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Abstract. In this note we show that, in the case of bounded sets in metric spaces with

some additional structure, the boundedness of a family of Lebesgue p-summable functions follow

from a certain uniform limit norm condition. As a byproduct, the well known Riesz–Kolmogorov

compactness theorem can be formulated only with one condition.

1. Introduction

The classical theorem of Kolmogorov [11], sometimes also called Riesz–Kolmogo-
rov theorem, characterizes the compactness of sets of functions in Lebesgue spaces.
In the original formulation of Kolmogorov the theorem is the following:

Theorem 1.1. (Kolmogorov) Suppose F is a set of functions in Lp ([0, 1]) (1 <

p < ∞). In order that this set be relatively compact, it is necessary and sufficient

that both of the following conditions be satisfied:

(K1) the set F is bounded in Lp;

(K2) lim
h→0

‖fh − f‖p = 0 uniformly with respect to f ∈ F ,

where fh denotes the well-known Steklov function, viz.

fh(x) =
1

2h

ˆ x+h

x−h

f(t) dt.

After that, Tamarkin [18] extended the result to the case where the underlying
space can be unbounded, with an additional condition related to the behaviour at
infinity. Tulajkov [19] showed that Tamarkin’s result was true even when p = 1.
Finally, Sudakov [16] showed that condition (K1) follows from condition (K2). All
the previous results were proved in the framework of one dimensional Euclidean
space.

The Riesz–Kolmogorov compactness theorem has also been extended to other
function spaces, for example, it was extended by Takahashi [17] for Orlicz spaces
satisfying the ∆2-condition, by Goes and Welland [2] for continuously regular Köthe
spaces, by Musielak [12] to Musielak–Orlicz spaces, by Rafeiro [14] to variable ex-
ponent Lebesgue spaces, by Rafeiro and Vargas [15] to grand Lebesgue spaces, by
Górka and Rafeiro [8] to grand variable Lebesgue spaces, by Górka and Macios [6, 7]
to Lebesgue spaces in metric measure spaces, just to name a few. Weil [20] showed the
compactness theorem in Lp(G), where G is a locally compact group. Pego [13] (see [4]
and [5]) formulated Kolmogorov theorem for p = 2 in terms of the Fourier transform.
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For a more detailed account regarding the history of the Riesz–Kolmogorov theorem,
see [9].

In this small note we want to show that, whenever we are working in the gen-
eral framework of metric measure spaces, condition (K1) is superfluous since it is a
consequence of condition (K2).

2. Preliminaries

We shall denote the average of locally integrable function f over the measurable
set A in the following manner

(f)A =

ˆ

A

f dµ =
1

µ(A)

ˆ

A

f dµ.

Let (X, ρ, µ) be a metric measure space equipped with a metric ρ and a Borel reg-
ular measure µ. We assume throughout the paper that the measure of every open
nonempty set is positive and that the measure of every bounded set is finite. Addi-
tionally, we assume that the measure µ satisfies a doubling condition. This means
that, there exists a constant Cd > 0 such that for every ball B(x, r),

µ (B(x, 2r)) ≤ Cdµ (B(x, r)) .

Now, let us recall the notion of continuity of a measure with respect to a metric
(see [3, 1]).

Definition 2.1. Let (X, ρ, µ) be a metric measure space. The measure µ is said
to be continuous with respect to the metric ρ if for all x ∈ X and r > 0 the following
condition holds:

lim
y→x

µ(B(x, r)∆B(y, r)) = 0,

where A∆B stands for the symmetric difference, i.e. A∆B := A \B ∪ B \ A.

For example, when (X, ρ, µ) is a geodesic space (cf. [10]) and the measure µ is
doubling, then µ is continuous with respect to the metric ρ (see [1]).

Now, we can recall the charecterization of relatively compact sets in Lp(X, ρ, µ)
from [6].

