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Abstract. We prove that an injection from the integer set into the real line admits a quasi-

conformal extension to the complex plane if and only if it is quasisymmetric.

1. Introduction

Let E ⊂ C be a discrete subset. In [3], to study the Teichmüller space of the
punctured plane C \ Z, the author gave some criteria for C \ E to be quasiconfor-
mally equivalent to C\Z (that is, there exists a quasiconformal mapping F : C → C

such that F (E) = Z). In this paper, furthermore, we investigate the correspon-
dences between E and Z which are the restrictions of global quasiconformal map-
pings F : C → C such that F (E) = Z. A motivation of this attempt is to study the
Teichmüller modular group of C \ Z and its action.

Let η : [0,∞) → [0,∞) be a homeomorphism and f : X → R
n be an η-quasisym-

metric embedding from a subset X ⊂ R
n into R

n. The theory of quasisymmetry
and its quasiconformal extension originated from the well known study for n = 1 and
X = R by Beurling–Ahlfors [2]. They proved that a homeomorphism f : R → R

admits a quasiconformal extension F : C → C if and only if f is quasisymmetric.
This result enables us to treat the universal Teichmüller space, the Teichmüller space
of the unit disk, as the space of all orientation preserving quasisymmetric homeo-
morphisms of the unit circle which fix given three points. Later, Väisälä posed the
following question in [7, Question 8] which is still open: Can quasisymmetric embed-
ding f : X → R

n be extended to a K-quasiconformal mapping F : R2n → R
2n with

a constant K = K(n, η) ≥ 1 which depends only on n and η?
For example, Alestalo–Väisälä showed that if f : X → R

n is M-biLipschitz, then
there always exists a

√
7M2-biLipschitz extension F : R2n → R

2n of f , see [1, The-
orem 5.5]. On the other hand, for quasisymmetric embeddings, there is an obstacle;
Trotsenko–Väisälä proved in [5, Theorem 6.6] that if X ⊂ R

n is not relatively con-
nected, then there exists a quasisymmetric embedding f : X → R

n which cannot be
extended to a quasisymmetric embedding F : Rn → R

N for any N ≥ n. Since global
quasiconformal mappings F : R2n → R

2n are also quasisymmetric (see [4, Theo-
rem 11.14]), this fact implies that the Väisälä problem cannot be solved affirmatively
for general subsets X even if n = 1.

According to the recent study by Vellis [8], he showed that if X ⊂ R is M-
relatively connected, then every η-quasisymmetric embedding f : X → R

n can be
extended to an η′-quasisymmetric embedding F : R → R

N , where η′ depends only
on η and M , and N(≥ n) depends only on n, η, and M . Considering the one
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dimensional case of the Väisälä problem, it is interesting to find out whether we can
choose N = 2 uniformly when n = 1 in the Vellis’ result.

Let us consider the case of n = 1 and X = Z. In this paper, we would like to give
detailed observations on quasisymmetric embeddings f : Z → R, as an example of a
relatively connected set for which the Väisälä problem can be solved affirmatively;

Theorem A. (Extendability of quasisymmetric embeddings of Z) Every η-quasi-

symmetric embedding f : Z → R admits a K = K(η)-quasiconformal extension

F : C → C where K(η) is a constant depending only on η.

Recall that, in the study of Beurling–Ahlfors, they considered quasisymmetric
homeomorphisms of the real line. Although homeomorphisms of the real line are
monotone, quasisymmetric embedding f : Z → R need not to be monotone. This is
one of the difficulty in our study.

To prove Theorem A, first, we will discuss the extendability of quasisymmetric
automorphisms f : Z → Z in Section 4.1.

Theorem B. (Extendability of quasisymmetric automorphisms of Z) For a bi-

jection f : Z → Z, the following conditions are quantitatively equivalent;

1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition.

3. f is M-biLipschitz.

4. f admits an M-biLipschitz extension F : C → C.

5. f admits a K-quasiconformal extension F : C → C.

The λ-three point condition is defined as follows.

Definition 1.1. Let A ⊂ R be a subset and let λ ≥ 1. Then we say that an
injection f : A → R satisfies the λ-three point condition if the following inequality
holds for any x, y, z ∈ A with x < y ≤ z;

∣∣∣∣
f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ λ.

