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Abstract. The classical Jawerth and Franke embeddings

F s0
p0,q

(Rn) →֒ Bs1
p1,p0

(Rn) and Bs0
p0,p1

(Rn) →֒ F s1
p1,q

(Rn)

are versions of Sobolev embedding between the scales of Besov and Triebel–Lizorkin function spaces
for s0 > s1 and s0−

n
p0

= s1−
n
p1

. We prove Jawerth and Franke embeddings for the scales of Besov
and Triebel–Lizorkin spaces with all exponents variable

F
s0(·)
p0(·),q(·)

(Rn) →֒ B
s1(·)
p1(·),p0(·)

(Rn) and B
s0(·)
p0(·),p1(·)

(Rn) →֒ F
s1(·)
p1(·),q(·)

(Rn),

respectively, if infx∈Rn(s0(x)− s1(x)) > 0 and

s0(x) −
n

p0(x)
= s1(x) −

n

p1(x)
, x ∈ R

n.

We work exclusively with the associated sequence spaces b
s(·)
p(·),q(·)(R

n) and f
s(·)
p(·),q(·)(R

n), which is

justified by well known decomposition techniques. We give also a different proof of the Franke

embedding in the constant exponent case which avoids duality arguments and interpolation. Our

results hold also for 2-microlocal function spaces Bw

p(·),q(·)(R
n) and Fw

p(·),q(·)(R
n) which unify the

smoothness scales of spaces of variable smoothness and generalized smoothness spaces.

1. Introduction

Spaces of variable integrability, also known as variable exponent function spaces
Lp(·)(R

n), can be traced back to Orlicz [36] 1931, but the modern development started
with the papers [30] of Kováčik and Rákosník as well as [13] of Edmunds and Rákosník
and [8] of Diening. The spaces Lp(·)(R

n) have interesting applications in fluid dy-
namics, namely in the theory of electrorheological fluids [38], where p(·) is a function
of the electric field. Further, these variable function spaces were used in image pro-
cessing, PDEs and variational calculus, see the introduction of [11]. For an overview
we refer to [10].
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Sobolev and Besov spaces with variable smoothness but fixed integrability have
been introduced in the late 60’s and early 70’s in the works of Unterberger [41],
Višik and Eskin [43], Unterberger and Bokobza [42] and in the work of Beauzamy
[4]. Leopold studied in [31] Besov spaces where the smoothness is determined by a
symbol a(x, ξ) of a certain class of hypoelliptic pseudodifferential operators. In the
special case a(x, ξ) = (1 + |ξ|2)σ(x)/2 these spaces coincide with spaces of variable

smoothness B
σ(x)
p,p (Rn).

A more general approach to spaces of variable smoothness are the so-called 2-
microlocal function spaces Bw

p,q(R
n) and Fw

p,q(R
n). The smoothness in these scales

gets measured by a weight sequence w = (wj)j∈N0. Besov spaces with such weight
sequences appeared first in the works of Peetre [37] and Bony [7]. Establishing a
wavelet characterization for 2-microlocal Hölder–Zygmund spaces in [22] it turned
out that 2-microlocal spaces are well adapted in connection to regularity properties
of functions [23, 34, 33]. Spaces of variable smoothness are a special case of 2-
microlocal function spaces and in [32] and [6] characterizations by differences have
been given for certain classes of them.

Even in the case of constant exponents the integrability exponents p, q ∈ (0,∞]
and the smoothness parameter s inherit a quite interesting interplay regarding em-
beddings and special cases, see [39] and [40].

If one considers at first Triebel–Lizorkin spaces F s
p(·),q(R

n) of [46], where only

the integrability parameter p(·) is chosen to be variable, then it is convenient to
choose the other exponents variable as well. This can already be seen by the Sobolev
embedding from [45]

F
s0(·)
p0(·),q

(Rn) →֒ F
s1(·)
p1(·),q

(Rn)

under the usual condition, but now pointwise,

s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.

Now also the smoothness parameter s(·) should be chosen variable. That also the
third index q(·) should be variable can be seen by the following trace theorem. It
was obtained by Diening, Hästö and Roudenko in [11] where variable smoothness and
integrability were for the first time combined in one approach. They defined Triebel–

Lizorkin spaces F
s(·)
p(·),q(·)(R

n) and considered the trace theorem on R
n−1. Here the

usual result holds in a variable analogue

TrF
s(·)
p(·),q(·)(R

n) = F
s(·)− 1

p(·)

p(·),p(·) (Rn−1), with s(·)−
1

p(·)
> (n− 1)max

(
1

p(·)
− 1, 0

)
,

[11, Theorem 3.13] and we see the necessity of taking s and q variable if p is not
constant.

