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Abstract. The Weil–Petersson and VMOA Teichmüller spaces, subspaces of the universal

Teichmüller space, are complex Banach manifolds modelled on different Banach spaces. We show

that they are holomorphically contractible. It is given in [28] that the Kobayashi and Teichmül-

ler metrics coincide with each other on the Weil–Petersson Teichmüller space. We show that this

property is also true on the VMOA Teichmüller space. A couple of other properties of the two

spaces are also obtained.

1. Introduction

Let L∞(D) denote the Banach space of essentially bounded measurable complex-
valued functions defined on the open unit disk D, and let M(D) be the open unit
ball in L∞(D) centered at the 0-constant function. For each element µ ∈ M(D),
there is a unique quasiconformal homeomorphism fµ of D with Beltrami coefficient
µ and normalized to fix three points 1,−1 and i. Two elements µ and ν of M(D)
are equivalent if fµ|S1 = f ν |S1, where S

1 = ∂D. Denote by [µ] or [fµ], [fµ|S1] the
equivalent class of µ. The universal Teichmüller space T (D) can be defined as

T (D) = {[µ] : µ ∈M(D)}.

A natural projection from M(D) to T (D) is defined by

Φ: M(D) → T (D) : µ 7→ [µ].

Let Ĉ be the extended complex plane and D
∗ = Ĉ\D. Given each element

µ ∈ M(D), let fµ be the quasiconformal mapping on Ĉ with Beltrami coefficient µ
on D and 0 on D

∗ and normalized on D
∗ as

fµ(z) = z +
b1
z
+
b2
z2

· · · .

Then fµ|D∗ = fν |D∗ if and only if fµ|S1 = f ν |S1.
Let Sfµ|D∗

be the Schwarzian derivative of fµ|D∗ and let B(D∗) be the Banach
space of holomorphic quadratic differentials φ on D

∗ under the following norm

‖φ‖B = sup
z∈D∗

|φ(z)|ρ−2
D∗(z) <∞,
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where ρD∗(z) = 1/(|z|2−1) is the Poincaré density on D
∗. Using the Bers embedding

β : T (D) → B(D∗) : β([µ]) = Sfµ|D∗
,

one can introduce a complex structure on T (D) such that Φ is a holomorphic split
submersion.

There are several interesting subspaces of T (D), which are also complex Banach
manifolds but modelled on Banach spaces with different norms. This paper involves
three of them: the space T0(D), the Weil–Petersson Teichmüller space and the VMOA
Teichmüller space. In the following, we first give a brief introduction to these three
spaces.

An element µ ∈M(D) is called a vanishing Beltrami coefficient if for any ǫ > 0,
there exist 0 < r < 1 such that ‖µ|D\Dr

‖∞ < ǫ, where Dr = {z : |z| < r}. Let M0(D)
be the collection of all vanishing Beltrami coefficients. Then T0(D) is defined to be

T0(D) = {[µ] : µ ∈M0(D)}.

The space T0(D) is a normal subgroup of T (D) under the composition [14], and
the quotient space T (D)/T0(D) is called the asymptotic Teichmüller space of D and
denoted by AT (D). For studies of AT (D), we refer to [14], [7], [8] and [10]. Let
B0(D

∗) be the subset of B(D∗) consisting of all φ ∈ B(D∗) such that

(1.1) lim
r→1+

sup
|z|=r

|φ(z)|ρ−2
D∗(z) = 0.

Then [µ] ∈ T0(D) if and only if β([µ]) ∈ B0(D
∗) [10], and T0(D) is a complex Banach

manifold modelled on the Banach space (B0(D
∗), ‖ · ‖B). Furthermore, the inclusion

map

i : T0(D) → T (D)

is holomorphic.
Let M2(D) be the subset of M(D) consisting of all µ ∈M(D) such that

ˆ

D

|µ(z)|2ρ2
D
(z) dx dy <∞,

where ρD(z) = 1/(1 − |z|2) is the Poincaré density on D. (For a convenience of
using fewer symbols in the expressions of integrals in the next section, we consider
ρD(z) = 0 if |z| ≥ 1.) The space T2(D) is defined as

T2(D) = {[µ] : µ ∈M2(D)},

which is called the integrable Teichmüller space in [3] or the Weil–Petersson Teich-
müller space in [22]. Let B2(D

∗) be the subset of B(D∗) consisting of all φ ∈ B(D∗)
such that

(1.2) ‖φ‖2 =

{
ˆ

D∗

|φ(z)|2ρ−2
D∗(z) dx dy

} 1

2

<∞.

It was proved in [3] that [µ] ∈ T2(D) if and only if β([µ]) ∈ B2(D
∗), and T2(D) is a

complex Banach manifold modelled on the Banach space (B2(D
∗), ‖ · ‖2). It is also

proved in Lemma 2 of [3] that (1.2) implies (1.1). Therefore,

(1.3) T2(D) ⊂ T0(D) ⊂ T (D).