Note that the three point condition does not depend on the distances of x, y, z ∈
A. Moreover, if f : A → R satisfies the λ-three point condition, and if h : A → R is
strictly monotone increasing, then f ◦h−1 : h(A) → R also satisfies the λ-three point
condition.

We emphasise that Theorem B does not only state that every quasisymmetric au-
tomorphism of Z is quasiconformally extendable, but also characterizes quasisymme-
try by a simple condition, the three point condition. Further, an analogous theorem
holds for quasisymmetric automorphisms of E = {en}n∈Z, see Section 4.2.

Next, we will consider a subset of R which is an image of a quasisymmetric
embedding f : Z → R in Section 5, to complete the proof of Theorem A. In this case,
such subsets can also be characterized by a simple geometric condition as follows;

Theorem C. (Characterization of quasisymmetric images) For a subset E ⊂ R,

the following conditions are quantitatively equivalent;

1. There exists an η-quasisymmetric bijection f : Z → E.

2. E can be written as a monotone increasing sequence E = {an}n∈Z with

an → ±∞ as n → ±∞, and there exists a constant M ≥ 1 such that the

following inequality holds for all n ∈ Z and k ∈ N;

1

M
≤ an+k − an

an − an−k

≤ M.
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3. There exists a K-quasiconformal mapping F : C → C, such that F (Z) = E.

2. Definitions and basic properties

First, let η : [0,∞) → [0,∞) be a homeomorphism and X ⊂ C be a subset. An
injection f : X → C is said to be η-quasisymmetric if the following inequality holds
for any three points x, y, z ∈ X (x 6= z);

∣∣∣∣
f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ η

(∣∣∣∣
x− y

x− z

∣∣∣∣
)
.(QS)

If x 6= y, replacing y and z, the following lower estimate also holds;
∣∣∣∣
f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≥ η

(∣∣∣∣
x− y

x− z

∣∣∣∣
−1
)

−1

.

Notice that if there exists at least one η-quasisymmetric mapping (and X contains at
least two elements), applying (QS) to y = z, it turns out that η must satisfy η(1) ≥ 1.
Further if X ⊂ R and f(X) ⊂ R, then

∣∣∣∣
f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ η

(∣∣∣∣
x− y

x− z

∣∣∣∣
)

≤ η(1)

for all x, y, z ∈ X with x < y ≤ z, that is, f satisfies the η(1)-three point condition,
see Definition 1.1.

Next, let K ≥ 1 and Ω ⊂ C be a domain. An homeomorphism f : Ω → C into C

is said to be K-quasiconformal if the following inequality holds for all curve families
F in Ω;

1

K
modF ≤ mod f(F ) ≤ KmodF .

Here, for a curve family F in Ω, modF is defined by

modF = inf

ˆ

Ω

ρ2(x+ iy) dx dy,

where the infimum is taken over all non-negative Borel measurable functions ρ : Ω →
[0,∞] which satisfy

ˆ

γ

ρ(z)|dz| ≥ 1

for all rectifiable γ ∈ F .
These two concepts are closely related by the so-called egg-yolk principle, see [4,

Theorem 11.14]. In particular, for homeomorphisms from C onto itself, the quasi-
conformality and the quasisymmetry are quantitatively equivalent.

Finally, let X ⊂ C be a subset and M ≥ 1. Then a mapping f : X → C is said
to be M-biLipschitz if

1

M
|x− y| ≤ |f(x)− f(y)| ≤ M |x− y|

for any x, y ∈ X. If f : X → C is M-biLipschitz, then
∣∣∣∣
f(x)− f(y)

f(x)− f(z)

∣∣∣∣ ≤ M2

∣∣∣∣
x− y

x− z

∣∣∣∣

for all x, y, z ∈ X (x 6= z). Thus every M-biLipschitz mappping is η(t) = M2t-
quasisymmetric.
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3. Preliminary lemma

The following lemma will be used to prove both Theorem B and Theorem C.

Lemma 3.1. Let E = {an}n∈Z ⊂ R be a monotone increasing sequence. If a

bijection g : E → Z satisfies the µ-three point condition (µ ≥ 1), then for any n ∈ Z

and k ∈ N, the following inequality holds;

k

2µ
< |g(an)− g(an+k)| < 2µk.

