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Abstract. We prove the corona theorem for domains whose boundary lies in a C1+α curve.

For that, we transfer H∞ on the complement of the curve onto a Denjoy domain and use the results

from Garnett and Jones.

Introduction

Let Γ be an unbounded C1+α curve analytic at ∞, E a compact subset of this
curve with positive length and set Ω = C

∗\E. Let us denote the space of bounded
analytic functions on Ω by H∞(Ω). The corona theorem for this type of domains
was already proved by Moore in [7]. The purpose of this paper is to present a new
approach to this result.

Theorem 1. Let f1, f2, . . . , fn ∈ H∞(Ω) so that δ ≤ maxk |fk(ω)| ≤ 1, for

all ω ∈ Ω and some δ > 0. Then, there exist g1, g2, . . . , gn ∈ H∞(Ω) such that

f1g1 + f2g2 + . . .+ fngn = 1 on Ω.

The functions {fk}
n
k=1 and {gk}

n
k=1 are called corona data and corona solutions

respectively, and δ and n are the corona constants. When Γ is the real line, the
domain Ω is called a Denjoy domain. In this case, the theorem was proved by
Garnett and Jones [5].

The first corona problem for simply connected domains was solved by Carleson
in 1962 [1]. Since then, the result has been extended to some classes of infinitely
connected domains, in particular to domains whose boundary lies in a Lipschitz
graph and satisfies a thickness condition [8] or complements of Cantor sets [6].

For our approach, we will apply the following result proved in [2] which allows
us to transfer the problem in Ω to a Denjoy domain.

Theorem 2. Let Γ be an unbounded C1+α curve analytic at ∞, and let ρ denote

a conformal map of R2
− onto any of the regions bounded by Γ. Then, given a function

g ∈ L∞(Γ), the Cauchy integral CΓ(g) ∈ L∞(C) if and only if CR(f) ∈ L∞(C), where

f denotes the pullback of g under the conformal mapping ρ.

This transfer is possible thanks to the existence of a quasiconformal extension of
ρ whose complex dilatation, µ, verifies that |µ|2/|y|1+ε dx dy is a Carleson measure
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relative to R for some ε = ε(α) > 0. In fact, the existence of such an extension
characterizes C1+α curves [2, Theorem 1].

The paper is structured as follows: In section 1, we review some definitions and
basic facts. The proof of Theorem 1 is presented in section 2.

1. Preliminaries

Let us denote complex variables by z = x+ iy and ω = ξ+ iη. Br(z) will denote
the ball centered at z and radius r and C will represent a positive constant that could
be different throughout an inequality. Also, we shall write ∂̄ = ∂/∂z̄ = 1/2(∂x + i∂y)
and ∂ = ∂/∂z = 1/2(∂x − i∂y). For a square Q, we will denote by αQ, α > 0, the
dilation of this square by a scale factor α and by l(Q) its length.

A Jordan curve Γ is said to be of class Cn (n = 1, 2, . . .) if it has a parametrization
ϕ(τ) = f(eiτ ), 0 ≤ τ ≤ 2π, that is n times continuously differentiable and satisfies
that ϕ′(τ) 6= 0, ∀τ . Furthermore, it is of class Cn+α, for 0 < α < 1, if

|ϕ(n)(τ1)− ϕ(n)(τ2)| ≤ C|τ1 − τ2|
α.

Given a function F on Γ define its Cauchy integral f(z) = CΓ(F )(z) off Γ by

f(z) =
1

2πi

ˆ

Γ

F (ζ)

ζ − z
dζ, ζ /∈ Γ.

We define the jump of f = CΓ(F ) across Γ at a point z, j(f)(z), as f+(z) − f−(z),
where f+ and f− denote the boundary values of f . As the classical Plemelj formula
states,

f±(z) = ±
1

2
F (z) +

1

2πi
P.V.

ˆ

Γ

F (ω)

ω − z
dω, z ∈ Γ.

Hence f+(z)− f−(z) = F (z). Also, f is holomorphic off Γ so that ∂̄f = 0 on C\Γ.
A positive measure λ on C is called a Carleson measure relative to a given chord-

arc curve Γ if there exists a constant C > 0 such that λ(BR(z)) ≤ CR for all z ∈ Γ
and R > 0. The smallest such C is the norm of λ, ‖λ‖C . Furthermore, if

lim
r→0

sup
R<r

λ(Bz(R))

R
= 0,

then we say that λ is a vanishing Carleson measure or that it satisfies a o(1)-Carleson
condition.