Theorem 2.2. Let (X, ρ, µ) be a metric measure space and 1 < p < ∞. Suppose

moreover, that there exists θ > 0 such that µ(B(x, 1)) ≥ θ. Let x0 ∈ X, then the

subset F of Lp(X, µ) is relatively compact in Lp(X, µ) if and only if the following

conditions are satisfied:

F is bounded,(2.1)

lim
R→∞

ˆ

X\B(x0,R)

|f(x)|p dµ(x) = 0, uniformly for f ∈ F ,(2.2)

lim
r→0

ˆ

X

|f(x)− (f)B(x,r)|
p dµ(x) = 0, uniformly for f ∈ F .(2.3)

3. Main result

The main result of this paper is the following.

Theorem 3.1. Assume that (X, ρ, µ) is a connected metric measure space with

continuous measure satisfying the doubling condition. Suppose, moreover, that balls

are relatively compact and there exists θ > 0 such that µ(B(x, 1)) ≥ θ. Let 1 < p <
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∞ and D be a bounded subset of X such that X \D 6= ∅. If the family F in Lp(D, µ)
satisfies

lim
r→0

ˆ

X

|f(x)− (f)B(x,r)|
p dµ(x) = 0 uniformly for f ∈ F ,

where we continue the function f by zero beyond D, then F is bounded.

In order to prove Theorem 3.1 we will need some auxiliary results. We start with
the following lemma.

Lemma 3.2. Let h > 0 and denote by 1D the characteristic function of the set

D. Then the operator U : Lp(X) −→ Lp(X) given by

Uf(x) =

ˆ

B(x,h)

1Df dµ

is compact.

Proof. Let us take V = B(0, 1) ⊂ Lp(X). We shall show that the set U(V )
is relatively compact in Lp(X). For this purpose, we shall use the characterization
of relatively compact sets in Lp(X) from Theorem 2.2. Since D is bounded, there
exists a ball B(x0, r) such that D ⊂ B(x0, r). Thus, for f ∈ V we have supp(Uf) ⊂
B(x0, r + h) =: Wh. Hence, by the Jensen inequality, we get

‖Uf‖pLp(X) = ‖Uf‖pLp(Wh)
=

ˆ

Wh

|Uf |p dµ =

ˆ

Wh

∣

∣

∣

∣

ˆ

B(x,h)

1Df dµ

∣

∣

∣

∣

p

dµ

≤

ˆ

Wh

ˆ

B(x,h)

|f |p dµ dµ ≤ ‖f‖pLp(X)

µ(Wh)

infx∈X µ(B(x, h))
.

Since µ is doubling and µ(B(x, 1)) ≥ θ, we have infx∈X µ(B(x, h)) > 0. Thus, we get
that U(V ) is bounded. Moreover, since supp(Uf) ⊂ Wh, we get that ‖Uf‖Lp(X\Wh) =
0. Finally, it remains to show that the family U(f) is uniformly Lp-equicontinuous.
Let h > r > 0. We have
ˆ

X

∣

∣

∣

∣

Uf(x)−

ˆ

B(x,r)

Uf(y) dµ(y)

∣

∣

∣

∣

p

dµ(x)

=

ˆ

W2h

∣

∣

∣

∣

ˆ

B(x,r)

(
ˆ

B(x,h)

1Df(z) dµ(z)−

ˆ

B(y,h)

1Df(z) dµ(z)

)

dµ(y)

∣

∣

∣

∣

p

dµ(x).

On the other hand, from the proof of Lemma 4.3 in [1] and by the Hölder inequality
we have
∣

∣

∣

∣

ˆ

B(x,h)

1Df(z) dµ(z)−

ˆ

B(y,h)

1Df(z) dµ(z)

∣

∣

∣

∣

≤
1

µ(B(x, h))

ˆ

B(x,h)∆B(y,h)

|1Df(z)| dµ(z)+
µ(B(x, h)∆B(y, h))

µ(B(x, h))µ(B(y, h))

ˆ

B(y,h)

|1Df(z)| dµ(z)

≤ ‖f‖Lp(X)

(

µ(B(x, h)∆B(y, h))1−1/p

µ(B(x, h))
+

µ(B(x, h)∆B(y, h))

µ(B(x, h))µ(B(y, h))1/p

)

.