For the Besov spaces it is non-trivial to have also the parameter q as a variable

one. Almeida and Hästö were able to introduce in [3] Besov spaces B
s(·)
p(·),q(·)(R

n) with

all three indices variable and proved the Sobolev and other usual embeddings in this
scale. These spaces need to be defined by using another modular which already uses
the variable structure on q(·), see Section 2.

Interestingly, these variable Besov spaces fit very well to the constant exponent
case theory which can be seen by the embedding

B
s(·)
p(·),min(p(·),q(·))(R

n) →֒ F
s(·)
p(·),q(·)(R

n) →֒ B
s(·)
p(·),max(p(·),q(·))(R

n).
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On the other hand, in [29] it has been shown that the triangle inequality in B
s(·)
p(·),q(·)(R

n)

is in general not true for exponents with min(p(·), q(·)) ≥ 1. This is in sharp contrast

to the case of Triebel–Lizorkin spaces F
s(·)
p(·),q(·)(R

n) and to the constant exponent

spaces Bs
p,q(R

n) and F s
p,q(R

n), which are always normed spaces if min(p(·), q(·)) ≥ 1,
or min(p, q) ≥ 1, respectively.

For the full variable spaces B
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n) different characteriza-

tions of the spaces as decompositions via atoms, molecules, local means and ball
means of differences (see [11, 12, 28]) have been shown. Further, there also exist
results on the extension operator from halfspaces in [35].

Furthermore, also for the more general scale of 2-microlocal function spaces
Bw

p(·),q(·)(R
n) and Fw

p(·),q(·)(R
n) (see Section 5 for details) all the above mentioned

characterizations have been obtained and there exist results on traces [17], pointwise
multipliers [18] and Fourier multipliers [2].

Regarding Franke–Jawerth embeddings, they go back to Jawerth in [24] and
Franke in [14]. Using interpolation techniques and duality, these authors proved the
following.

Theorem 1.1. Let −∞ < s1 < s0 < ∞, 0 < p0 < p1 ≤ ∞ and 0 < q ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

(i) Then

(1.1) F s0
p0,q

(Rn) →֒ Bs1
p1,p0

(Rn).

(ii) If p1 < ∞, then

(1.2) Bs0
p0,p1

(Rn) →֒ F s1
p1,q

(Rn).

The surprising effect in (1.1) and (1.2) is that no conditions on q are necessary.
Furthermore, the summability index of the Besov space in (1.1) must be equal (or
larger than) p0, i.e. the integrability index of the Triebel–Lizorkin space in (1.1).
Similarly, the summability index of the Besov space in (1.2) has to be equal (or
smaller than) p1, i.e. again the integrability index of the Triebel–Lizorkin space in
(1.2). This shows that Jawerth and Franke embeddings exploit the fine properties of
Besov and Triebel–Lizorkin spaces and exhibit an interesting interplay between these
two scales of function spaces.

Later Vybíral in [44] gave a new proof of Theorem 1.1. The author transferred the
problem to the corresponding sequence spaces and, instead of interpolation, he used
the technique of non-increasing rearrangements as well as duality. The developed
technique via sequence spaces was also used in [21] to obtain the Franke–Jawerth
embeddings in the Morrey space versions of Besov and Triebel–Lizorkin spaces and
in [19] to get these embeddings for spaces with dominating mixed smoothness.

Our aim is to extend these results to the scale of Besov and Triebel–Lizorkin
spaces with variable smoothness and integrability B

s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n), ob-

taining in this way a fine connection between those scales of function spaces. One

can observe then that the somehow artificial definition of B
s(·)
p(·),q(·)(R

n) seems to be

well chosen.
The paper is organized as follows. We introduce in Section 2 the necessary nota-

tion and definitions which are needed afterwards. Furthermore, we also state some
known theorems for the spaces with variable exponents. In Section 3 we present
another proof for the Franke embedding in the constant exponent case. The novelty
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of the technique here is that we totally avoid the use of interpolation and duality
arguments. With the help of this result in the constant exponent case we state and

prove the Jawerth and Franke embeddings in the scales of Besov B
s(·)
p(·),q(·)(R

n) and

Triebel–Lizorkin spaces F
s(·)
p(·),q(·)(R

n) with variable exponents in Section 4. In Sec-

tion 5 we transfer our results to 2-microlocal function spaces with variable exponents.
Finally, in the last section we pose some open problems.