2. Proof of the Theorem

Let Ω+ and Ω− be the two regions bounded by the C1+α curve Γ and ρ be a
conformal map from R

2
− onto Ω−. It was proved in [2] that ρ extends to a global quasi-

conformal map whose dilatation µ satisfies that ν = |µ|2/|y|1+ε dx dy is a Carleson
measure relative to R where ε = ε(α). In fact, for this extension, it holds that
|∂ρ(z)| ≃ |ρ′(z̄)| if 0 < Im(z) < ε0 for some ε0 = ε0(α) small enough [2, Proof of
Theorem 1].

Besides, since Γ is analytic at ∞, we will assume that µ has compact support.
We will keep the notation fixed for the rest of the proof, that is, ρ is a quasiconformal
mapping associated to Γ, µ is its complex dilatation and ε is such that ν is a Carleson
measure.



A new approach to the corona theorem for domains bounded by a C
1+α curve 769

Let E0 = ρ−1(E) ⊂ R and Ω0 = C\E0. Note that E0 is closed and has positive
length ([9], Theorem 6.8). Define the space

H∞(Ω0, µ) = {f ◦ ρ : f ∈ H∞(Ω)}.

Observe that if g = f ◦ ρ ∈ H∞(Ω0, µ), then ∂̄f = 0 on Ω translates into
(∂̄−µ∂)g = 0 on Ω0, and as well, the jump of g across E0 is given by j(g) = j(f) ◦ ρ.
Also, as Γ is a C1+α curve, λ = |y||∂g|2 dx dy is a Carleson measure relative to R [2,
Proof of Theorem 2].

Before proving the corona theorem, we need some preliminary lemmas.

Lemma 2.1. If g ∈ H∞(Ω0, µ), then τ = |µ||∂g| dx dy is a vanishing Carleson

measure.

Proof. For any s ∈ R, r > 0:
ˆ

Br(s)

|µ(z)|2

|y|
dx dy =

ˆ

Br(s)

|µ(z)|2

|y|1+ε
|y|ε dx dy . ‖ν‖Cr

1+ε.

Therefore,
ˆ

Br(s)

|µ(z)∂g(z)| dx dy ≤

(
ˆ

Br(s)

|µ(z)|2

|y|
dx dy

)1/2 (ˆ

Br(s)

|∂g(z)|2|y| dx dy

)1/2

. ‖ν‖
1/2
C ‖λ‖

1/2
C r1+ε/2,(1)

and τ = |µ||∂g| dx dy is a vanishing Carleson measure relative to R. �

Lemma 2.2. There exists ε0 > 0 such that if g ∈ H∞(Ω0, µ) and z ∈ Ω0 with

0 < | Im(z) | < ε0, then |y||∂g(z)| < C, where C = C(‖g‖∞, ‖µ‖∞) and ε0 = ε0(α).

Proof. Let f ∈ H∞(Ω) such that g = f ◦ ρ. Then, δΓ(ω)|f
′(ω)| ≤ C, ∀ω ∈ C\Γ

and C = C(‖f‖∞).
Let z ∈ R

2
− and ω = ρ(z). Since ρ is conformal on R

2
−, by Koebe’s distortion

theorem,
|y||∂g(z)| = |y||f ′(ρ(z))||ρ′(z)| ≃ δΓ(ω)|f

′(ω)| ≤ C.

If z ∈ R
2
+, as we mentioned before, we can choose ε0 so that, if 0 < |Im(z)| < ε0

then, |∂ρ(z)| ≃ |ρ′(z̄)|. Hence, as above

|y||∂g(z)| = |y||∂ρ(z)||f ′(ρ(z))| ≃ δΓ(ρ(z̄))|f
′(ρ(z))|.

By the distortion theorem for quasiconformal mappings δΓ(ρ(z̄)) ≃ δΓ(ρ(z)) with
comparison constants depending on ‖µ‖∞, which concludes the proof. �

Before stating the next lemma, we will review some facts already developed in
[2] which follow Semmes’s approach in [10]. Let g ∈ H∞(Ω0, µ), then g = f ◦ ρ for
some f ∈ H∞(Ω). Consider now the jump of g, j(g), and set g̃ = CR(j(g)). If we
define G = g − g̃, then ∂̄G = µ∂g on Ω0 and since G has no jump across E0, we can
consider that this equation holds on all C in the sense of distributions. We can then
apply Cauchy’s formula to obtain

G(z0) =
1

πi

ˆ

C

∂̄G(z)

z − z0
dx dy =

1

πi

ˆ

C

µ(z)∂g(z)

z − z0
dx dy, for all z0 ∈ C.