Furthermore, T2(D) is a group under the composition [3]. For more studies of T2(D),
we refer to [16], [24] and [26].
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A positive measure λ defined on a simply connected domain Ω of Ĉ is called a
Carleson measure if

‖λ‖2c = sup
z,r

{
λ(Ω ∩ U(z, r))

r
: z ∈ ∂Ω, 0 < r < diameter(Ω)

}
<∞,

where U(z, r) = {w : |w − z| < r}. A Carleson measure λ is said to be vanishing if

lim
r→0

λ(Ω ∩ U(z, r))

r
= 0

uniformly on z ∈ ∂Ω. We denote by CM0(Ω) the set of all vanishing Carleson
measures on Ω. Let Mv(D) be the subset of M(D) consisting of all µ ∈ M(D) such
that |µ(z)|2ρD(z) ∈ CM0(D). Then the VMOA Teichmüller space Tv(D) is defined
by

Tv(D) = {[µ] : µ ∈Mv(D)}.

Let Bv(D
∗) be the subset of B(D∗) consisting of all φ ∈ B(D∗) such that

(1.4) |φ(z)|2ρ−3
D∗(z) ∈ CM0(D

∗),

which is a Banach space under the norm

‖φ‖v = ‖|φ|2ρ−3
D∗‖c.

It was proved in [23] that [µ] ∈ Tv(D) if and only if β([µ]) ∈ Bv(D
∗), and Tv(D) is a

Banach complex manifold modelled on (Bv(D
∗), ‖ · ‖v).

The proof of Lemma 2 in [3] can be modified to show that (1.4) implies (1.1)
[23]. Therefore,

(1.5) Tv(D) ⊂ T0(D) ⊂ T (D).

Furthermore, Tv(D) is also a group under the composition [23]. For more studies of
Tv(D), we refer to [1], [2] and [20].

Let T (D∗) = β(T (D)), T2(D
∗) = β(T2(D)) and Tv(D

∗) = β(Tv(D)). Then

T (D∗) ⊂ B(D∗), T2(D
∗) ⊂ B2(D

∗) and Tv(D
∗) ⊂ Bv(D

∗).

Furthermore,
T2(D

∗) ⊂ T (D∗) and Tv(D
∗) ⊂ T (D∗).

These subspaces of T (D) are introduced for different purposes: T0(D) is used to
define the asymptotic Teichmüller space of D; T2(D) plays an important role in the
study of the Weil–Petersson geometry of the universal Teichmüller space [16, 22, 26];
Tv(D) has applications in harmonic analysis (see [1], [23] and references therein). In
this paper, we study complex properties of T2(D) and Tv(D).

Note that T2(D) (resp. Tv(D)) and T (D) are complex Banach manifolds modelled
on Banach spaces with different norms. In fact, the topology induced by ‖ · ‖2 (resp.
‖ · ‖v) on T2(D) (resp. Tv(D)) is stronger than the one induced by ‖ · ‖B restricted on
T2(D) (resp. Tv(D)) ([3], [23]). Therefore, it is not obvious that the inclusion map
from T2(D

∗) (resp. Tv(D
∗)) to T (D∗) is holomorphic. In this paper, we first give a

proof to the following folklore theorem.

Theorem 1. (Folklore Theorem) The inclusion maps

i2 : (T2(D
∗), ‖ · ‖2) → (T (D∗), ‖ · ‖B)

and

iv : (Tv(D
∗), ‖ · ‖v) → (T (D∗), ‖ · ‖B)

are holomorphic.
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A complex manifold X is said to be holomorphic contractible to a point x0 ∈ X
if there is a continuous map

F : [0, 1]×X → X

such that for each x ∈ X, F (0, x) = x and F (1, x) = x0, and for each t ∈ [0, 1], the
map x 7→ F (t, x) is holomorphic from X to itself and fixes the point x0. Such a map
F is called a holomorphic contraction of X to x0.

It was shown respectively in [5], [3] and [27] that Teichmüller spaces, the spaces
T2(D) and Tv(D) are contractible. Since Teichmüller spaces are complex Banach
manifolds, an interesting question is to ask whether or not their images under the
Bers embedding β are holomorphically contractible. It is still an open question
whether or not T (D∗) is holomorphically contractible, but Earle proved in [6] that
T0(D

∗) is holomorphically contracted to the base point. The main result of this paper
is to show that T2(D

∗) and Tv(D
∗) are also holomorphically contracted to the base

point.

Theorem 2. (Main Theorem) Both T2(D
∗) and Tv(D

∗) are holomorphically

contracted to the base point β([0]).

The Kobayashi pseudo metric is defined on any complex Banach manifold, and
hence on any Teichmüller space. Then one likes to study whether or not the Kobayashi
pseudo metric and the Teichmüller metric coincide with each other on a Teichmüller
space. This is proved to be true by Royden on finite-dimensional Teichmüller spaces
[21] and by Gardiner on infinite-dimensional Teichmüller spaces [12]. A unified proof
of the coincidence of the two metrics on all Teichmüller spaces is given in [9]. The
same problem is studied on the space T0(D). It is proved in [8] that the Teichmüller
metric and the Kobayashi metric are equal on T0(D), see [15] for a direct proof. The
coincidence of the Kobayashi metric and the Teichmüller metric on T2(D) is given as
Theorem 1.1 in [28]. In this paper, we show that this property also holds on Tv(D).