2. Notation and definitions

We shall adopt the following general notation: N denotes the set of all natural
numbers, N0 = N ∪ {0}, Z denotes the set of integers, Rn for n ∈ N denotes the
n-dimensional real Euclidean space with |x|, for x ∈ R

n, denoting the Euclidean
norm of x.

For q ∈ (0,∞], ℓq stands for the linear space of all complex sequences a = (aj)j∈N0

endowed with the quasi-norm

‖a | ℓq‖ =
( ∞∑

j=0

|aj |
q
)1/q

,

with the usual modification if q = ∞. By c, C, etc. we denote positive constants
independent of appropriate quantities. For two non-negative expressions (i.e., func-
tions or functionals) A, B, the symbol A . B (or A & B) means that A ≤ cB (or
cA ≥ B), for some c > 0. If A . B and A & B, we write A ∼ B and say that A and
B are equivalent.

Before introducing the function spaces under consideration we still need to recall
some notation. By S(Rn) we denote the Schwartz space of all complex-valued rapidly
decreasing infinitely differentiable functions on R

n and by S ′(Rn) its dual space of all

tempered distributions on R
n. For f ∈ S ′(Rn) we denote by f̂ the Fourier transform

of f and by f∨ the inverse Fourier transform of f .
Let ϕ0 ∈ S(Rn) be such that

(2.3) ϕ0(x) = 1 if |x| ≤ 1 and supp ϕ0 ⊂ {x ∈ R
n : |x| ≤ 2}.

Now define ϕ(x) := ϕ0(x) − ϕ0(2x) and set ϕj(x) := ϕ(2−jx) for all j ∈ N. Then
the sequence (ϕj)j∈N0 forms a smooth dyadic partition of unity.

By P(Rn) we denote the class of exponents, which are measurable functions
p : Rn → (c,∞] for some c > 0. Let p ∈ P(Rn). Then, p+ := ess-supx∈Rnp(x),
p− := ess-infx∈Rnp(x) and Lp(·)(R

n) is the variable exponent Lebesgue space, which
consists of all measurable functions f such that for some λ > 0 the modular ̺p(·)(f/λ)
is finite, where

̺p(·)(f) :=

ˆ

Rn
0

|f(x)|p(x) dx+ ess-supx∈Rn
∞

|f(x)|.

Here R
n
∞ denotes the subset of R

n where p(x) = ∞ and R
n
0 = R

n \ R
n
∞. The

Luxemburg norm of a function f ∈ Lp(·)(R
n) is given by

‖f | Lp(·)(R
n)‖ := inf

{
λ > 0: ̺p(·)

(
f

λ

)
≤ 1

}
.

In order to define the mixed spaces ℓq(·)(Lp(·)), we need to define another modular.
For p, q ∈ P(Rn) and a sequence (fν)ν∈N0 of complex-valued Lebesgue measurable
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functions on R
n, we define

(2.4) ̺ℓq(·)(Lp(·))(fν) =

∞∑

ν=0

inf

{
λν > 0: ̺p(·)

(
fν

λ
1/q(·)
ν

)
≤ 1

}
.

If q+ < ∞, then we can replace (2.4) by the simpler expression

(2.5) ̺ℓq(·)(Lp(·))(fν) =

∞∑

ν=0

∥∥∥|fν |q(·) | L p(·)
q(·)

(Rn)
∥∥∥.

The (quasi-)norm in the ℓq(·)(Lp(·)) spaces is defined as usual by

(2.6) ‖fν | ℓq(·)(Lp(·)(R
n))‖ = inf

{
µ > 0: ̺ℓq(·)(Lp(·))

(
fν
µ

)
≤ 1

}
.

For the sake of completeness, we state also the definition of the space Lp(·)(ℓq(·)).
At first, one just takes the norm ℓq(·) of (fν(x))ν∈N0 for every x ∈ R

n and then the
Lp(·)-norm with respect to x ∈ R

n, i.e.

(2.7) ‖fν | Lp(·)(ℓq(·)(R
n))‖ =

∥∥∥∥∥∥

(
∞∑

ν=0

|fν(x)|
q(x)

)1/q(x)

| Lp(·)(R
n)

∥∥∥∥∥∥
.

