A NEW APPROACH TO THE CORONA THEOREM FOR DOMAINS BOUNDED BY A $C^{1+\alpha}$ CURVE

José Manuel Enríquez-Salamanca and María José González

University of Cádiz, Department of Mathematics Cádiz, 11002, Spain; enrique.desalamanca@uca.es University of Cádiz, Department of Mathematics Puerto Real, 11510, Spain; majose.gonzalez@uca.es

Abstract. We prove the corona theorem for domains whose boundary lies in a $C^{1+\alpha}$ curve. For that, we transfer H^{∞} on the complement of the curve onto a Denjoy domain and use the results from Garnett and Jones.

Introduction

Let Γ be an unbounded $C^{1+\alpha}$ curve analytic at ∞ , E a compact subset of this curve with positive length and set $\Omega = \mathbb{C}^* \setminus E$. Let us denote the space of bounded analytic functions on Ω by $H^{\infty}(\Omega)$. The corona theorem for this type of domains was already proved by Moore in [7]. The purpose of this paper is to present a new approach to this result.

Theorem 1. Let $f_1, f_2, \ldots, f_n \in H^{\infty}(\Omega)$ so that $\delta \leq \max_k |f_k(\omega)| \leq 1$, for all $\omega \in \Omega$ and some $\delta > 0$. Then, there exist $g_1, g_2, \ldots, g_n \in H^{\infty}(\Omega)$ such that $f_1g_1 + f_2g_2 + \ldots + f_ng_n = 1$ on Ω .

The functions $\{f_k\}_{k=1}^n$ and $\{g_k\}_{k=1}^n$ are called corona data and corona solutions respectively, and δ and n are the corona constants. When Γ is the real line, the domain Ω is called a Denjoy domain. In this case, the theorem was proved by Garnett and Jones [5].

The first corona problem for simply connected domains was solved by Carleson in 1962 [1]. Since then, the result has been extended to some classes of infinitely connected domains, in particular to domains whose boundary lies in a Lipschitz graph and satisfies a thickness condition [8] or complements of Cantor sets [6].

For our approach, we will apply the following result proved in [2] which allows us to transfer the problem in Ω to a Denjoy domain.

Theorem 2. Let Γ be an unbounded $C^{1+\alpha}$ curve analytic at ∞ , and let ρ denote a conformal map of \mathbb{R}^2_{-} onto any of the regions bounded by Γ . Then, given a function $g \in L^{\infty}(\Gamma)$, the Cauchy integral $C_{\Gamma}(g) \in L^{\infty}(\mathbb{C})$ if and only if $C_{\mathbb{R}}(f) \in L^{\infty}(\mathbb{C})$, where f denotes the pullback of g under the conformal mapping ρ .

This transfer is possible thanks to the existence of a quasiconformal extension of ρ whose complex dilatation, μ , verifies that $|\mu|^2/|y|^{1+\varepsilon} dx dy$ is a Carleson measure

doi: 10.5186/aasfm. 2015.4043

²⁰¹⁰ Mathematics Subject Classification: Primary 30H80.

Key words: Cauchy integral, quasiconformal mapping, Carleson measure, smooth curve, corona theorem.

The second author is supported by Grant MTM 2011-24606.

relative to **R** for some $\varepsilon = \varepsilon(\alpha) > 0$. In fact, the existence of such an extension characterizes $C^{1+\alpha}$ curves [2, Theorem 1].

The paper is structured as follows: In section 1, we review some definitions and basic facts. The proof of Theorem 1 is presented in section 2.

1. Preliminaries

Let us denote complex variables by z = x + iy and $\omega = \xi + i\eta$. $B_r(z)$ will denote the ball centered at z and radius r and C will represent a positive constant that could be different throughout an inequality. Also, we shall write $\bar{\partial} = \partial/\partial \bar{z} = 1/2(\partial_x + i\partial_y)$ and $\partial = \partial/\partial z = 1/2(\partial_x - i\partial_y)$. For a square Q, we will denote by αQ , $\alpha > 0$, the dilation of this square by a scale factor α and by l(Q) its length.

