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Abstract. We show the solvability of the Dirichlet problem on Weil–Petersson class quasidisks

and establish a Sokhotski–Plemelj jump formula for Weil–Petersson class quasicircles. Furthermore

we show that the resulting Cauchy projections are bounded. In both cases the boundary data

belongs to a certain conformally invariant Besov space. Moreover we show that the WP-class

quasicircles are chord-arc curves.

1. Introduction

In this paper we demonstrate that the Dirichlet problem is solvable on a WP-
class quasidisk Ω with boundary values in a certain Besov space H(∂Ω), and that
traces of finite Dirichlet energy harmonic functions are in this Besov space. Thus we
obtain a precise characterization of the set of boundary values of complex harmonic
functions of finite Dirichlet energy for WP-class quasidisks. We also show that this
Besov space is conformally invariant in the sense that composition by a conformal
map onto another WP-class quasidisk is a bounded invertible map. We also extend
the Sokhotski–Plemelj jump decomposition to H(Γ) on any Weil–Petersson class qua-
sicircle Γ. The resulting Cauchy projections are bounded. In the case that Γ = S

1,
H(Γ) becomes the Sobolev space of function with square-integrable half-order deriva-
tives. The WP-class quasicircles are a strict subclass of the so-called asymptotically
conformal quasicircles, which have been an object of interest for the last decade.
Their study was initiated by Cui [5] and Guo [9], in connection with finding a theory
of the universal Teichmüller space based on Lp Beltrami differentials and conformal
maps. The memoir [18] of Takhtajan and Teo obtained wide-ranging results on the
WP-class universal Teichmüller space, including for example sewing formulas for the
Laplacian and potentials for the Weil–Petersson metric. This stimulated a great deal
of interest in the subject (see Shen [15]). The analytic problems in this paper have
applications to a function-theoretic model of the Weil–Petersson class Teichmüller
space of Riemann surfaces of genus zero with n boundary curves, and also to the
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existence of determinants of certain elliptic operators in conformal field theory [10,
Appendix D]. These results will appear in two future publications.

The analysis in the paper involves Sobolev and Dirichlet spaces on quasidisks.
In particular we require some results of of Smith and Stegenga [16] and Stanoyevitch
and Stegenga [17] concerning Poincaré inequalities on John domains. Later in the
investigation of the regularity of the WP-class quasicircles we utilize a result from
geometric measure theory due to Falconer and Marsh [7] characterizing bi-Lipschitz
equivalence of quasidisks. Furthermore the study of Sobolev and Besov spaces, and
in particular the traces of functions on the boundary of so called Ahlfors-regular
domains (to which we show the WP-class quasidisks belong), was investigated by
Jonsson [11]. Finally the existence of the solution to the Dirichlet problem on the
WP-class quasidisks, with Besov space boundary data, hinges on results of Chang
and Lewis [4] and Mitrea, Mitrea and Monniaux [13].

2. Dirichlet problem

In this section we show the solvability of the Dirichlet problem with values in
a certain Besov space. This is done by using some known facts and results from
geometric measure theory and elliptic PDEs and combining these with our function
theoretic lemmas and theorems. In particular we characterize the boundary values
of harmonic functions of finite Dirichlet energy.

2.1. Function spaces associated with the Dirichlet problem. Let us
first recall the definition of the holomorphic Dirichlet spaces. Let Ω be a simply-
connected domain in the Riemann sphere C. We will assume that 0 and ∞ are not
on the boundary of Ω. The Dirichlet space is

(2.1) D(Ω) =

{

h : Ω → C : h holomorphic in Ω and

¨

Ω

|h′|2 dA < ∞
}

,

if ∞ /∈ Ω, and if ∞ ∈ Ω, then
(2.2)

D(Ω) =

{

h : Ω → C : h holomorphic in Ω, h(∞) = 0 and

¨

Ω

|h′|2 dA < ∞
}

.