Proof. We first prove the following estimation;

Claim 1. |g(an)− g(an+1)| < 2µ for any n ∈ Z.

Proof. Since µ ≥ 1, it suffices to consider the case where |g(an)− g(an+1)| ≥ 2.
Then we may assume g(an+1) > g(an) since the same argument mentioned below can
be applied to the case where g(an) > g(an+1).

Letting m ≤ n satisfy

g(am) = max {g(aj) | j ≤ n and g(an) ≤ g(aj) < g(an+1)}
and ℓ ∈ Z satisfy g(aℓ) = g(am) + 1 ( then ℓ ≥ n + 1 by the construction), we can
construct m, ℓ ∈ Z which satisfy the following conditions, see Figure 1;

1. m ≤ n and n+ 1 ≤ ℓ,
2. g(an) ≤ g(am) < g(aℓ) = g(am) + 1 ≤ g(an+1).

Figure 1. A part of the orbit of the sequence
(
g(aj)

)
j∈Z

.

First, suppose g(am) − g(an) ≥ (g(an+1)− g(an)) /2 ≥ 1. By the three point
condition,

µ ≥
∣∣∣∣
g(am)− g(an)

g(am)− g(aℓ)

∣∣∣∣ = g(am)− g(an) ≥
g(an+1)− g(an)

2
.

Thus we have g(an+1)− g(an) < 2µ.
Next, suppose g(am) − g(an) < (g(an+1)− g(an)) /2. Then g(an+1) − g(am) >

(g(an+1)− g(an))/2. Similarly we have g(an+1)− g(an) < 2µ. �

Claim 2. Lemma 3.1 holds.

Proof. (Upper bound) By the triangle inequality, it immediately follows from
Claim 1 that |g(an)− g(an+k)| < 2µk.

(Lower bound) Since the open interval
(
g(an)−

k

2
, g(an) +

k

2

)

contains at most k−1 integers except g(an), there exists an integer m ∈ Z (n < m ≤
n+ k) such that

|g(an)− g(am)| ≥
k

2
.
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By the three point condition, we obtain

µ ≥
∣∣∣∣
g(an)− g(am)

g(an)− g(an+k)

∣∣∣∣ ≥
k

2|g(an)− g(an+k)|
,

that is, |g(an)− g(an+k)| > k/2µ. �

4. Extendability of quasisymmetric automorphisms of Z

The aim of this section is to prove Theorem B. After proving Theorem B, we
also discuss the extendability of quasisymmetric automorphisms of E = {en}n∈Z.

4.1. Proof of Theorem B.

Theorem B. (Extendability of quasisymmetric automorphisms of Z) For a bi-

jection f : Z → Z, the following conditions are quantitatively equivalent;

1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition.

3. f is M-biLipschitz.

4. f admits an M-biLipschitz extension F : C → C.

5. f admits a K-quasiconformal extension F : C → C.

Proof. First, (1) ⇒ (2) is clear, see Section 2.
Next, we suppose f satisfies the λ-three point condition. By applying Lemma 3.1

to f and E = Z (that is, an = n), we have

k

2λ
< |f(n+ k)− f(n)| < 2λk,

for all n ∈ Z and k ∈ N. Thus we obtain (2) ⇒ (3).
(3) ⇒ (4) is already proved by Alestalo–Väisälä [1, Theorem 5.5].
Generally, M-biLipschitz mappings are η(t) = M2t-quasisymmetric. Further, η-

quasisymmetric mappings defined on connected open subsets are K-quasiconformal,
where K is a constant depending only on η. Thus we have (4) ⇒ (5).

Finally, (5) ⇒ (1) is also clear, since K-quasiconformal self-homeomorphisms of
C are η-quasisymmetric with an η depending only on K (thus the restrictions to Z

are also η-quasisymmetric with the same η). �

4.2. Extendability of quasisymmetric automorphisms of {en}n∈Z. Let
E = {en}n∈Z. We first prove the following.

Proposition 4.1. If a bijection f : E → E satisfies λ-three point condition

(λ ≥ 1), f(1) = 1, and f(en) → 0 as n → −∞, then f is Mλ-biLipschitz, where

Mλ = e2

e−1
λ(λ+ 1)2.