A Jordan curve Γ is said to be of class C^n (n = 1, 2, ...) if it has a parametrization $\varphi(\tau) = f(e^{i\tau}), 0 \leq \tau \leq 2\pi$, that is *n* times continuously differentiable and satisfies that $\varphi'(\tau) \neq 0, \forall \tau$. Furthermore, it is of class $C^{n+\alpha}$, for $0 < \alpha < 1$, if

$$|\varphi^{(n)}(\tau_1) - \varphi^{(n)}(\tau_2)| \le C |\tau_1 - \tau_2|^{\alpha}$$

Given a function F on Γ define its Cauchy integral $f(z) = C_{\Gamma}(F)(z)$ off Γ by

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{F(\zeta)}{\zeta - z} d\zeta, \quad \zeta \notin \Gamma.$$

We define the jump of $f = C_{\Gamma}(F)$ across Γ at a point z, j(f)(z), as $f_{+}(z) - f_{-}(z)$, where f_{+} and f_{-} denote the boundary values of f. As the classical Plemelj formula states,

$$f_{\pm}(z) = \pm \frac{1}{2}F(z) + \frac{1}{2\pi i} P.V. \int_{\Gamma} \frac{F(\omega)}{\omega - z} d\omega, \quad z \in \Gamma.$$

Hence $f_+(z) - f_-(z) = F(z)$. Also, f is holomorphic off Γ so that $\bar{\partial} f = 0$ on $\mathbb{C} \setminus \Gamma$.

A positive measure λ on **C** is called a Carleson measure relative to a given chordarc curve Γ if there exists a constant C > 0 such that $\lambda(B_R(z)) \leq CR$ for all $z \in \Gamma$ and R > 0. The smallest such C is the norm of λ , $\|\lambda\|_C$. Furthermore, if

$$\lim_{r \to 0} \sup_{R < r} \frac{\lambda(B_z(R))}{R} = 0$$

then we say that λ is a vanishing Carleson measure or that it satisfies a o(1)-Carleson condition.

2. Proof of the Theorem

Let Ω_+ and Ω_- be the two regions bounded by the $C^{1+\alpha}$ curve Γ and ρ be a conformal map from \mathbf{R}_-^2 onto Ω_- . It was proved in [2] that ρ extends to a global quasiconformal map whose dilatation μ satisfies that $\nu = |\mu|^2/|y|^{1+\varepsilon} dx dy$ is a Carleson measure relative to \mathbf{R} where $\varepsilon = \varepsilon(\alpha)$. In fact, for this extension, it holds that $|\partial \rho(z)| \simeq |\rho'(\bar{z})|$ if $0 < \operatorname{Im}(z) < \varepsilon_0$ for some $\varepsilon_0 = \varepsilon_0(\alpha)$ small enough [2, Proof of Theorem 1].

Besides, since Γ is analytic at ∞ , we will assume that μ has compact support. We will keep the notation fixed for the rest of the proof, that is, ρ is a quasiconformal mapping associated to Γ , μ is its complex dilatation and ε is such that ν is a Carleson measure. Let $E_0 = \rho^{-1}(E) \subset \mathbf{R}$ and $\Omega_0 = \mathbf{C} \setminus E_0$. Note that E_0 is closed and has positive length ([9], Theorem 6.8). Define the space

$$H^{\infty}(\Omega_0,\mu) = \{ f \circ \rho \colon f \in H^{\infty}(\Omega) \}.$$

Observe that if $g = f \circ \rho \in H^{\infty}(\Omega_0, \mu)$, then $\partial f = 0$ on Ω translates into $(\bar{\partial} - \mu \partial)g = 0$ on Ω_0 , and as well, the jump of g across E_0 is given by $j(g) = j(f) \circ \rho$. Also, as Γ is a $C^{1+\alpha}$ curve, $\lambda = |y| |\partial g|^2 dx dy$ is a Carleson measure relative to **R** [2, Proof of Theorem 2].

Before proving the corona theorem, we need some preliminary lemmas.

Lemma 2.1. If $g \in H^{\infty}(\Omega_0, \mu)$, then $\tau = |\mu| |\partial g| dx dy$ is a vanishing Carleson measure.