We endow D(Ω) with the norm

(2.3) ‖h‖ =

(
¨

Ω

|h′|2 dA
)1/2

if ∞ ∈ Ω, and with the norm

(2.4) ‖h‖ =

(

|h(0)|2 +
¨

Ω

|h′|2 dA
)1/2

if 0 ∈ Ω. The convention that functions in D(Ω) satisfy h(∞) = 0 if ∞ is in Ω is
a matter of convenience, which we adopt because functions obtained by a Cauchy
integral will have this property.

We will also require the space of harmonic functions of finite Dirichlet energy on
a quasidisk, and the characterization of their boundary values. Here for definiteness
we assume that 0 ∈ Ω and ∞ is not in the closure of Ω. Other cases can be obtained
by composition with a Möbius transformation. We define the harmonic Dirichlet
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space

Dharm(Ω) =

{

h : Ω → C : h harmonic in Ω and

¨

Ω

|h′|2 dA+

¨

Ω

|h′|2 dA < ∞
}

.

(2.5)

We endow Dharm(Ω) with a norm

(2.6) ‖h‖Dharm(Ω) =

{

|h(0)|2 +
¨

Ω

|h′|2 dA+

¨

Ω

|h′|2 dA
}

1

2

.

Next we recall the definition of Sobolev spaces on open connected subsets of R2.

Definition 2.1. Let Ω be an open connected domain in the plane. Denote by
H1(Ω) the Sobolev space of functions in L2(Ω) with

(2.7) ‖h‖H1(Ω) := {‖h‖2L2(Ω) + ‖h′‖2L2(Ω) + ‖h′‖2L2(Ω)}
1

2 < ∞,

where the derivations are in the sense of distributions.

Theorem 2.2. Let Ω be a quasidisk containing 0. Then for h ∈ Dharm(Ω) one

has

(2.8) C ′‖h‖Dharm
≤ ‖h‖H1(Ω) ≤ C‖h‖Dharm

.

Proof. To show that ‖h‖H1(Ω) ≤ C‖h‖Dharm
, using (2.6) and (2.7), it would be

enough to show that ‖h‖2L2(Ω) ≤ C(|h(0)|2 + ‖h′‖2L2(Ω) + ‖h′‖2L2(Ω)), for h ∈ Dharm(Ω).

Now it is well-known, see for example [16] and [17], that for any quasidisk Ω
(which is a so called John domain), for any arbitrary z0 in Ω, and for F holomorphic
in Ω, one has the analytic Poincaré inequality

(2.9) ‖F − F (z0)‖L2(Ω) ≤ C(z0)‖F ′‖L2(Ω).

Now since Ω is simply connected, any h ∈ Dharm(Ω) can be represented as h(z) =

F (z) +G(z), where F and G are holomorphic functions in Ω. Therefore, (2.9) yields

(2.10)

‖h‖2L2(Ω) ≤ 2‖h− h(0)‖2L2(Ω) + 2|Ω||h(0)|2

≤ 4‖F − F (0)‖2L2(Ω) + 4‖G−G(0)‖2L2(Ω) + 2|Ω||h(0)|2

≤ 2|Ω||h(0)|2 + C1(‖F ′‖2L2(Ω) + ‖G′‖2L2(Ω))

≤ C2(|h(0)|2 + ‖h′‖2L2(Ω) + ‖h′‖2L2(Ω)),

where we have also used the holomorphicity of F and G which yields that F ′(z) =

h′(z) and G′(z) = h
′
. This concludes the proof of the second estimate in (2.8).

In order to show C ′‖h‖Dharm
≤ ‖h‖H1(Ω), it is enough to show that |h(0)|2 ≤

C‖h‖2L2(Ω). To this end, we observe that since 0 ∈ Ω and h is harmonic in Ω, there

is an r > 0 such that D(0, r) ⊂ Ω and by the mean-value theorem for harmonic
functions one has

(2.11) |h(0)| ≤ 1

πr2

¨

D(0,r)

|h(z)| dA(z) ≤ |Ω|
πr2

¨

Ω

|h(z)| dA(z)|Ω| .