The following regularity classes for the exponents are sufficient to make the def-
inition of the spaces independent on the chosen decomposition of unity.

Definition 2.1. Let g ∈ C(Rn). We say that g is locally log-Hölder continuous,

abbreviated g ∈ C log
loc (R

n), if there exists clog(g) > 0 such that

(2.8) |g(x)− g(y)| ≤
clog(g)

log(e + 1/|x− y|)
for all x, y ∈ R

n.

We say that g is globally log-Hölder continuous, abbreviated g ∈ C log(Rn), if g is
locally log-Hölder continuous and there exists g∞ ∈ R such that

(2.9) |g(x)− g∞| ≤
clog

log(e+ |x|)
for all x ∈ R

n.

We use the notation p ∈ P log(Rn) if p ∈ P(Rn) and 1/p ∈ C log(Rn). It was
proved in [9] that the maximal operator M is bounded in Lp(·)(R

n) provided that
p ∈ P log(Rn) and 1 < p− ≤ p+ ≤ ∞.

We recall the definition of the spaces B
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n), as given in

[11] and [3].

Definition 2.2. Let p, q ∈ P log(Rn) and s ∈ C log
loc (R

n).

(i) If p+, q+ < ∞, then the space F
s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn)

such that

‖f | F
s(·)
p(·),q(·)(R

n)‖ :=
∥∥∥
(
2js(·)(ϕj f̂)

∨
)
j∈N0

| Lp(·)(ℓq(·)(R
n))
∥∥∥

is finite.
(ii) The space B

s(·)
p(·),q(·)(R

n) is the collection of all f ∈ S ′(Rn) such that

‖f | B
s(·)
p(·),q(·)(R

n)‖ :=
∥∥∥
(
2js(·)(ϕj f̂)

∨
)
j∈N0

| ℓq(·)(Lp(·)(R
n))
∥∥∥

is finite.
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Remark 2.3. The independence of the resolution of unity in the definition of

the spaces F
s(·)
p(·),q(·)(R

n) and B
s(·)
p(·),q(·)(R

n) can be justified by characterizations of the

spaces, for example by local means (see [26] for Triebel–Lizorkin and [28] for Besov

spaces), if p, q ∈ P log(Rn) and s ∈ C log
loc (R

n).

Remark 2.4. These spaces include very well known spaces. In particular, if
p(·) = p, q(·) = q and s(·) = s are constants, we get back to the classical Besov and
Triebel–Lizorkin spaces Bs

p,q(R
n) and F s

p,q(R
n).

The spaces B
s(·)
p(·),q(·)(R

n) and F
s(·)
p(·),q(·)(R

n) are isomorphic to sequence spaces. The

underlying theorems are characterizations of the spaces above by atoms, wavelets and
the ϕ-transform. The assertions can be found in [11], [27] and [12].

In this work we opt to make use of the atomic characterization and to this end
we shall introduce some notation. Let Z

n stand for the lattice of all points in R
n

with integer-valued components, Qj,m denotes a cube in R
n with sides parallel to the

axes of coordinates, centered at 2−jm = (2−jm1, . . . , 2
−jmn) and with side length

2−j, where m = (m1, . . . , mn) ∈ Z
n and j ∈ N0. If Q is a cube in R

n and r > 0 then
rQ is the cube in R

n concentric with Q and with side length r times the side length
of Q. By χE we denote the characteristic function of the measurable set E. However,
when E is the cube Qj,m, the characteristic function of Qj,m is simply denoted by
χj,m.

For p, q ∈ P(Rn), we put

σp := n

(
1

min(1, p−)
− 1

)
and σp,q := n

(
1

min(1, p−, q−)
− 1

)
.

We present now the definition of the atoms, which are the building blocks for the
atomic decomposition, as well as the definition of the sequence spaces.

Definition 2.5. Let K,L ∈ N0 and let d > 1. A K-times continuously differ-
entiable complex-valued function a ∈ CK(Rn) is called [K,L]-atom centered at Qj,m,
for all j ∈ N0 and m ∈ Z

n, if

(2.10) supp a ⊂ dQj,m,

(2.11) |Dβa(x)| ≤ 2|β|j for |β| ≤ K

and

(2.12)

ˆ

Rn

xβa(x) dx = 0 for 0 ≤ |β| < L and j ≥ 1.