Lemma 2.3. Assume that supp(µ) ⊂ Q for some Q centered at a real point

with length R ≤ ε0/4. Let g ∈ H∞(Ω0, µ) and g̃ ∈ H∞(Ω0) so that j(g) = j(g̃) and

set G = g − g̃. Then for all z ∈ C, |G(z)| ≤ CRε/(2+ε), where C = C(‖g‖∞, ‖ν‖C).
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Proof. Consider z0 = x0 + iy0 ∈ (2Q\R). Since ∂̄G = µ∂g and supp(µ) ⊂ Q,
then

|G(z0)| .

ˆ

C

|µ(z)∂g(z)|

|z − z0|
dx dy =

ˆ

Q

|µ(z)∂g(z)|

|z − z0|
dx dy

=

ˆ

Q0

|µ(z)∂g(z)|

|z − z0|
dx dy +

ˆ

Q\Q0

|µ(z)∂g(z)|

|z − z0|
dx dy,(2)

where Q0 is the square centered at z0 and length l(Q0) = |y0|. To bound the first
integral in (2), set p = 2 + ε and q = (2 + ε)/(1 + ε). Then

(3)

ˆ

Q0

|µ(z)∂g(z)|

|z − z0|
dx dy ≤

(
ˆ

Q0

|µ(z)∂g(z)|2+εdx dy

)
1

2+ε

(
ˆ

Q0

|z − z0|
− 2+ε

1+εdx dy

)
1+ε

2+ε

.

As ν = |µ|2/|y|1+ε is a Carleson measure relative to R and |y| ≥ |y0|/2 for z ∈ Q0,
we obtain by lemma 2.2:

ˆ

Q0

|µ(z)∂g(z)|2+ε dx dy .

ˆ

Q0

|µ(z)|2+ε 1

|y|2+ε
dx dy

.
2

|y0|

ˆ

2Q0

|µ(z)|2

|y|1+ε
dx dy ≤ 4‖ν‖C .(4)

Let us now consider B0 = Br(z0) so that r ≃ |y0| and Q0 ⊂ B0. By changing
variables to polar coordinates,

(5)

ˆ

Q0

|z − z0|
− 2+ε

1+ε dx dy ≤

ˆ

B0

|z − z0|
− 2+ε

1+ε dx dy ≤ C(ε)r
ε

1+ε ≃ C(ε)|y0|
ε

1+ε .

Therefore, by (3), (4) and (5)

(6)

ˆ

Q0

|µ(z)∂g(z)|

|z − z0|
dx dy . C(‖ν‖C , ε)|y0|

ε

2+ε . C(‖ν‖C , ε)R
ε

2+ε .

To bound the second integral in (2), consider an open cover of Q\Q0 with squares,
Qi, centered at z0 and length l(Qi) = 2i|y0|, i ≥ 1. Note that it is sufficient a cover
with M squares such that M . log2(R/|y0|). Then, by (1)

ˆ

Q\Q0

|µ(z)∂g(z)|

|z − z0|
dx dy .

M
∑

i=1

2−i

|y0|

ˆ

Qi\Qi−1

|µ(z)∂g(z)| dx dy

.

M
∑

i=1

2−i

|y0|
(2i|y0|)

1+ε/2 . |y0|
ε/2(2ε/2)M . Rε/2.(7)

Therefore, by (2), (6) and (7), |G(z0)| ≤ C(‖ν‖C , ‖λ‖C, ε)R
ε/(2+ε).

For z0 ∈ (2Q
⋂

R), let Qi be the square centered at z0 and length l(Qi) = 22−iR,
i ≥ 0. Since ∂̄G = µ∂g and supp(µ) ⊂ Q, by (1)

|G(z0)| .

ˆ

Q

|µ(z)∂g(z)|

|z − z0|
dx dy =

∑

i≥0

ˆ

Qi\Qi+1

|µ(z)∂g(z)|

|z − z0|
dx dy

.
1

R

∑

i≥0

2i
ˆ

Qi

|µ(z)∂g(z)| dx dy .
1

R

∑

i≥0

2il(Qi)1+ε/2 . Rε/2.

Therefore, |G(z0)| ≤ CRε/2 for C = C(‖µ‖C, ‖λ‖C , ε).
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Finally, let z0 ∈ C\2Q. Then, by (1)

|G(z0)| .