Now Jensen’s inequality yields that

(2.12) |h(0)|2 ≤ |Ω|
π2r4

¨

Ω

|h(z)|2 dA(z)

which gives us the desired estimate. This ends the proof of the theorem. �
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2.2. WP-class quasidisks and their regularity. Let D+ = {z : |z| < 1} and
D

− = {z : |z| > 1} ∪ {∞}. Denote the set of Beltrami differentials on D
− satisfying

¨

D−

|µ(z)|2
(|z|2 − 1)2

dA < ∞

by L2
hyp(D

−) (“hyp” stands for “hyperbolic”, since the condition above says that |µ|
is square-integrable with respect to the hyperbolic area element on D

−). With this
in mind, we make the following definition, following terminology of [14].

Definition 2.3. Let f : D+ → C be a one-to-one analytic map. We say that f
is WP-class if it has a quasiconformal extension to C whose Beltrami differential µ
on D

− is in L2
hyp(D

−). We say that a Jordan curve Γ in C is a WP-class quasicircle
if there is a WP-class map f taking D

+ onto the bounded complement of Γ.

As above, we assume that ∞ /∈ Γ for convenience throughout the paper, although
the definition above can be naturally extended to allow this possibility. We refer to
each of the two complements of a WP-class quasicircle as WP-class quasidisks.

We will also need the appropriate function spaces of boundary values correspond-
ing to the Dirichlet problem. In the case of a WP-class quasidisks, the most natural
space is a certain Besov space, which we will define shortly. To this end, let us recall
the definition of an Ahlfors-regular set in R

2.

Definition 2.4. Let E be a compact subset of R2. One says that E is Ahlfors-
regular (or 1-regular) if it is bounded and if there is a constant CE such that

(2.13)
1

CE

r ≤ H (B(x, r) ∩ E) ≤ CEr

for all x ∈ E, 0 < r ≤ diam(E), where H denotes the one-dimensional Hausdorff
measure.

From this, it also follows that the Hausdorff dimension dH of an Ahlfors-regular
set is equal to 1. In this paper we will be particularly concerned with WP-class
quasicircles which we later show are Ahlfors-regular, see Theorem 2.8.

We now define the relevant Besov space H(∂Ω):

Definition 2.5. Let Ω ⊂ R
2 with an Ahlfors-regular boundary ∂Ω. The Besov

space H(∂Ω) consists of all u ∈ L2(∂Ω) for which

‖u‖H(∂Ω) :=

{
ˆ

∂Ω

|u(x)|2 dH (x)

}1/2

+

{
¨

|x−y|<1

|u(x)− u(y)|2
|x− y|2 dH (x) dH (y)

}1/2

< ∞.

(2.14)

Note that in the case that ∂Ω = S
1 (the unit circle), this reduces to the Sobolev

space H(S1) of functions with square-integrable half-order derivatives, see e.g. [12].
It was shown by Jonsson [11] that if Ω is a domain in R

2 whose boundary ∂Ω is
Ahlfors-regular, then the elements of H1(Ω) have a well-defined trace or restriction
to ∂Ω. More precisely, given Ω ⊂ R

2 whose boundary ∂Ω is Ahlfors-regular and given
f ∈ H1(Ω), its trace f |∂Ω exists as a function in the Besov space H(∂Ω), moreover for
some C > 0 one has ‖f |∂Ω‖H(∂Ω) ≤ C‖f‖H1(Ω). Conversely, every function f ∈ H(∂Ω)
can be extended to a function F ∈ H1(Ω) in such a way that F depends continuously
on the boundary data.
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From this and the discussion above on the regularity of the quasicircles, we can
immediately conclude

Proposition 2.6. Given a WP-class quasidisk Ω and u ∈ H1(Ω), one has

‖u|∂Ω‖H(∂Ω) ≤ C‖u‖H1(Ω). Conversely a function u ∈ H(∂Ω) has an extension to

a function U ∈ H1(Ω).