Remark 2.6. If an atom a is centered at Qj,m, i.e., if it fulfills (2.10), then we
denote it by aj,m. If L = 0 or j = 0, then no moment conditions (2.12) are required.

Definition 2.7. Let p, q ∈ P log(Rn) and s ∈ C log
loc (R

n).

(i) If p+ < ∞, then the sequence space f
s(·)
p(·),q(·)(R

n) consists of those complex-

valued sequences λ = (λj,m)j∈N0,m∈Zn such that

‖λ | f
s(·)
p(·),q(·)(R

n)‖ :=
∥∥∥
( ∑

m∈Zn

|λj,m| 2
js(·) χj,m

)
j∈N0

| Lp(·)(ℓq(·)(R
n))
∥∥∥

is finite.
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(ii) The sequence space b
s(·)
p(·),q(·)(R

n) consists of those complex-valued sequences

λ = (λj,m)j∈N0,m∈Zn such that

‖λ | b
s(·)
p(·),q(·)(R

n)‖ :=
∥∥∥
( ∑

m∈Zn

|λj,m| 2
js(·) χj,m

)
j∈N0

| ℓq(·)(Lp(·)(R
n))
∥∥∥

is finite.

At this point we can state the atomic decomposition theorems for the spaces

under consideration. The result for Triebel–Lizorkin spaces F
s(·)
p(·),q(·)(R

n) was firstly

proved in [11], but assuming s(·) ≥ 0 and s(·) with a limit at infinity. This result
was later extended in [27] for functions s : Rn → R, and reads as follows.

Theorem 2.8. Let p, q ∈ P log(Rn) and s ∈ C log
loc (R

n) with 0 < p− ≤ p+ < ∞
and 0 < q− ≤ q+ < ∞. Furthermore, let d > 1, K,L ∈ N0 with K > s+ and L >

σp,q − s− be fixed. Then every f ∈ S ′(Rn) belongs to F
s(·)
p(·),q(·)(R

n) if, and only if, it

can be represented as

(2.13) f =
∞∑

j=0

∑

m∈Zn

λj,m aj,m, convergence being in S ′(Rn),

for (aj,m)j∈N0,m∈Zn [K,L]-atoms according to Definition 2.5 and λ ∈ f
s(·)
p(·),q(·)(R

n).

Moreover,

‖f | F
s(·)
p(·),q(·)(R

n)‖ ∼ inf ‖λ | f
s(·)
p(·),q(·)(R

n)‖,

where the infimum is taken over all possible representations (2.13) of f .

As for the Besov spaces B
s(·)
p(·),q(·)(R

n), an atomic representation theorem was

derived in [12] for q+ < ∞. This condition was suppressed in [1], where the authors
proved the corresponding result for the (more general) scale of 2-microlocal spaces
with variable exponents Bw

p(·),q(·)(R
n), but with a stronger condition on L. Due to

our needs, we opt by using the result from [12], which we state below.

Theorem 2.9. Let p, q ∈ P log(Rn) with q+ < ∞ and s ∈ C log
loc (R

n). Further-
more, let d > 1, K,L ∈ N0 with K > s+ and L > σp − 1 − s− be fixed. Then

every f ∈ S ′(Rn) belongs to B
s(·)
p(·),q(·)(R

n) if, and only if, it can be represented as

(2.14) f =

∞∑

j=0

∑

m∈Zn

λj,m aj,m, convergence being in S ′(Rn),

for (aj,m)j∈N0,m∈Zn [K,L]-atoms according to Definition 2.5 and λ ∈ b
s(·)
p(·),q(·)(R

n).

Moreover,

‖f | B
s(·)
p(·),q(·)(R

n)‖ ∼ inf ‖λ | b
s(·)
p(·),q(·)(R

n)‖,

where the infimum is taken over all possible representations (2.14) of f .

To prove our main results, we will also make use of the Sobolev embedding for

b
s(·)
p(·),q(·)(R

n), proved in [3]. The counterpart for f
s(·)
p(·),q(·)(R

n) was proved by Vybíral

in [45].

Theorem 2.10. Let p0, p1, q ∈ P log(Rn) and s0, s1 ∈ C log
loc (R

n). Let s0(x) ≥
s1(x) and p0(x) ≤ p1(x) for all x ∈ R

n with

s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.
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Then we have

b
s0(·)
p0(·),q(·)

(Rn) →֒ b
s1(·)
p1(·),q(·)

(Rn).

