change µ to a probability mea-
sure by adding an atom sufficiently far at the negative ray. Evidently, this procedure
does not destroy our conditions (2.3) and (2.4), and we also still have (2.5) and (2.6)
for certain positive constants a and b.

By our construction, the support of µ is disjoint from the open set

H = {z : | arg z| < δ} ∪ {z : |z| < δ} ∪ {z : |z| > 1/δ},

and replacing δ by a smaller number if necessary we may assume that this also holds
after the atom on the negative ray was added.

Let µk be any sequence of symmetric discrete measures each having finitely many
atoms of rational mass, supported outside H , and µk → µ weakly. Let wk be the
potential of µk. Clearly the wk satisfy (2.3). We show that they also satisfy (2.4),
provided k is large.

First we consider small |z|, noting that the wk are harmonic for |z| < δ. For
z = reiθ with 0 < r < δ we thus have the expansion

(2.7) wk(z) =
∞
∑

n=0

an,kr
n cosnθ.

Hence

(2.8)
∂2

∂θ2
wk(z) = −a1,kr cos θ + Φk(z)

with

Φk(z) = −

∞
∑

n=2

an,kr
nn2 cos nθ.

As the wk are harmonic for |z| < δ, the convergence to u5 is locally uniformly there,
and ∂2wk/∂θ

2 also converges there locally uniformly to ∂2u5/∂θ
2. For 0 < η < b and

large k we thus have a1,k > η by (2.6). Moreover, for 0 < r0 < δ there exists C > 0
such that |wk(z)| ≤ C for |z| = r0 and all k. By Cauchy’s inequalities we obtain
|an,kr

n
0 | ≤ C1 and hence

|Φk(z)| ≤ C2r
2 for r ≤ r0/2.

This inequality, together with (2.8) shows that wk satisfies (2.4) for |z| < r1 with
some r1 independent of k.

The case of large |z| is treated similarly, using (2.5) and the transformation

(2.9) u(z) 7→ log |z|+ u(1/z),

as we did before. Thus there exists r2 > 0 such that wk satisfies (2.4) for |z| > r2.
We finally consider the case that r1 ≤ |z| ≤ r2. Recall that by the first statement

of Lemma 1, ∂2u/∂θ2 is negative on the positive ray, so we have a positive constant
c such that (∂2/∂θ2)u(reiθ) < −c in some angular sector

S := {z : | arg z| < β, r1 ≤ |z| ≤ r2}.

We conclude that

L(r) := u(r)− u(reiβ) ≥ c1 > 0 for r1 ≤ r ≤ r2.
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On the interval [r1, r2] the convergence wk → u is uniform, because u and wk are
harmonic in S. On the other hand, on the compact set

K := {z : r1 ≤ |z| ≤ r2, | arg z| ≥ β}

we have wk(z) ≤ u(z)+ c1/2 for all sufficiently large k. This follows from the general
convergence properties of potentials of weakly convergent measures summarized in
the Appendix. We conclude that wk satisfies (2.4) also for r1 ≤ |z| ≤ r2, and hence
for all z ∈ C.

Now wk is the empirical measure of some polynomial

f(z) = a0 + a1z + . . .+ ad−1z
d−1 + adz

d,

and (2.4) implies that f satisfies (1.6). Clearly, a0 > 0 and ad > 0. Moreover,
since a1,k > 0 in (2.7), we see that a1 > 0. The analogous expansion after the
transformation (2.9) yields that ad−1 > 0. Thus the hypotheses of Theorem A are
satisfied. Hence fm has positive coefficients for some m. As the empirical measure of
f and fm coincide, we see that u5 is a limit of empirical measures of polynomials with
positive coefficients. As we may choose u5 arbitrarily close to our original potential
u by choosing ε sufficiently small, we see that u is also a limit of empirical measures
of polynomials with positive coefficients. This completes the proof. �

Appendix: Convergence of potentials

We frequently used various convergence properties of potentials of weakly con-
vergent measures which we state here for the reader’s convenience. An excellent
reference for all this material is [6].

Let µn → µ be a sequence of weakly convergent positive measures. This means
that for every continuous function φ with bounded support

ˆ

φ dµn →

ˆ

φ dµ, n→ ∞.