We also need to recall the definition of a chord-arc curve.

Definition 2.7. A closed curve in R
2 is called chord-arc if it is an Ahlfors-regular

quasicircle.

Therefore Γ is a chord-arc curve if and only if it is rectifiable and there is a
constant C > 0 such that the length of the shorter arc of Γ joining the two points
w1 and w2 is bounded from above by C|w1 − w2| (see e.g. [8]).

The following theorem establishes the fact that WP-class quasidisks are chord-

arc domains, i.e., bounded domains in the plane that have a chord-arc boundary
curve. This gives a partial answer to the problem of intrinsically characterizing WP-
class quasidisks posed by Takhtajan and Teo [18, Part II Remark 1.10]. (In the
same remark they also posed the problem of intrinsically characterizing WP-class
quasisymmetries—solved by Shen [15]).

Theorem 2.8. Let the Beltrami differential µ belong to L2
hyp(D

+). Then the

corresponding WP-class quasicircle is a bi-Lipschitz image of the circle S1 and hence a

chord-arc curve. Furthermore the corresponding WP-class quasidisk is a bi-Lipschitz

image of the unit disk D
+.

Proof. The assumption that the Beltrami coefficient µ ∈ L2
hyp(D

+) and the iso-
morphism 1/z between D

+ and D
− together with a result of Becker and Pommerenke

[3, Corollary 1.4] yield that the corresponding quasiconformal map fµ is asymptot-
ically conformal in the sense of [3]. From this and a result of Badger, Gill, Rohde
and Toro (see [2, Corollary 2.7]) it readily follows that dH(f

µ(S1)) = 1, i.e., the qua-
sicircle associated with µ ∈ L2

hyp(D
+) has Hausdorff dimension exactly equal to 1.

At this point we use a classical result of Falconer and Marsh [7] that if two quasicir-
cles have the same Hausdorff dimension then they are bi-Lipschitz homeomorphic.
Now since dH(S

1) = 1 it follows that there exists a bi-Lipschitz map ϕ from S1 to
fµ(S1) = ϕ(S1). Now it follows from a result of Tukia [19] that ϕ has a bi-Lipschitz
extension to the plane. Furthermore, since S

1 is both Ahlfors-regular and rectifiable
and these two properties are both preserved under bi-Lipschitz homeomorphisms, it
follows at once that fµ(S1) is a chord-arc curve. �

2.3. Solvability of the Dirichlet problem. Now, using the fact that a WP-
class quasidisk is a chord-arc domain, one can show that the Dirichlet problem is
solvable on a WP-class quasidisk Ω with boundary values in H(∂Ω). In fact we show
that H(∂Ω) consists precisely of functions which are boundary values of harmonic
functions in Ω. This establishes its naturality.

Theorem 2.9. Let Ω be a WP-class quasidisk such that ∞ /∈ Ω and 0 ∈ Ω.

Then the following statements are valid.

(1) Every function h ∈ H(∂Ω) is the trace of an element H ∈ Dharm(Ω); fur-

thermore, the linear operator taking h to H is bounded with respect to the

Dharm(Ω) and Besov norms.
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(2) Every element H ∈ Dharm(Ω) has a trace in H(∂Ω). Furthermore the linear

operator taking H to its trace is bounded with respect to the Dharm norm and

Besov norms.

Proof. (1) A careful examination of the proof of Theorem 3.4 in [13] reveals
that the Dirichlet problem on a chord-arc domain with boundary data in H(∂Ω) has
a solution whose H1 norm depends continuously on the data; see in particular [4].
Since the H1 and Dharm norms are equivalent by Theorem 2.2, this proves the first
part of the theorem.