Proof. Let g := log ◦f ◦ exp, that is, f(en) = eg(n) for all n ∈ Z. Then, by the
assumptions, g(0) = 0 and g(n) → −∞ as n → −∞. Let Cλ = log(λ+ 1).

Claim 1. g(k)− g(ℓ) ≤ Cλ if k < ℓ.

Proof. Since Cλ > 0, it suffices to consider the case where g(k) > g(ℓ) and k < ℓ.
Since g(n) → −∞ as n → −∞, there exists an integer j < k such that g(j) < g(ℓ).
Thus, by the three point condition,

λ ≥
∣∣∣∣
eg(j) − eg(k)

eg(j) − eg(ℓ)

∣∣∣∣ =
eg(k)−g(ℓ) − e−(g(ℓ)−g(j))

1− e−(g(ℓ)−g(j))
.
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Since 0 < e−(g(ℓ)−g(j)) < 1, we have λ ≥ eg(k)−g(ℓ) − 1. Therefore g(k) − g(ℓ) ≤
log(λ+ 1) = Cλ. �

Claim 2. −(2Cλ + 1) ≤ g(n)− n ≤ 2Cλ + 1 for all n ∈ Z.

Proof. Let n > 0. By Claim 1 and g(0) = 0, we have g(m) ≥ −Cλ for all m > 0.
Thus there exists an integer j (0 ≤ j < n) such that g(j) ≥ −Cλ + n − 1. Using
Claim 1 again, we have

Cλ ≥ g(j)− g(n) ≥ −Cλ + n− 1− g(n).

Thus g(n)−n ≥ −(2Cλ+1). Further, to obtain a contradiction, we suppose g(n)−n >
2Cλ + 1. Note that g(n) > 0. Let

G = {1, 2, · · · , g(n)− 1, g(n)},
H = {g(1), g(2), · · · , g(n− 1), g(n)},
I = {g(n+ 1), g(n+ 2), g(n+ 3), · · · }.

By Claim 1, g(n)− Cλ ≤ g(m) for any m > n. This implies #(G ∩ I) ≤ Cλ. Since
g : Z → Z is bijective, we have

#(G \ (H ∪ I)) = #G−#(G ∩H)−#(G ∩ I)

≥ g(n)− n− Cλ > Cλ + 1.

Thus there exists an integer j < 0 such that g(j) > Cλ + 1. By Claim 1, we have a
contradiction;

Cλ ≥ g(j)− g(0) > Cλ + 1.

Therefore g(n)− n ≤ 2Cλ + 1.
The same argument can be applied to n < 0. We have the claim. �

Claim 3. Proposition 4.1 holds.

Proof. Let n,m ∈ Z (n > m) and let

A =

∣∣∣∣
f(en)− f(em)

en − em

∣∣∣∣ = eg(n)−n

∣∣∣∣
1− eg(m)−g(n)

1− em−n

∣∣∣∣ .

First, suppose g(n) > g(m). Since 0 < eg(m)−g(n), em−n ≤ e−1 and by Claim 2,
we have

A ≤ e2Cλ+1 1

1− e−1
=

e2

e− 1
(λ+ 1)2,

A ≥ e−(2Cλ+1)

(
1− 1

e

)
=

(
e2

e− 1
(λ+ 1)2

)−1

.

Next, we suppose g(n) < g(m). Note that, 1 ≤ g(m) − g(n) ≤ Cλ by Claim 1.
Similarly we have

A ≤ e2Cλ+1 e
Cλ − 1

1 − e−1
=

e2

e− 1
λ(λ+ 1)2,

A ≥ e−(2Cλ+1)(e− 1) =

(
e

e− 1
(λ+ 1)2

)
−1

.

Since λ ≥ 1, we have 1/Mλ ≤ A ≤ Mλ. �

Corollary 4.2. For a bijection f : E → E, f is quasisymmetric if and only if f
is biLipschitz.
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Proof. Generally, M-biLipschitz mappings are η(t) = M2t-quasisymmetric. Thus
“if” part follows.