Theorem 3. The Kobayashi metric coincides with the Teichmüller metric on

Tv(D).

By an invariant metric dX on a complex Banach manifold X we mean a pseudo
metric that satisfies

dD(f(x1), f(x2)) ≤ dX(x1, x2) and dX(g(z1), g(z2)) ≤ dD(z1, z2)

for any holomorphic functions f : X → D and g : D → X and two points x1, x2 ∈ X
or z1, z2 ∈ D. It is proved in [18] that any invariant metric on any asymptotic Teich-
müller space is a complete metric. As an application of our Theorems 1 and 3, we
obtain the following property.

Corollary 1. Any invariant metric on T2(D) or Tv(D) is not complete.

The Kobayashi metric is an invariant metric. Theorem 1.1 of [28], our Theorem 3
and the previous corollary imply the following corollary.

Corollary 2. Both T2(D) and Tv(D) are not closed in T (D) under the Teich-

müller metric.

Note that T0(D) is complete and closed in T (D) under the Teichmüller metric
and any invariant metric on T0(D) is complete.

The paper is organized as follows. We prove Theorems 1 and 2 in Section 2 and
Theorem 3 and Corollary 1 in Section 3.
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2. Proofs of Theorems 1 and 2

Let X and Y be two complex Banach spaces, and U be a non-empty open subset
in X. A mapping f : U → Y is said to be holomorphic if f is locally bounded and
the complex Gateaux derivative duf(x) defined by

duf(x) = lim
t→0

f(u+ tx)− f(u)

t

exists for each (u, x) ∈ (U,X). There are various equivalent definitions of holomorphy
([19], [24]). In this paper, we use the following characterization of holomorphy ([19],
[23]): a continuous map f : U → Y is holomorphic if for each (u, x) ∈ (U,X) and
each element y∗ from a total subset Y ∗

0 of the dual space Y ∗, y∗(f(u + tx)) is a
holomorphic function in a neighborhood of zero in the complex plane. Here a subset
Y ∗
0 of Y ∗ is total if y∗(y) = 0 for all y∗ ∈ Y ∗

0 implies y = 0.
In order to prove Theorem 1, we need the following two known results.

Lemma 1. [3] There exists a constant C > 0 such that

‖φ‖B ≤ C‖φ‖2.

Lemma 2. [23] There exists a constant C > 0 such that

‖φ‖B ≤ C‖φ‖v.

Proof of Theorem 1. By Lemma 1, we know that i2 is continuous. For each
z ∈ D

∗ and φ ∈ B(D∗), we define lz(φ) = φ(z). Then |φ(z)| ≤ ‖φ‖B(|z|
2 − 1)−2,

which implies ‖lz‖ ≤ (|z|2 − 1)−2. Thus lz ∈ B∗(D∗). Set A = {lz : z ∈ D
∗},

it is obviously A is a total subset of the dual space B∗(D∗). Now for each pair
(φ, ϕ) ∈ (T2(D

∗), B2(D
∗)) and any t on the complex plane with |t| small, it follows

from Lemma 1 that i2(φ+ tϕ) ∈ B(D∗). Then for each fixed z ∈ D
∗, we obtain that

lz(i2(φ+tϕ)) = φ(z)+tϕ(z) is a holomorphic function of t. Using the characterization
of holomorphy, we conclude that the inclusion map i2 is holomorphic. Using Lemma 2
and a similar argument, we can see that iv is also holomorphic. �

Before giving a proof of Theorem 2, let us recall some results and notation in [6].
In order to use some notation introduced in [6], we replace the four spaces B(D∗),
B0(D

∗), B2(D
∗) and Bv(D

∗) by their counterparts defined on D. Let A(z) = 1
z

and
B(D) be the collection of holomorphic functions ϕ on D with

‖ϕ‖B = sup
z∈D

|ϕ(z)|ρ−2
D
(z) <∞.

Then an isometric isomorphism A∗ from B(D∗) to B(D) is defined by

A∗(φ) = (φ ◦ A)(A′)2,

where φ ∈ B(D∗).
Let B0(D), B2(D) and Bv(D) be the subsets of B(D) consisting of all ϕ ∈ B(D)

such that

lim
r→1−

sup
|z|=r

|ϕ(z)|ρ−2
D
(z) = 0,

ˆ

D

|ϕ(z)|2ρ−2
D
(z) dx dy <∞

and

|ϕ(z)|2ρ−3
D
(z) ∈ CM0(D),
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respectively. Then A∗(B0(D
∗)) = B0(D), A∗(B2(D

∗)) = B2(D) and A∗(Bv(D
∗)) =

Bv(D). We denote by T0(D), T2(D) and Tv(D) the images under A∗ of T0(D
∗),

T2(D
∗) and Tv(D

∗) respectively. Then T2(D) = T0(D)∩B2(D) and Tv(D) = T0(D)∩
Bv(D). In order to conclude Theorem 2, it suffices to prove that T2(D) and Tv(D)
are holomorphically contractible. In the remaining part of this section, the following
theorem of Earle in [6] is employed to prove our Theorem 2.