(2) The identity map from Dharm(Ω) to H1(Ω) is bounded by Theorem 2.2. The
claim now follows from the fact that the trace operator from H1(Ω) to H(∂Ω) is
bounded by Proposition 2.6. �

It follows directly from Theorem 2.9 that composition by a conformally extendible
map between quasicircles is a bounded invertible map between the Besov spaces.

Theorem 2.10. Let Ω1 and Ω2 be WP-class quasidisks containing 0 and such

that ∞ /∈ ∂Ωi. If F : Ω1 → Ω2 is a conformal map taking 0 to 0, and CF : H(∂Ω2) →
H(∂Ω1) is composition by the trace of F on the boundary (i.e., h 7→ h ◦F ), then CF

is a bounded map.

Proof. First, observe that since Ω1 and Ω2 are quasidisks, F has a continuous
extension to ∂Ω1 which is a homeomorphism of Ω1 onto Ω2.

Let h ∈ H(∂Ω2). By Theorem 2.9 H has a harmonic extension depending contin-
uously on h. Now since H 7→ H ◦ F is an isometry in Dharm(Ω), Theorem 2.9 yields
the claim. �

Remark 2.11. Note F extends to a quasisymmetry of the boundary. Since
CF−1 = C−1

F , we have that CF has a bounded inverse under the hypotheses of the
theorem.

Remark 2.12. Theorem 2.10 demonstrates that the Besov space H(∂Ω) inherits
the property of conformal invariance from the harmonic Dirichlet space.

3. Jump formula and Cauchy projections

3.1. Solution of the jump problem on WP-class quasicircles. In this
subsection, we show that the jump problem is solvable for WP-quasidisks for bound-
ary values in H(∂Ω). From Theorem 2.8 it follows immediately that the boundary
of a WP-class quasidisk is a rectifiable curve and therefore Cauchy integrals will be
defined in a natural way on the WP-class quasicircles. Next we discuss Cauchy inte-
grals. Let Γ be a closed oriented rectifiable Jordan curve in the plane not containing
∞ and let Ω+ and Ω− denote its two complementary regions. Ω− will denote the re-
gion containing ∞. Given a function f on Γ one defines its Cauchy integral P (Γ)f(z)
for z /∈ Γ by

(3.1) P (Γ)f(z) =
1

2πi

ˆ

Γ

f(ζ)

ζ − z
dζ.

Now if P+(Γ)f and P−(Γ)f are restrictions of P (Γ)f(z) to Ω+ and Ω− respectively,
and if f+ and f− are their boundary values, the Sokhotski–Plemelj jump formula
yields that

(3.2) f±(z) =
±1

2
f(z) +

1

2πi
P.V.

ˆ

Γ

f(ζ)

ζ − z
dζ, z ∈ Γ.
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A classical result due to David [6] yields that if Γ is a chord-arc curve then given
f ∈ L2(Γ), one has the estimate, ‖f±‖L2(Γ) ≤ C‖f‖L2(Γ).

We will also need estimates for a certain integral operator that appears frequently
in function theory. This operator is defined by

(3.3) TΩf(z) =

¨

Ω

f(ζ)

ζ − z
dA(ζ).

We also have that

(3.4) ∂zTΩf(z) = lim
ε→0

¨

Ω∩{|ζ−z|>ε}

f(ζ)

(ζ − z)2
dA(ζ).

Lemma 3.1. Let Ω be a bounded domain in the plane. Then ‖TΩf‖L2(Ω) ≤
C‖f‖L2(Ω) and ‖∂zTΩf‖L2(Ω) ≤ C‖f‖L2(Ω). Thus since ∂z̄TΩf = πfχΩ we have

(3.5) ‖TΩf‖H1(Ω) ≤ C‖f‖L2(Ω).