Proof. For any $s \in \mathbf{R}, r > 0$:

$$\int_{B_r(s)} \frac{|\mu(z)|^2}{|y|} \, dx \, dy = \int_{B_r(s)} \frac{|\mu(z)|^2}{|y|^{1+\varepsilon}} |y|^{\varepsilon} \, dx \, dy \lesssim \|\nu\|_C r^{1+\varepsilon}.$$

Therefore,

$$\int_{B_r(s)} |\mu(z)\partial g(z)| \, dx \, dy \le \left(\int_{B_r(s)} \frac{|\mu(z)|^2}{|y|} \, dx \, dy \right)^{1/2} \left(\int_{B_r(s)} |\partial g(z)|^2 |y| \, dx \, dy \right)^{1/2}$$
(1)
$$\lesssim \|\nu\|_C^{1/2} \|\lambda\|_C^{1/2} r^{1+\varepsilon/2},$$

and $\tau = |\mu| |\partial g| dx dy$ is a vanishing Carleson measure relative to **R**.

Lemma 2.2. There exists $\varepsilon_0 > 0$ such that if $g \in H^{\infty}(\Omega_0, \mu)$ and $z \in \Omega_0$ with $0 < |\operatorname{Im}(z)| < \varepsilon_0$, then $|y||\partial g(z)| < C$, where $C = C(||g||_{\infty}, ||\mu||_{\infty})$ and $\varepsilon_0 = \varepsilon_0(\alpha)$.

Proof. Let $f \in H^{\infty}(\Omega)$ such that $g = f \circ \rho$. Then, $\delta_{\Gamma}(\omega)|f'(\omega)| \leq C, \forall \omega \in \mathbb{C} \setminus \Gamma$ and $C = C(||f||_{\infty})$.

Let $z \in \mathbf{R}^2_-$ and $\omega = \rho(z)$. Since ρ is conformal on \mathbf{R}^2_- , by Koebe's distortion theorem,

$$|y||\partial g(z)| = |y||f'(\rho(z))||\rho'(z)| \simeq \delta_{\Gamma}(\omega)|f'(\omega)| \le C$$

If $z \in \mathbf{R}^2_+$, as we mentioned before, we can choose ε_0 so that, if $0 < |\text{Im}(z)| < \varepsilon_0$ then, $|\partial \rho(z)| \simeq |\rho'(\bar{z})|$. Hence, as above

$$|y||\partial g(z)| = |y||\partial \rho(z)||f'(\rho(z))| \simeq \delta_{\Gamma}(\rho(\bar{z}))|f'(\rho(z))|$$

By the distortion theorem for quasiconformal mappings $\delta_{\Gamma}(\rho(\bar{z})) \simeq \delta_{\Gamma}(\rho(z))$ with comparison constants depending on $\|\mu\|_{\infty}$, which concludes the proof.

Before stating the next lemma, we will review some facts already developed in [2] which follow Semmes's approach in [10]. Let $g \in H^{\infty}(\Omega_0, \mu)$, then $g = f \circ \rho$ for some $f \in H^{\infty}(\Omega)$. Consider now the jump of g, j(g), and set $\tilde{g} = C_{\mathbf{R}}(j(g))$. If we define $G = g - \tilde{g}$, then $\bar{\partial}G = \mu\partial g$ on Ω_0 and since G has no jump across E_0 , we can consider that this equation holds on all \mathbf{C} in the sense of distributions. We can then apply Cauchy's formula to obtain

$$G(z_0) = \frac{1}{\pi i} \int_{\mathbf{C}} \frac{\partial G(z)}{z - z_0} dx \, dy = \frac{1}{\pi i} \int_{\mathbf{C}} \frac{\mu(z) \partial g(z)}{z - z_0} dx \, dy, \quad \text{for all } z_0 \in \mathbf{C}.$$

Lemma 2.3. Assume that $\operatorname{supp}(\mu) \subset Q$ for some Q centered at a real point with length $R \leq \varepsilon_0/4$. Let $g \in H^{\infty}(\Omega_0, \mu)$ and $\tilde{g} \in H^{\infty}(\Omega_0)$ so that $j(g) = j(\tilde{g})$ and set $G = g - \tilde{g}$. Then for all $z \in \mathbf{C}$, $|G(z)| \leq CR^{\varepsilon/(2+\varepsilon)}$, where $C = C(||g||_{\infty}, ||\nu||_C)$.