Hence, we obtain
ˆ

X

∣

∣

∣

∣

Uf(x)−

ˆ

B(x,r)

Uf(y) dµ(y)

∣

∣

∣

∣

p

dµ(x) ≤ ‖f‖pLp(X)

ˆ

W2h

|I(x)|p dµ(x).
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where

I(x) =

ˆ

B(x,r)

(

µ(B(x, h)∆B(y, h))1−1/p

µ(B(x, h))
+

µ(B(x, h)∆B(y, h))

µ(B(x, h))µ(B(y, h))1/p

)

dµ(y)

By virtue of Lebesgue differentiation theorem (see e.g., [10]) we have

lim
r→0

ˆ

B(x,r)

(

µ(B(x, h)∆B(y, h))1−1/p

µ(B(x, h))
+

µ(B(x, h)∆B(y, h))

µ(B(x, h))µ(B(y, h))1/p

)

dµ(y) = 0.

Furthermore,
∣

∣

∣

∣

ˆ

B(x,r)

(

µ(B(x, h)∆B(y, h))1−1/p

µ(B(x, h))
+

µ(B(x, h)∆B(y, h))

µ(B(x, h))µ(B(y, h))1/p

)

dµ(y)

∣

∣

∣

∣

p

≤

(

µ(W4h)
1−1/p

infx∈X µ(B(x, h))
+

µ(W4h)

infx∈X µ(B(x, h))1+1/p

)p

.

Finally, the Lebesgue theorem finishes the proof. �

We will also need the following result.

Lemma 3.3. 1 is not an eigenvalue of U .

Proof. Let us take f ∈ Lp(X) such that Uf = f . We shall show that f = 0.
Since the measure µ is continuous, from the proof of the previous lemma we have
f ∈ C(X). Moreover, from the proof of the previous lemma we have that supp f ⊂
Wh = B(x0, r + h). Next, let us take a ball B such that Wh ⊂ B and D̄ ⊂ B.
Suppose that M = supx∈B̄ f(x) > 0 and let

C = {x ∈ X : f(x) = M}.

Next, let us take x0 ∈ ∂C. Due to the fact that C is closed, we have that B(x0, h) ∩
(X \C) is an open nonempty set. Thus µ ((X \ C) ∩ B(x0, h)) > 0. This contradicts
our assumption that f(x0) = Uf(x0). �

We now prove the main result.

Proof of Theorem 3.1. For this purpose we use the Riesz–Schauder theory (see
e.g., [21]). Since U is compact and 1 is not an eigenvalue of U , we get that (U − I)−1

is bounded. On the other hand, we have ‖Uf − f‖Lp(X) ≤ C for f ∈ F and some
positive constant C. Thus,

‖f‖Lp(X) ≤ C‖(U − I)−1‖Lp(X)→Lp(X),

and we obtain the desired result. �

As a corollary from Theorem 2.2 and Theorem 3.1 we obtain the following char-
acterization of relatively compact sets.

Theorem 3.4. Assume that (X, ρ, µ) is a connected metric measure space with

continuous measure satisfying the doubling condition. Suppose, moreover, that balls

are relatively compact and there exists θ > 0 such that µ(B(x, 1)) ≥ θ. Let 1 < p <

∞ and D be a bounded subset of X such that X \ D 6= ∅. Then, the family F in

Lp(D, µ) is relatively compact in Lp(D, µ) if and only if

lim
r→0

ˆ

X

|f(x)− (f)B(x,r)|
p dµ(x) = 0 uniformly for f ∈ F ,

where we continue the function f by zero beyond D.
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