ˆ

Q

|µ(z)∂g(z)|

|z − z0|
dx dy ≤

1

R

ˆ

Q

|µ(z)∂g(z)| dx dy

≤ C(‖ν‖C , ‖λ‖C)R
ε/2. �

We now prove Theorem 1:

Theorem 1. Let f1, f2, . . . , fn ∈ H∞(Ω) so that δ ≤ maxj |fj(ω)| ≤ 1, for

all ω ∈ Ω and some δ > 0. Then, there exist g1, g2, . . . , gn ∈ H∞(Ω) such that

f1g1 + f2g2 + . . .+ fngn = 1 on Ω.

Proof. Gamelin [3] showed that it is sufficient to prove it locally, that is, that
for ζ ∈ Γ there exists a neighborhood of ζ on which it is true and such that the size
of this neighborhood is determined by δ, n and other parameters concerning Γ (see
also [4, p. 358]).

We can then assume that µ(z) = 0 outside a square Q centered at a real point
with length R, for a small enough R = R(n, δ,Γ) to be determined later. To see
this, consider the solution ρ̃ of the Beltrami equation ∂̄ρ̃ = µ∂ρ̃ for z ∈ Q, ∂̄ρ̃ = 0
otherwise. Then, ρ = F ◦ ρ̃ where F is an univalent function in the region ρ̃(Q), and
therefore it will be enough to prove the corona theorem for the domain Ω̃ = C\ρ̃(E0).

Since the dilatation coefficient µ̃ = µχQ obviously satisfies that |µ̃|2/|y|1+ε dx dy is

a Carleson measure, we know that Γ̃ = ρ̃(R) is also a C1+α̃ curve for α̃ = α̃(α, ‖µ‖∞)
([2], Theorem 1) and therefore all the previous lemmas apply if we replace Γ, µ and

ρ by the corresponding Γ̃, µ̃ and ρ̃. To avoid excessive use of notation, we will drop
the tilde notation.

Let f ∗
k = fk ◦ ρ on Ω0. Then, the jump of f ∗

k across E0 is indeed the pullback
of j(fk) under the mapping ρ, that is, j(f ∗

k ) = j(fk) ◦ ρ. Note that f ∗
1 , . . . , f

∗
n ∈

H∞(Ω0, µ).

Set f̃k = CR(j(f
∗
k )). By Theorem 2, f̃k ∈ H∞(Ω0). First, we want to show that f̃k

are corona data in Ω0. So, let Gk = f ∗
k − f̃k and z0 ∈ Ω0. Then, there exists 1 ≤ j ≤ n

such that δ ≤ |f ∗
j (z0)| ≤ |Gj(z0)|+ |f̃j(z0)|. By lemma 2.3, |Gj(z0)| . Rε/(2+ε) ≤ δ/2

for a sufficiently small R and therefore δ/2 ≤ |f̃j(z0)|.
According to Garnett and Jones’ theorem for Denjoy domains [5], there exist

h̃1, h̃2, . . . , h̃n ∈ H∞(Ω0) such that f̃1h̃1 + . . . f̃nh̃n = 1 with ‖h̃k‖∞ ≤ C(n, δ).

Define H∗
k = j(h̃k). Then, H∗

k ∈ L∞(R) and h̃k = CR(H
∗
k). Set Hk = H∗

k ◦ ρ−1

on Γ and define hk = CΓ(Hk). Although {hk}
n
k=1 ⊂ H∞(Ω) by Theorem 2, they are

not corona solutions as they do not verify that f1h1 + f2h2 + . . . fnhn = 1 on Ω.
Consider the analytic functions gk(ω) = hk(ω)/(

∑

fj(ω)hj(ω)), 1 ≤ k ≤ n, on
Ω. They clearly satisfy that

∑

gjfj = 1. We just need to prove that g1, g2, . . . gn are
also bounded. For that, it is sufficient to show that

∑

fkhk is close to 1.

Let us denote h∗
k = hk ◦ ρ ∈ H∞(Ω0, µ). Note that j(h∗

k) = j(h̃k). For any z ∈ Ω0

and by lemma 2.3:

|

n
∑

k=1

fk(ρ(z))hk(ρ(z))− 1| = |

n
∑

k=1

f ∗
k (z)h

∗
k(z)−

n
∑

i=1

f̃k(z)h̃k(z)|

≤

n
∑

k=1

|f ∗
k (z)||h

∗
k(z)− h̃k(z)|+

n
∑

k=1

|h̃k(z)||f̃k(z)− f ∗
k (z)|
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(8) . nRε/(2+ε) + nC(n, δ)Rε/(2+ε) ≤ 1/2

for a sufficiently small R. �

As a final remark, this new approach encourages us to find solutions to the corona
problem for domains bounded by other quasicircles. For that, one would need to find
conditions on µ so that we can transfer H∞ on the complement of a curve onto the
corresponding Denjoy domain.
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