Theorem A. [6] Given a point τ in the closed unit disk D and ϕ ∈ T0(D), let

gτ(z) = τz and g∗τ (ϕ) = (ϕ ◦ gτ)(g
′
τ )

2. Then

G : D× T0(D) −→ T0(D) : (τ, ϕ) 7−→ g∗τ (ϕ)

is a continuous map. Furthermore, for each fixed τ ∈ D the map ϕ 7→ G(τ, ϕ) is a

holomorphic map from T0(D) to itself.

Proof of Theorem 2. Let G(τ, ϕ) be the map defined in Theorem A. If G(τ, ϕ)
is continuous and maps holomorphically T2(D) to itself for any τ ∈ [0, 1], then the
map F (t, ϕ) = G(1− t, ϕ) : [0, 1]× T2(D) → T2(D) contracts T2(D) holomorphically
to the base point of T2(D).

In the following, by three steps, we will prove G(τ, ϕ) is continuous and maps
holomorphically T2(D) to itself for any τ ∈ [0, 1].

Step 1. We prove that G(τ, ϕ) = (ϕ ◦ gτ )(g
′
τ )

2 maps T2(D) into itself for each
τ ∈ [0, 1]. By Theorem A and T2(D) = T0(D) ∩ B2(D), we only need to prove
‖G(τ, ϕ)‖2 <∞ for any (τ, ϕ) ∈ [0, 1]×T2(D). Let (τ, ϕ) ∈ [0, 1]×T2(D) and denote
by Dτ = {z : |z| < τ}. Then

‖G(τ, ϕ)‖22 =

ˆ

D

|G(τ, ϕ)|2ρ−2
D
(z) dx dy =

ˆ

D

τ 4|ϕ(τz)|2ρ−2
D
(z) dx dy

≤ τ 2
ˆ

D

τ 2|ϕ(τz)|2ρ−2
D
(τz) dx dy = τ 2

ˆ

Dτ

|ϕ(z)|2ρ−2
D
(z) dx dy

≤ τ 2
ˆ

D

|ϕ(z)|2ρ−2
D
(z) dx dy = τ 2‖ϕ‖22 <∞,

(2.1)

which implies G(τ, ϕ) ∈ T2(D).

Step 2. We prove that G : [0, 1] × T2(D) → T2(D) is continuous. We first show
G(τ, ϕ) is continuous on the variable ϕ ∈ T2(D) for each fixed τ ∈ [0, 1] and then
show G(τ, ϕ) is continuous on the variable τ ∈ [0, 1] for each fixed ϕ ∈ T2(D).

Let τ ∈ [0, 1] and ϕ, ψ ∈ T2(D). Using a similar process of steps in (2.1), we
obtain

‖G(τ, ϕ)−G(τ, ψ)‖2 ≤ τ‖ϕ− ψ‖2.

Hence G(τ, ϕ) is continuous at any point ϕ ∈ T2(D) for each fixed τ ∈ [0, 1].
Now we prove that G(τ, ϕ) is continuous on the variable τ ∈ [0, 1] for each fixed

ϕ ∈ Tv(D). We divide the proof into two cases.
Case 1: We assume that a sequence {τn}

∞
n=1 of points in [0, 1] converges to a

point τ ∈ [0, 1). Then for any sufficiently large n and all z ∈ D , τnz and τz are
contained in a compact subset of D and hence

lim
n→∞

sup
z∈D

∣∣τ 4nϕ2(τnz)− τ 4ϕ2(τz)
∣∣ = 0.

Thus,

‖G(τn, ϕ)−G(τ, ϕ)‖22 ≤

(
sup
z∈D

∣∣τ 4nϕ2(τnz)− τ 4ϕ2(τz)
∣∣
)
ˆ

D

ρ−2
D
(z) dx dy → 0
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as n → ∞. This means that G(·, ϕ) is continuous at any point τ ∈ [0, 1) for each
fixed ϕ ∈ T2(D).

Case 2: Assume that a sequence {τn}
∞
n=1 of points in [0, 1] converges to 1. Denote

by Dr,1 = {z : r < |z| < 1}. Since ϕ ∈ T2(D), it follows that for any ǫ > 0, there
exists r ∈ (0, 1) such that

ˆ

Dr,1

|ϕ(z)|2ρ−2
D
(z) dx dy < ǫ.

Let r′ ∈ (r, 1). Since τn converges to 1, there exists N ∈ N such that τnz ∈ Dr,1 for
any n > N and any z ∈ Dr′,1. Using a similar process of steps in (2.1), we obtain if
n > N , then
ˆ

Dr′,1

|G(τn, ϕ)− ϕ|2ρ−2
D
(z) dx dy ≤

ˆ

Dr′,1

2
(
|G(τn, ϕ)|

2 + |ϕ(z)|2
)
ρ−2
D
(z) dx dy

≤ 4

ˆ

Dr,1

|ϕ(z)|2ρ−2
D
(z) dx dy < 4ǫ.

Using the same argument in Case 1, we can show

lim
n→∞

ˆ

Dr′

|G(τn, ϕ)− ϕ|2ρ−2
D
(z) dx dy = 0.

Thus

lim
n→∞

‖G(τn, ϕ)− ϕ‖2 = 0,

which means that G(τ, ϕ) is continuous at τ = 1 for each fixed ϕ ∈ T2(D).