Suppose f is η-quasisymmetric, and let F (z) = f(z)/f(1). Then F is also η-
quasisymmetric with the same η. Since quasisymmetric mappings take a Cauchy
sequence to a Cauchy sequence, we have F (en) → 0 as n → −∞. Further F (1) = 1
and F satisfies the λ := η(1)-three point condition, see Section 2. Thus, by Proposi-
tion 4.1, F is Mλ-biLipschitz. Therefore f(z) = f(1)F (z) is max{f(1)Mλ,Mλ/f(1)}-
biLipschitz. �

Remark 4.3. Contrary to Theorem B, the equivalence in Corollary 4.2 cannot be
quantitative: Let fn : E → E, z 7→ enz for n ∈ N. Then fn is η(t) = t-quasisymmetric
for any n ∈ N. However fn is en-biLipschitz, and this biLipschitz constant is sharp.

Finally, we analogously obtain the following theorem.

Theorem 4.4. For a bijection f : E = {en}n∈Z → E, the following conditions

are quantitatively equivalent;

1. f is η-quasisymmetric.

2. f satisfies the λ-three point condition, and f(en) → 0 as n → −∞.

3. f admits a K-quasiconformal extension F : C → C.

Proof. (1) ⇒ (2) follows for the same reason as in the preceding proof.
Suppose f satisfies the λ-three point condition and f(en) → 0 as n → −∞.

Then g(z) = f(z)/f(1) also satisfies the λ-three point condition and g(en) → 0
as n → −∞. Since g(1) = 1, applying Proposition 4.1, it turns out that g is
Mλ-biLipschitz. For the same reason as in the proof of Theorem B, g admits a K-
quasiconformal extension G : C → C where K is a constant depending only on λ.
We obtain a K-quasiconformal extension F (z) = f(1)G(z) (z ∈ C) of f .

(3) ⇒ (1) also follows for the same reason as in the proof of Theorem B. �

Remark 4.5. In condition (2), f(en) → 0 as n → −∞ is necessary. More
precisely, the λ-three point condition does not imply this property. In fact, f : E →
E, en 7→ e−n satisfies the 1-three point condition, but f(en) → ∞ as n → −∞.

5. Characterization of quasisymmetric images

In this section, we characterize subsets E ⊂ R which are images of some qua-
sisymmetric embeddings f : Z → R. On the other hand, the author have character-
ized images of quasiconformal mappings as follows;

Theorem 5.1. (F. 2015 [3, Theorem A]) For a subset E ⊂ R, the following

conditions are quantitatively equivalent.

1. There exists a K-quasiconformal mapping F : C → C, such that F (Z) = E.

2. E can be written as a monotone increasing sequence E = {an}n∈Z with

an → ±∞ as n → ±∞, and there exists a constant M ≥ 1 such that the

following inequality holds for all n ∈ Z and k ∈ N;

1

M
≤ an+k − an

an − an−k

≤ M.

Further, if E satisfies the second condition, there exists a quasiconformal mapping

F : C → C such that F (n) = an for all n ∈ Z.
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We will see that the above conditions are the required characterizations. To see
this, we can use almost the same proof as [3, Theorem A]. However, we give proofs
here for completeness and convenience. First, we prepare some preliminary lemmas.

Remark 5.2. Quasisymmetric mappings take Cauchy sequences to Cauchy se-
quences. Therefore, if E ⊂ R is an image of a quasisymmetric mapping f : Z → R,
then E must be closed and discrete in R.

Lemma 5.3. Let f : Z → R be an η-quasisymmetric mapping, and let E :=
f(Z). Then supE = ∞ and inf E = −∞.

Proof. To obtain a contradiction, we assume inf E > −∞. Since E is closed
and discrete, we have supE = ∞. Thus E can be written as a monotone increasing
sequence E = {an}n∈N with an → ∞ as n → ∞.

Let g := f−1 : E → Z. By translation, we may assume g(a1) = 0. Further,
note that g is η′-quasisymmetric where η′(t) = 1/η−1(1/t), see [6, Theorem 2.2]. Let
µ := η′(1) and consider the set

S :=

{
k ∈ N

∣∣∣∣ g(ak) = max
j=1,2,··· ,k

g(aj) ≥ µ

}
.