If we restrict here to C∞-functions φ with bounded support, we obtain convergence
in the space D′ of Schwartz distributions. Actually, for positive measures weak
convergence is equivalent to D′-convergence.

Now the sequence of subharmonic functions

un(z) =

ˆ

|ζ|≤1

log |z − ζ | dµn(ζ) +

ˆ

|ζ|>1

log

∣

∣

∣

∣

1−
z

ζ

∣

∣

∣

∣

dµn(ζ)

converges in D′ to the potential of the limit measure µ; that is, we have

(2.10)

ˆ

φ(z)uj(z) dx dy →

ˆ

φ(z)u(z) dx dy

for every test function φ. For the convenience of the reader we include a standard
argument showing this.

First note that with

K(z, ζ) =

{

log |z − ζ |, |ζ | ≤ 1,

log |1− z/ζ |, |ζ | > 1.

and

L(ζ) =

ˆ

|z|≤R

φ(z)K(z, ζ) dx dy
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we have
ˆ

φ(z)uj(z) dx dy =

ˆ

φ(z)

ˆ

K(z, ζ) dµj(ζ) dx dy =

ˆ

L(ζ) dµj(ζ).

Of course, this also holds with uj and µj replaced by u and µ. Thus (2.10) is
equivalent to

(2.11)

ˆ

L(ζ) dµj(ζ) →

ˆ

L(ζ) dµ(ζ).

Since | log |1− w|| ≤ 2|w| for |w| ≤ 1/2 we find that if R > 1, then

|K(z, ζ)| ≤
2R

|ζ |
for |z| ≤ R, |ζ | > 2R.

Choosing R such that the support of φ is contained in |z| ≤ R we conclude that

L(ζ) ≤
C

|ζ |
for |ζ | > 2R

with some constant C.
To show that (2.11) holds we choose ε > 0 and fix R1 > 2R so large that

C/R1 < ε/2. Now L is continuous and we may write L = L1 + L2 with continuous
functions L1 and L2, where L1 has compact support and L2 satisfies L2(ζ) = 0 for
|ζ | ≤ R1 and |L2(ζ)| ≤ |L(ζ)| ≤ C/|ζ | for |ζ | > R1. Then

∣

∣

∣

∣

ˆ

L2(ζ) dµj(ζ)−

ˆ

L2(ζ) dµ(ζ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

ˆ

L2(ζ) dµj(ζ)

∣

∣

∣

∣

+

∣

∣

∣

∣

ˆ

L2(ζ) dµ(ζ)

∣

∣

∣

∣

≤ 2
C

R1

≤ ε

since µj(C) ≤ 1 and µ(C) ≤ 1. We also have
´

L1(ζ) dµj(ζ) →
´

L1(ζ) dµ(ζ) by the
definition of weak convergence, which is equivalent to convergence in D′. We obtain
(2.11) and hence (2.10).

We cite Theorem 3.2.13 from [6] which says that this convergence of potentials
also holds in several other senses.

Theorem B. Let uj 6≡ −∞ be a sequence of subharmonic functions converging

in D′ to the subharmonic function u. Then the sequence is uniformly bounded from

above on any compact set. For every z we have

(2.12) lim sup
n→∞

un(z) ≤ u(z).

More generally, if K is a compact set, and f ∈ C(K), then

lim sup
n→∞

sup
K

(un − f) ≤ sup
K

(u− f).

If dσ is a positive measure with compact support such that the potential of dσ is

continuous, then there is equality in (2.12) and u(z) > −∞ for almost every z with

respect to dσ. Moreover, uj dσ → u dσ weakly.

In this paper we deal with subharmonic functions satisfying (2.2), so u(r) is
increasing and convex with respect to log r on (0,∞). Choosing the length element
on [0, R] as dσ in Theorem B, we conclude that un → u almost everywhere on the
positive ray. For convex functions with respect to the logarithm this is equivalent to
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the uniform convergence on compact subsets of (0,∞). In particular, un(r) → u(r)
at every point r > 0. As the un satisfy (1.2), we conclude that

lim sup
n→∞

un(re
iθ) ≤ u(r).

Choosing the uniform measure on the circle |z| = r as dσ in Theorem B, we conclude
that u(reiθ) ≤ u(r) almost everywhere with respect to dσ. As u is upper semi-
continuous, we conclude that u(reiθ) ≤ u(r). Thus (1.2) is preserved in the limit.
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