Proof. To establish the boundedness of TΩ on L2(Ω), we observe that using the
Cauchy–Schwarz inequality we have the pointwise estimate

(3.6) |TΩf(z)| ≤
{
¨

Ω

|f(ζ)|2
|ζ − z| dA(ζ)

}1/2{¨

Ω

1

|ζ − z| dA(ζ)
}1/2

.

But if |Ω| denotes the 2-dimensional Lebesgue measure of Ω, then it can be shown, see
e.g., Tutschke [20] that

˜

Ω
1

|ζ−z|
dA(ζ) ≤ 2

√
π|Ω|1/2, for z ∈ Ω. Therefore squaring

and integrating (3.6) and using Fubini’s theorem, we obtain

(3.7)

¨

Ω

|TΩf(z)|2 dA(z) ≤ 4π|Ω|‖f‖2L2(Ω),

which is the desired L2 boundedness.
In order to show the L2(Ω) boundedness of ∂zTΩ we just use (3.4) and the fact

that
‖∂zTΩf‖L2(Ω) ≤ ‖∂zTΩf‖L2(C) = ‖∂zTC(fχΩ)‖L2(C),

where χΩ denotes the characteristic function of Ω. Now, as was shown by Ahlfors in
[1], ‖∂zTCf‖L2(C) = π‖f‖L2(C). Therefore

(3.8) ‖∂zTΩf‖L2(Ω) ≤ π‖fχΩ‖L2(C) = π‖f‖L2(Ω),

which concludes the proof of the lemma. �

Now we have all the ingredients to state and solve the following Riemann bound-
ary value problem, sometimes called (with various kinds of regularity) the jump
problem.

Theorem 3.2. Let Ω+ be a WP-class quasidisk as above and let u be in H(∂Ω+).
Let Ω− denote the complement of Ω+ in C. Then the jump problem with data u
can be solved in the sense that there exist holomorphic functions u± on Ω± such

that, u± ∈ D(Ω±) and u+(z) − u−(z) = u(z) for z ∈ ∂Ω. Furthermore u± depend

continuously on the data; that is the Cauchy projections are bounded.

Proof. From the discussion above on the Cauchy integral, it readily follows that
the solution of this problem is given by u(z)± = P±(∂Ω

+)u(z). It remains to prove
that one has the estimate

(3.9) ‖u+‖H1(Ω+) ≤ c‖u‖H(∂Ω+).

The corresponding estimate on Ω− is similar and hence omitted. Now since u ∈
H(∂Ω+), it has an extension v ∈ H1(Ω+), therefore Proposition 2.6 yields that
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‖v‖H1(Ω+) ≤ c‖u‖H(∂Ω+). Moreover it is known that for v ∈ H1(Ω+) (using the
fact that ∂Ω+ is rectifiable),

(3.10) P+(∂Ω
+)v(z) = v(z) +

1

π

¨

Ω+

∂v(ζ)

ζ − z
dA(ζ) = v(z) +

1

π
TΩ+(∂v)(z),

where the integral above is taken as a principal value integral.
Using these facts and estimate (3.5) of Lemma 3.1 we can deduce that

‖u+‖H1(Ω+) = ‖P+(∂Ω
+)v‖H1(Ω+) ≤ ‖v‖H1(Ω+) + C1‖∂v‖L2(Ω+)

≤ (1 + C1)‖v‖H1(Ω+) ≤ C2‖u‖H(∂Ω+)

as claimed. �

Now, as a corollary of Theorem 3.2 we have the following result.

Corollary 3.3. Let Ω+ be a WP-class quasidisk in the plane such that ∞ /∈ Ω+,

bounded by the curve Γ. Then the operators P±(Γ) : H(Γ) → D(Ω±) are bounded.

Note that because of the limiting behaviour of the Cauchy kernel as z → ∞, we
have that P−(Γ)h(z) → 0 as z → ∞, so P−(Γ) does map into D(Ω−).
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