Step 3. We prove that G(τ, ·) : T2(D) → B2(D) is holomorphic for each fixed
τ ∈ [0, 1]. Let z ∈ D and ϕ ∈ B2(D) and define lz(ϕ) = ϕ(z). From the proof of
Theorem 1 and B2(D) ⊂ B(D), we know lz ∈ B∗(D) ⊂ B∗

2(D). Set A = {lz : z ∈
D

∗}, it is obviously A is a total subset of the dual space B∗
2(D). Now let (ϕ, ψ) ∈

(T2(D), B2(D)) and let t be a complex variable with small |t|. For each fixed z ∈ D

and τ ∈ [0, 1], lz(G(τ, ϕ+ tψ)) = τ 2(ϕ(τz) + tψ(τz)) is a holomorphic function of t.
Consequently, G(τ, ·) : T2(D) → B2(D) is holomorphic for each fixed τ ∈ [0, 1].

In summary, the previous three steps imply thatG(τ, ϕ) is continuous on τ ∈ [0, 1]
and ϕ ∈ T2(D) and it maps T2(D) holomorphically to itself for each fixed τ ∈ [0, 1].

The second half of the proof is to show that G(τ, ϕ) is a continuous function
defined on [0, 1]× Tv(D) and it maps Tv(D) holomorphically to itself for each fixed
τ ∈ [0, 1]. Then F (t, ϕ) = G(1 − t, ϕ) : [0, 1] × Tv(D) → Tv(D) contracts Tv(D)
holomorphically to the base point of Tv(D). We divide the proof into the following
four steps.

Step 1′. We prove that for each (τ, ϕ) ∈ [0, 1] × Tv(D), ‖G(τ, ϕ)‖2v ≤ 2‖ϕ‖2v.
Given a point w ∈ S

1, denote by

U(w, r) = {z ∈ D : |z − w| < r} and τU(w, r) = {τz : z ∈ U(w, r)}.

We prove ‖G(τ, ϕ)‖2v ≤ 2‖ϕ‖2v by considering the following two cases.
Case 1: We assume that r ∈ (0, 1]. Clearly, if z ∈ U(w, r), then |z| ∈ [1 − r, 1].

Since
ρ−1

D
(z)

ρ−1

D
(τz)

is a non-increasing function of |z| for each τ ∈ [0, 1], we obtain

sup
z∈U(w,r)

ρ−3
D
(z)

ρ−3
D
(τz)

≤ sup
z∈U(w,r)

ρ−1
D
(z)

ρ−1
D
(τz)

≤
1− (1− r)2

1− τ 2(1− r)2
.
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Thus,

sup
0≤r≤1

{
1− τ(1− r)

r
sup

z∈U(w,r)

ρ−3
D
(z)

ρ−3
D
(τz)

}
≤ sup

0≤r≤1

2− r

1 + τ(1 − r)
< 2.

Using τU(w, r) ⊂ U(w, 1− τ(1− r)), we obtain

sup
w,r≤1

´

U(w,r)
|G(τ, ϕ)|2ρ−3

D
(z) dx dy

r

= sup
w,r≤1

´

U(w,r)
τ 4|ϕ(τz)|2ρ−3

D
(z) dx dy

r

≤ sup
w,r≤1

{´
U(w,r)

τ 2|ϕ(τz)|2ρ−3
D
(τz) dx dy

r
· sup
z∈U(w,r)

ρ−3
D
(z)

ρ−3
D
(τz)

}

≤ sup
w,r≤1

{´
U(w,1−τ(1−r))

|ϕ(z)|2ρ−3
D
(z) dx dy

1− τ(1 − r)
·
1− τ(1 − r)

r
sup

z∈U(w,r)

ρ−3
D
(z)

ρ−3
D
(τz)

}

≤ sup
w,r≤1

´

U(w,1−τ(1−r))
|ϕ(z)|2ρ−3

D
(z) dx dy

1− τ(1− r)
· sup
r≤1

{
1− τ(1− r)

r
sup

z∈U(w,r)

ρ−3
D
(z)

ρ−3
D
(τz)

}

≤ 2‖ϕ‖2v.

(2.2)

Case 2: We assume that r ∈ (1, 2]. Using τU(w, r) ⊂ U(w, r), we obtain

sup
w,r∈(1,2]

´

U(w,r)
|G(τ, ϕ)|2ρ−3

D
(z) dx dy

r
= sup

w,r∈(1,2]

´

U(w,r)
τ 4|ϕ(τz)|2ρ−3

D
(z) dx dy

r

≤ sup
w,r∈(1,2]

´

U(w,r)
τ 2|ϕ(τz)|2ρ−3

D
(τz) dx dy

r

= sup
w,r∈(1,2]

´

τU(w,r)
|ϕ(z)|2ρ−3

D
(z) dx dy

r

≤ sup
w,r∈(1,2]

´

U(w,r)
|ϕ(z)|2ρ−3

D
(z) dx dy

r
≤ ‖ϕ‖2v.

Combining the above two cases, we conclude that ‖G(τ, ϕ)‖2v ≤ 2‖ϕ‖2v at each
point (τ, ϕ) ∈ [0, 1]× Tv(D).