Proof. Consider $z_0 = x_0 + iy_0 \in (2Q \setminus \mathbf{R})$. Since $\bar{\partial}G = \mu \partial g$ and $\operatorname{supp}(\mu) \subset Q$, then

(2)
$$|G(z_0)| \lesssim \int_{\mathbf{C}} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx \, dy = \int_{Q} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx \, dy \\ = \int_{Q_0} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx \, dy + \int_{Q\setminus Q_0} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx \, dy,$$

where Q_0 is the square centered at z_0 and length $l(Q_0) = |y_0|$. To bound the first integral in (2), set $p = 2 + \varepsilon$ and $q = (2 + \varepsilon)/(1 + \varepsilon)$. Then

$$(3) \quad \int_{Q_0} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} \, dx \, dy \le \left(\int_{Q_0} |\mu(z)\partial g(z)|^{2+\varepsilon} dx \, dy\right)^{\frac{1}{2+\varepsilon}} \left(\int_{Q_0} |z-z_0|^{-\frac{2+\varepsilon}{1+\varepsilon}} dx \, dy\right)^{\frac{1+\varepsilon}{2+\varepsilon}}.$$

As $\nu = |\mu|^2/|y|^{1+\varepsilon}$ is a Carleson measure relative to **R** and $|y| \ge |y_0|/2$ for $z \in Q_0$, we obtain by lemma 2.2:

(4)
$$\int_{Q_0} |\mu(z)\partial g(z)|^{2+\varepsilon} dx \, dy \lesssim \int_{Q_0} |\mu(z)|^{2+\varepsilon} \frac{1}{|y|^{2+\varepsilon}} dx \, dy$$
$$\lesssim \frac{2}{|y_0|} \int_{2Q_0} \frac{|\mu(z)|^2}{|y|^{1+\varepsilon}} dx \, dy \le 4 \|\nu\|_C$$

Let us now consider $B_0 = B_r(z_0)$ so that $r \simeq |y_0|$ and $Q_0 \subset B_0$. By changing variables to polar coordinates,

(5)
$$\int_{Q_0} |z - z_0|^{-\frac{2+\varepsilon}{1+\varepsilon}} dx \, dy \le \int_{B_0} |z - z_0|^{-\frac{2+\varepsilon}{1+\varepsilon}} dx \, dy \le C(\varepsilon) r^{\frac{\varepsilon}{1+\varepsilon}} \simeq C(\varepsilon) |y_0|^{\frac{\varepsilon}{1+\varepsilon}}.$$

Therefore, by (3), (4) and (5)

(6)
$$\int_{Q_0} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx \, dy \lesssim C(\|\nu\|_C,\varepsilon)|y_0|^{\frac{\varepsilon}{2+\varepsilon}} \lesssim C(\|\nu\|_C,\varepsilon)R^{\frac{\varepsilon}{2+\varepsilon}}$$

To bound the second integral in (2), consider an open cover of $Q \setminus Q_0$ with squares, Q_i , centered at z_0 and length $l(Q_i) = 2^i |y_0|, i \ge 1$. Note that it is sufficient a cover with M squares such that $M \le \log_2(R/|y_0|)$. Then, by (1)

(7)
$$\int_{Q\setminus Q_0} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} dx dy \lesssim \sum_{i=1}^M \frac{2^{-i}}{|y_0|} \int_{Q_i\setminus Q_{i-1}} |\mu(z)\partial g(z)| dx dy$$
$$\lesssim \sum_{i=1}^M \frac{2^{-i}}{|y_0|} (2^i|y_0|)^{1+\varepsilon/2} \lesssim |y_0|^{\varepsilon/2} (2^{\varepsilon/2})^M \lesssim R^{\varepsilon/2}.$$

Therefore, by (2), (6) and (7), $|G(z_0)| \leq C(\|\nu\|_C, \|\lambda\|_C, \varepsilon) R^{\varepsilon/(2+\varepsilon)}$.

For $z_0 \in (2Q \cap \mathbf{R})$, let Q^i be the square centered at z_0 and length $l(Q^i) = 2^{2-i}R$, $i \geq 0$. Since $\bar{\partial}G = \mu \partial g$ and $\operatorname{supp}(\mu) \subset Q$, by (1)

$$\begin{aligned} |G(z_0)| \lesssim \int_Q \frac{|\mu(z)\partial g(z)|}{|z-z_0|} \, dx \, dy &= \sum_{i\geq 0} \int_{Q^i \setminus Q^{i+1}} \frac{|\mu(z)\partial g(z)|}{|z-z_0|} \, dx \, dy \\ \lesssim \frac{1}{R} \sum_{i\geq 0} 2^i \int_{Q^i} |\mu(z)\partial g(z)| \, dx \, dy \lesssim \frac{1}{R} \sum_{i\geq 0} 2^i l(Q^i)^{1+\varepsilon/2} \lesssim R^{\varepsilon/2}. \end{aligned}$$

Therefore, $|G(z_0)| \leq CR^{\varepsilon}/2$ for $C = C(||\mu||_C, ||\lambda||_C, \varepsilon)$.