Since g : E → Z is bijective, S consists of infinitely many elements. We number
S = {kj}j∈N in ascending order. Then the sequence {g(akj)}j∈N ⊂ Z is monotone
increasing. On the other hand, there exist infinitely many n ∈ N with g(an) < 0.
Thus we can find j, ℓ ∈ N such that kj < ℓ < kj+1 and g(aℓ) < 0. Moreover since
g(an) ≤ g(akj) for all n = 1, 2, . . . , kj+1 − 1, if g(am) = g(akj) + 1 then m ≥ kj+1.
Consequently we confirmed that there exists k ∈ S and exist ℓ,m ∈ N such that

1. k < ℓ < m,
2. g(aℓ) < 0 and g(am) = g(ak) + 1, see Figure 2.

Figure 2.

Therefore, we have a contradiction;

µ > η′
(∣∣∣∣

ak − aℓ
ak − am

∣∣∣∣
)

≥
∣∣∣∣
g(ak)− g(aℓ)

g(ak)− g(am)

∣∣∣∣ = g(ak)− g(aℓ) > g(ak) ≥ µ. �

Lemma 5.4. Let E = {an}n∈Z ⊂ R be a monotone increasing sequence with

an → ±∞ as n → ±∞. If g : E → Z is an η′-quasisymmetric bijection, then there

exists a constant L ≥ 1 depending only on µ := η′(1) which satisfies the following

inequality for all n ∈ Z and k ∈ N;

1

L
<

∣∣∣∣
g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < L.
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Proof. Since g satisfies the η′(1)-three point condition, by Lemma 3.1 we have

1

4µ2
<

∣∣∣∣
g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < 4µ2,

where µ = η′(1). �

Theorem C. For a subset E ⊂ R, the following conditions are quantitatively

equivalent;

1. There exists an η-quasisymmetric bijection f : Z → E.

2. E can be written as a monotone increasing sequence E = {an}n∈Z with

an → ±∞ as n → ±∞, and there exists a constant M ≥ 1 such that the

following inequality holds for all n ∈ Z and k ∈ N;

1

M
≤ an+k − an

an − an−k

≤ M.

3. There exists a K-quasiconformal mapping F : C → C, such that F (Z) = E.

Proof. The equivalence (2) ⇔ (3) is already confirmed by Theorem 5.1, see [3,
Theorem A]. Further, for the same reason as in the proof of Theorem B, (3) ⇒ (1)
follows. Thus it suffices to show (1) ⇒ (2).

Let us assume that there exists an η-quasisymmetric bijection f : Z → E. By
Lemma 5.3, E can be written as a monotone increasing sequence E = {an}n∈Z with
an → ±∞ as n → ±∞ (recall E must be closed and discrete in R). Let g := f−1.
Then g is η′-quasisymmetric where η′(t) = 1/η−1(1/t). By Lemma 5.4, there exists
a constant L ≥ 1 depending only on η′(1) = 1/η−1(1) which satisfies the following
inequality for any n ∈ Z and k ∈ N;

1

L
<

∣∣∣∣
g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣ < L.

Therefore we obtain∣∣∣∣
an+k − an
an − an−k

∣∣∣∣ ≤ η

(∣∣∣∣
g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣
)

< η(L).

and ∣∣∣∣
an+k − an
an − an−k

∣∣∣∣ ≥ η

(∣∣∣∣
g(an+k)− g(an)

g(an)− g(an−k)

∣∣∣∣
−1
)

−1

>
1

η(L)
. �

6. Extendability of quasisymmetric embeddings

We complete this paper, proving the following theorem;

Theorem A. Every η-quasisymmetric embedding f : Z → R admits a K =

K(η)-quasiconformal extension f̃ : C → C where K(η) is a constant depending only

on η.

Proof. Let f : Z → R be an η-quasisymmetric embedding, and let E := f(Z).
Then, by Theorem C, there exists a K ′-quasiconformal mapping F : C → C such
that F (Z) = E, where K ′ depends only on η. Since compositions of quasisymmetric
mappings are also quasisymmetric, F−1 ◦ f : Z → Z becomes an η′-quasisymmetric
automorphism where η′ depends only on η. By Theorem B, F−1 ◦ f admits a K ′′-
quasiconformal extension G : C → C, where K ′′ depends only on η. Therefore, we
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obtain a K = K ′K ′′-quasiconformal extension f̃ = F ◦G : C → C of f . The proof is
completed. �
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