Step 2′. We prove that G(τ, ·) maps Tv(D) to itself for each fixed τ ∈ [0, 1].
When τ = 1, G(τ, ·) is the identity map and hence it maps Tv(D) to itself. In the
following, we assume τ ∈ [0, 1).

From Step 1′, G(τ, ϕ) is a Carleson measure on D for any (τ, ϕ) ∈ [0, 1] ×
Tv(D). By Theorem A, in order to prove G(τ, ϕ) maps Tv(D) to itself for any τ ∈
[0, 1), we only need to show that G(τ, ϕ) ∈ Bv(D) for any ϕ ∈ Tv(D). Since τ ∈
[0, 1), τU(w, r) ⊂ Dτ = {z : |z| < τ} for any w ∈ S

1 and any r. Denote by M =
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supz∈D |ϕ(τz)|2. Then

sup
w

1

r

ˆ

U(w,r)

|G(τ, ϕ)|2ρ−3
D
(z) dx dy = sup

w

1

r

ˆ

U(w,r)

τ 4|ϕ(τz)|2ρ−3
D
(z) dx dy

≤Mτ 4
1

r

ˆ

U(w,r)

ρ−3
D
(z) dx dy

≤Mτ 4
1

r

ˆ 2π

0

ˆ 1

1−r

(1− t2)3t dt→ 0

as r → 0. Hence G(τ, ϕ) ∈ Bv(D), which means that G(τ, ϕ) maps Tv(D) to itself
for each τ ∈ [0, 1).

Step 3′. We prove that G : [0, 1] × Tv(D) → Tv(D) is continuous. Let ϕ, ψ ∈
Tv(D). Using similar approaches in Step 1′, we obtain

‖G(τ, ϕ)−G(τ, ψ)‖2v ≤ 2‖ϕ− ψ‖2v.

This inequality implies that G(τ, ϕ) is continuous on the variable ϕ for each fixed for
τ ∈ [0, 1].

Now we prove that G(τ, ϕ) is continuous on the variable τ ∈ [0, 1] for each fixed
ϕ ∈ Tv(D). We divide the proof into two cases.

Case 1: Assume that a sequence {τn}
∞
n=1 of points in [0, 1] converges to a point

τ ∈ [0, 1). Then for any sufficiently large n, τnU(w, r) and τU(w, r) are contained in
a compact subset of D for all w ∈ S

1 and r, and hence

sup
w,r

sup
z∈U(w,r)

|G(τn, ϕ)−G(τ, ϕ)|2 → 0 as n→ ∞.

Since supw,r
1
r

´

U(w,r)
ρ−3
D
(z) dx dy <∞, it is easy to see that

sup
w,r

1

r

ˆ

U(w,r)

|G(τn, ϕ)−G(τ, ϕ)|2ρ−3
D
(z) dx dy → 0 as n→ ∞.

This means thatG(τ, ϕ) is continuous at any point τ ∈ [0, 1) for each fixed ϕ ∈ Tv(D).
Case 2: Assume that a sequence {τn}

∞
n=1 of points in [0, 1] converges to 1. Let

ϕ ∈ Tv(D). Given ǫ > 0, we choose 0 < r1 < 1 such that for any 0 < r ≤ r1,

(2.3) sup
w∈S1

1

r

ˆ

U(w,r)

|ϕ(z)|2ρ−3
D
(z) dx dy < ǫ.

Since τn → 1, we can choose 0 < r2 < r1 and N ∈ N such that for any n > N and
any 0 < r ≤ r2,

1− τn(1− r) < r1.

Using similar techniques in (2.2), we obtain that for any n > N and any 0 < r ≤ r2,

(2.4) sup
w∈S1

1

r

ˆ

U(w,r)

|G(τn, ϕ)|
2ρ−3

D
(z) dx dy < 2ǫ.

Let r0 = min{r1, r2}. When 0 < r ≤ r0 and n > N , (2.3) and (2.4) together
imply

sup
w∈S1

1

r

ˆ

U(w,r)

|G(τn, ϕ)− ϕ(z)|2ρ−3
D
(z) dx dy

≤ sup
w∈S1

2

r

ˆ

U(w,r)

(|G(τn, ϕ)|
2 + |ϕ(z)|2)ρ−3

D
(z) dx dy < 6ǫ.

(2.5)
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Now we assume r > r0. Given a point w ∈ S
1, we denote by ŵ∗w∗∗ the piece of

the boundary of U(w, r) on S
1, where w∗, w∗∗ are the endpoints of ŵ∗w∗∗. We choose

w1, w2, · · · , wk on S
1 satisfying that w1 = w∗, |wi−wi+1| = r0 for any 1 ≤ i < i+1 ≤

k, and w∗∗ ∈ U(wk, r0) but w∗∗ /∈ U(wi, r0) for 1 ≤ i ≤ k − 1. It is obvious that

k ≤

[
2r

r0

]
+ 1,

where [2r
r0
] denotes the integer part of 2r

r0
. Denote by wk+1 = w∗∗ and V (w, r) =

U(w, r)\ ∪k+1
i=1 U(wi, r0). Then V (w, r) is contained in a compact set of D for all

w ∈ S
1 and r > r0. Hence for the given ǫ > 0, we can choose N ′ ∈ N such that for

any n > N ′,

(2.6) sup
z∈V (w,r)

|G(τn, ϕ)− ϕ(z)|2 < ǫr0.