770

Finally, let $z_0 \in \mathbf{C} \setminus 2Q$. Then, by (1)

$$\begin{aligned} |G(z_0)| &\lesssim \int_Q \frac{|\mu(z)\partial g(z)|}{|z-z_0|} \, dx \, dy \leq \frac{1}{R} \int_Q |\mu(z)\partial g(z)| \, dx \, dy \\ &\leq C(\|\nu\|_C, \|\lambda\|_C) R^{\varepsilon/2}. \end{aligned}$$

We now prove Theorem 1:

Theorem 1. Let $f_1, f_2, \ldots, f_n \in H^{\infty}(\Omega)$ so that $\delta \leq \max_j |f_j(\omega)| \leq 1$, for all $\omega \in \Omega$ and some $\delta > 0$. Then, there exist $g_1, g_2, \ldots, g_n \in H^{\infty}(\Omega)$ such that $f_1g_1 + f_2g_2 + \ldots + f_ng_n = 1$ on Ω .

Proof. Gamelin [3] showed that it is sufficient to prove it locally, that is, that for $\zeta \in \Gamma$ there exists a neighborhood of ζ on which it is true and such that the size of this neighborhood is determined by δ , n and other parameters concerning Γ (see also [4, p. 358]).

We can then assume that $\mu(z) = 0$ outside a square Q centered at a real point with length R, for a small enough $R = R(n, \delta, \Gamma)$ to be determined later. To see this, consider the solution $\tilde{\rho}$ of the Beltrami equation $\bar{\partial}\tilde{\rho} = \mu\partial\tilde{\rho}$ for $z \in Q$, $\bar{\partial}\tilde{\rho} = 0$ otherwise. Then, $\rho = F \circ \tilde{\rho}$ where F is an univalent function in the region $\tilde{\rho}(Q)$, and therefore it will be enough to prove the corona theorem for the domain $\tilde{\Omega} = \mathbf{C} \setminus \tilde{\rho}(E_0)$.

Since the dilatation coefficient $\tilde{\mu} = \mu \chi_Q$ obviously satisfies that $|\tilde{\mu}|^2 / |y|^{1+\varepsilon} dx dy$ is a Carleson measure, we know that $\tilde{\Gamma} = \tilde{\rho}(\mathbf{R})$ is also a $C^{1+\tilde{\alpha}}$ curve for $\tilde{\alpha} = \tilde{\alpha}(\alpha, \|\mu\|_{\infty})$ ([2], Theorem 1) and therefore all the previous lemmas apply if we replace Γ, μ and ρ by the corresponding $\tilde{\Gamma}, \tilde{\mu}$ and $\tilde{\rho}$. To avoid excessive use of notation, we will drop the tilde notation.

Let $f_k^* = f_k \circ \rho$ on Ω_0 . Then, the jump of f_k^* across E_0 is indeed the pullback of $j(f_k)$ under the mapping ρ , that is, $j(f_k^*) = j(f_k) \circ \rho$. Note that $f_1^*, \ldots, f_n^* \in H^{\infty}(\Omega_0, \mu)$.

Set $\tilde{f}_k = C_{\mathbf{R}}(\mathbf{j}(f_k^*))$. By Theorem 2, $\tilde{f}_k \in H^{\infty}(\Omega_0)$. First, we want to show that \tilde{f}_k are corona data in Ω_0 . So, let $G_k = f_k^* - \tilde{f}_k$ and $z_0 \in \Omega_0$. Then, there exists $1 \leq j \leq n$ such that $\delta \leq |f_j^*(z_0)| \leq |G_j(z_0)| + |\tilde{f}_j(z_0)|$. By lemma 2.3, $|G_j(z_0)| \leq R^{\varepsilon/(2+\varepsilon)} \leq \delta/2$ for a sufficiently small R and therefore $\delta/2 \leq |\tilde{f}_j(z_0)|$.