Using (2.5) and (2.6) and the construction of w1, w2, · · · , wk, we obtain for any n >
max{N,N ′},

sup
w∈S1

1

r

ˆ

U(w,r)

|G(τn, ϕ)− ϕ(z)|2ρ−3
D
(z) dx dy

≤ sup
w∈S1

1

r

ˆ

V (w,r)

|G(τn, ϕ)− ϕ(z)|2ρ−3
D
(z) dx dy

+ sup
w∈S1

r0
r

k+1∑

i=1

1

r0

ˆ

U(wi,r0)

|G(τn, ϕ)− ϕ(z)|2ρ−3
D
(z) dx dy

≤ ǫ
r0
r

ˆ

D

ρ−3
D
(z) dx dy +

r0
r
(k + 1)(6ǫ) ≤

π

2
ǫ+ 6

2r + 2r0
r

ǫ < 26ǫ.

(2.7)

By (2.5) and (2.7), we conclude that

‖G(τn, ϕ)−G(1, ϕ)‖2v → 0 as n→ ∞.

This means G(τ, ϕ) is continuous at τ = 1 for each fixed ϕ ∈ Tv(D).
By considering the above two cases, we have shown that G(τ, ϕ) is continuous on

the variable τ ∈ [0, 1] for each fixed ϕ ∈ Tv(D).

Step 4′. We prove that G(τ, ·) : Tv(D) → Bv(D) is holomorphic for each fixed
τ ∈ [0, 1]. Using the fact that A = {lz : z ∈ D

∗} is also a total subset of the dual
space B∗

v(D), the proof of this step is identical to the one of Step 3.
Combining Steps 1′–4′, we conclude that G(τ, ϕ) is continuous on both variables

and it maps Tv(D) holomorphically to itself for each fixed τ ∈ [0, 1]. �

3. Proofs of Theorem 3 and Corollary 1

It is given in [28] that the Kobayashi metric coincides with the Teichmüller metric
on the Weil–Petersson Teichmüller space T2(D). In addition, a criterion (see the
following Theorem B) is given in [28] for a subspace of T (D) to have the two metrics
to be same. In this section we use that criterion to show our Theorem 3, although
we first obtained this result through a quite direct approach (see [11]).

Theorem B. [28] Let T ′ be a complex manifold with a holomorphic embedding

ι of T ′ into T (D), and identify T ′ with ι(T ′) . If T ′ satisfies the following three con-

ditions, then the Teichmüller distance on T ′ coincides with the Kobayashi distance.

(1) The set T ′\[0] is contained in the set of Strebel points of T (D);
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(2) For any τ ∈ T ′, the right translation map for τ maps T ′ onto itself;

(3) For every τ ∈ T ′\[0], there exists a representative µ ∈ τ corresponding to a

frame mapping such that, for every µ′ ∈ τ that coincides with µ outside some

compact subset of D and for every t ∈ D, [tµ′] ∈ T ′.

A Strebel point of T (D) is a point [µ] of T (D) containing a frame mapping,
which is a quasiconformal homeomorphism of D whose maximal dilatation on the
complement of some compact subset of D is strictly less than the extremal maximal
dilatation of [µ]. For more information on Strebel points, we refer to [17], [25] and
[13].

Proof of Theorem 3. Using Theorem 1 and the facts that Tv(D) ⊂ T0(D) and
Tv(D) is a group, it suffices to prove that Tv(D) satisfies the condition (3) in Theo-
rem B. For this purpose, we only need to show for any point τ ∈ Tv(D), there exists
a representative µ of τ such that µ ∈ Mv(D) ∩M0(D). In the following, we prove
the existence of such a representative µ for τ . By the definition of Tv(D), it is easy
to check that the constructed µ satisfies the condition (3).

For any τ = [ν] ∈ Tv(D), let h = f ν |S1 and ex(h−1) be the Douady–Earle
extension of h−1 (see [5]). Denote by µ = µ(ex(h−1))−1 . Clearly, µ ∈ τ . Since Tv(D) ⊂
T0(D), [µ] ∈ T0(D). It follows from Theorem 4 of [10] that µex(h) ∈ M0(D). Then
µ(ex(h))−1 ∈ M0(D) and hence [h−1] ∈ T0(D). Again by Theorem 4 of [10], we know
µex(h−1) ∈M0(D), hence µ ∈M0(D).

To prove µ ∈Mv(D), we recall two results from [23] and [4]. Keep in mind that
CM0(D) denotes the collection of vanishing Carleson measures on D.

Lemma 3. [23] Assume that α, β > 0. For a positive measure λ on D, let

λ̃(z) =

ˆ

D

(1− |z|2)α(1− |w|2)β

|1− zw|α+β+2
λ(w) du dv, where w = u+ iv.

Then λ̃ ∈ CM0(D) if λ ∈ CM0(D).