According to Garnett and Jones' theorem for Denjoy domains [5], there exist $\tilde{h}_1, \tilde{h}_2, \ldots, \tilde{h}_n \in H^{\infty}(\Omega_0)$ such that $\tilde{f}_1 \tilde{h}_1 + \ldots \tilde{f}_n \tilde{h}_n = 1$ with $\|\tilde{h}_k\|_{\infty} \leq C(n, \delta)$.

Define $H_k^* = \mathbf{j}(\tilde{h}_k)$. Then, $H_k^* \in L^{\infty}(\mathbf{R})$ and $\tilde{h}_k = C_{\mathbf{R}}(H_k^*)$. Set $H_k = H_k^* \circ \rho^{-1}$ on Γ and define $h_k = C_{\Gamma}(H_k)$. Although $\{h_k\}_{k=1}^n \subset H^{\infty}(\Omega)$ by Theorem 2, they are not corona solutions as they do not verify that $f_1h_1 + f_2h_2 + \ldots + f_nh_n = 1$ on Ω .

Consider the analytic functions $g_k(\omega) = h_k(\omega)/(\sum f_j(\omega)h_j(\omega)), 1 \le k \le n$, on Ω . They clearly satisfy that $\sum g_j f_j = 1$. We just need to prove that g_1, g_2, \ldots, g_n are also bounded. For that, it is sufficient to show that $\sum f_k h_k$ is close to 1.

Let us denote $h_k^* = h_k \circ \rho \in H^{\infty}(\Omega_0, \mu)$. Note that $j(h_k^*) = j(\tilde{h}_k)$. For any $z \in \Omega_0$ and by lemma 2.3:

$$\begin{aligned} |\sum_{k=1}^{n} f_{k}(\rho(z))h_{k}(\rho(z)) - 1| &= |\sum_{k=1}^{n} f_{k}^{*}(z)h_{k}^{*}(z) - \sum_{i=1}^{n} \tilde{f}_{k}(z)\tilde{h}_{k}(z)| \\ &\leq \sum_{k=1}^{n} |f_{k}^{*}(z)||h_{k}^{*}(z) - \tilde{h}_{k}(z)| + \sum_{k=1}^{n} |\tilde{h}_{k}(z)||\tilde{f}_{k}(z) - f_{k}^{*}(z)| \end{aligned}$$

José Manuel Enríquez-Salamanca and María José González

(8)
$$\lesssim nR^{\varepsilon/(2+\varepsilon)} + nC(n,\delta)R^{\varepsilon/(2+\varepsilon)} \le 1/2$$

for a sufficiently small R.

As a final remark, this new approach encourages us to find solutions to the corona problem for domains bounded by other quasicircles. For that, one would need to find conditions on μ so that we can transfer H^{∞} on the complement of a curve onto the corresponding Denjoy domain.

References

- CARLESON, L.: Interpolations by bounded analytic functions on the corona theorem. Ann. of Math. (2) 76, 1962, 547–559.
- [2] ENRÍQUEZ-SALAMANCA, J. M., and M. J. GONZÁLEZ: On H^{∞} on the complement of $C^{1+\alpha}$ curves. J. Math. Anal. Appl. 416:1, 2014, 335–343.
- [3] GAMELIN, T. W.: Localization of the corona problem. Pacific J. Math. 34, 1970, 73–81.
- [4] GARNETT, J. B.: Bounded analytic functions. Academic Press, New York, 1981.
- [5] GARNETT, J. B., and P. W. JONES: The corona theorem for Denjoy domains. Acta Math. 155, 1985, 27–40.
- [6] HANDY, J.: The corona theorem on the complement of certain square Cantor sets. J. Anal. Math. 108, 2009, 1–18.
- [7] MOORE, C. N.: The corona Theorem for domains whose boundary lies in a smooth curve. -Proc. Amer. Math. Soc. 100, 1987, 266–270.
- [8] NEWDELMAN, B. M.: Homogeneous subsets of a lipschitz graph and the corona theorem. -Publ. Mat. 55, 2011, 93–121.
- [9] POMMERENKE, CH.: Boundary behaviour of conformal maps. Springer-Verlag, Berlin, 1973.
- [10] SEMMES, S.: Estimates for $(\bar{\partial} \nu \partial)^{-1}$ and Calderon's theorem on the Cauchy integral. Trans. Amer. Math. Soc. 306, 1988, 191–232.

Received 9 June 2014 • Accepted 13 February 2015

772