Lemma 4. [4] Let h̃ be a quasisymmetric homeomorphism of S1. There exists

a constant C depending on the ratio distortion norm of h̃ such that ∀ z ∈ D,

|µf−1(z)|2

1− |µf−1(z)|2
≤ C

ˆ

D

|µg−1(w)|2

1− |µg−1(w)|2
(1− |z|)2

|1− zw|4
du dv,

where w = u + iv, f is the Douady–Earle extension of h̃ and g is a quasiconformal

extension of h̃.

Since τ = [h] = [ν] ∈ Tv(D), there exists a quasiconformal extension g̃ of h such
that

|µg̃(w)|
2ρD(w) ∈ CM0(D).

Let g = g̃−1. Then g is a quasiconformal extension of h−1 satisfying

|µg−1(w)|2ρD(w) ∈ CM0(D).

Applying Lemma 3 to the case when α = 1, β = 1 and λ(w) = |µg−1(w)|
2ρD(w), we

obtain
ˆ

D

|µg−1(w)|2
1− |z|2

|1− zw|4
du dv ∈ CM0(D).

Since g−1 is a quasiconformal map, the previous condition implies
ˆ

D

|µg−1(w)|2

1− |µg−1(w)|2
1− |z|2

|1− zw|4
du dv ∈ CM0(D),
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which is equal to

1 + |z|

1− |z|

ˆ

D

|µg−1(w)|2

1− |µg−1(w)|2
(1− |z|)2

|1− zw|4
du dv ∈ CM0(D).

Combined with applying Lemma 4 to h̃ = h−1, f = ex(h−1) and g, we conclude

1 + |z|

1− |z|

|µf−1(z)|2

1− |µf−1(z)|2
∈ CM0(D).

Since f−1 is a quasiconformal map, it follows that

|µf−1(z)|2ρD(z) ∈ CM0(D), i.e., µf−1 ∈Mv(D).

Therefore,
µ ∈Mv(D) ∩M0(D). �

Before giving a proof to Corollary 1, we introduce a result of [18].

Lemma 5. [18] Let dC,T (D) and dK,T (D) be the Carathéodory metric and the

Kobayashi metric on T (D) respectively. Then, for any p, q ∈ T (D), there is a uni-

versal constant α ≥ 1 such that

(3.1) dC,T (D)(p, q) ≤ dK,T (D)(p, q) ≤ αdC,T (D)(p, q).

Applying Theorems 1 and 3 to T2(D) and Tv(D), we obtain a similar result to
Lemma 5.

Lemma 6. Let dC,T2
and dK,T2

be the Carathéodory metric and Kobayashi

metric on T2(D) respectively, let dC,Tv
and dK,Tv

be the Carathéodory metric and

the Kobayashi metric on Tv(D) respectively, and let α be the same constant as in

Lemma 5. Then for any two points p, q ∈ T2(D),

(3.2) dC,T2
(p, q) ≤ dK,T2

(p, q) ≤ αdC,T2
(p, q);

for any two points p, q ∈ Tv(D),

(3.3) dC,Tv
(p, q) ≤ dK,Tv

(p, q) ≤ αdC,Tv
(p, q).

Proof. Since T2(D) is a complex Banach manifold, for any p, q ∈ T2(D) the
inequality dC,T2

(p, q) ≤ dK,T2
(p, q) holds. Using Theorem 1, we obtain

dC,T2
(p, q) ≥ dC,T (D)(p, q).

It follows from Lemma 5 and Theorem 3 that

dC,T (D)(p, q) ≥
1

α
dK,T (D)(p, q) =

1

α
dT (p, q) =

1

α
dK,T2

(p, q).

Hence, the double inequality (3.2) holds.
Using the same argument, we conclude the double inequality (3.3). �

Proof of Corollary 1. Let µ ∈ M0(D) and [µ] ∈ T0(D)\T2(D), and let {rn}
∞
n=1

be an increasing sequence of positive real numbers converging to 1. We set

µn(z) =

{
µ(z), z ∈ Drn,

0, z ∈ Drn,1.

Then {[µn]}
∞
n=1 ⊂ T2(D) is a Cauchy sequence in T2(D) under the metric dT2

= dK,T2

and furthermore the limit of {[µn]}
∞
n=1 is [µ].

Let d be an invariant metric on T2(D). For any two points p, q ∈ T2(D), it is
clear that

dC,T2
(p, q) ≤ d(p, q) ≤ dK,T2

(p, q).
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By Lemma 6,

1

α
dK,T2

(p, q) ≤ dC,T2
(p, q) ≤ d(p, q) ≤ dK,T2

(p, q).

Thus, {[µn]}
∞
n=1 is a Cauchy sequence under the metric d. Suppose that [µ∗] is a

limit of this sequence in T2(D) under the metric d. Using the previous inequality,
we know that [µ∗] is also a limit of {[µn]}

∞
n=1 under the Teichmüller metric on T2(D)

and hence on T (D). By the uniqueness of limits, [µ] = [µ∗]. This is a contradiction.
Therefore, the sequence {[µn]}

∞
n=1 has no limit in T2(D) under the metric d. Thus,

T2(D) is not complete under the metric d.
Using a similar argument, we conclude that Tv(D) is not complete under any

invariant metric d too. �
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