3. Franke embedding - constant exponents case

The Franke embedding (1.2) was shown in [14] using duality and interpolation.
An alternative proof avoiding interpolation was given in [44]. The main tools used
were the technique of non-increasing rearrangements and duality. Here, we give a
new proof of the Franke embedding for the scale of spaces with constant exponents,
which still relies on non-increasing rearrangements, but we avoid using duality.

We start by introducing the concept of non-increasing rearrangement and some
of its important properties. We refer to [5] to an extensive treatment of this subject.

Definition 3.1. Let µ be the Lebesgue measure in R
n. If h is a measurable

function on R
n, we define the non-increasing rearrangement of h through

h∗(t) = sup {λ > 0: µ{x ∈ R
n : |h(x)| > λ} > t} , t ∈ (0,∞).

The following lemma can be found in [5, Chapter 2, Prop. 1.8].

Lemma 3.2. If 0 < p ≤ ∞, then

‖h | Lp(R
n)‖ = ‖h∗ | Lp(0,∞)‖

for every measurable function h.

The next lemma is a simple corollary of results included in [5]. We give a proof
for reader’s convenience.

Lemma 3.3. Let (hj)j∈N0 be a sequence of non-negative measurable functions
on R

n. If 1 ≤ p ≤ ∞, then

∥∥∥
∞∑

j=0

hj | Lp(R
n)
∥∥∥ ≤

∥∥∥
∞∑

j=0

h∗
j | Lp(0,∞)

∥∥∥.

Proof. By [5, Chapter 2, Theorem 3.4],
ˆ t

0

(h0 + h1)
∗(u)du ≤

ˆ t

0

h∗
0(u)du+

ˆ t

0

h∗
1(u)du

holds for every 0 < t < ∞. By induction, this can be further generalized to every
finite number of functions and, by monotone convergence theorem, also to infinite
number of terms, i.e.

(3.15)

ˆ t

0

( ∞∑

j=0

hj

)∗
(u)du ≤

∞∑

j=0

ˆ t

0

h∗
j(u)du =

ˆ t

0

( ∞∑

j=0

h∗
j (u)

)
du, 0 < t < ∞.

Lemma 3.2 then gives

∥∥∥
∞∑

j=0

hj | Lp(R
n)
∥∥∥ =

∥∥∥
( ∞∑

j=0

hj

)∗
| Lp(0,∞)

∥∥∥

and the result follows by (3.15) and the Hardy–Littlewood–Pólya Principle, cf. [5,
Chapter 2, Corollary 4.7]. �

The main result of this section is an alternative proof of the sequence space
version of (1.2). In the contrary to [44], it avoids the use of duality.
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Theorem 3.4. Let −∞ < s1 < s0 < ∞, 0 < p0 < p1 < ∞ and 0 < q ≤ ∞ with

s0 −
n

p0
= s1 −

n

p1
.

Then
bs0p0,p1(R

n) →֒ f s1
p1,q(R

n).

Proof. By lifting properties it is enough to show the Franke embedding with
s1 = 0, i.e.

(3.16) b
n
(

1
p0

− 1
p1

)
p0,p1 (Rn) →֒ f 0

p1,q(R
n).

Plugging in Definition 2.7, we get

‖γ|f 0
p1,q

(Rn)‖ =
∥∥∥
( ∞∑

j=0

∑

m∈Zn

|γj,m|
qχj,m(·)

) 1
q

|Lp1(R
n)
∥∥∥(3.17)

and

‖γ|b
n
(

1
p0

− 1
p1

)
p0,p1 (Rn)‖ =

( ∞∑

j=0

2−jn
(∑

m∈Zn

|γj,m|
p0
)p1

p0

) 1
p1 .(3.18)

To prove (3.16), we will use 0 < p0 < p1 < ∞ and also 0 < q ≤ min(1, p0), since
it follows by elementary embeddings that we can take q arbitrarily small.

We write

‖γ|f 0
p1,q

(Rn)‖ =
∥∥∥
( ∞∑

j=0

∑

m∈Zn

|γj,m|
qχj,m(·)

) 1
q

|Lp1(R
n)
∥∥∥

=
∥∥∥

∞∑

j=0

∑

m∈Zn

|γj,m|
qχj,m(·)|L p1

q
(Rn)

∥∥∥
1/q

≤
∥∥∥

∞∑

j=0

(∑

m∈Zn

|γj,m|
qχj,m

)∗
(·)|L p1

q
(0,∞)

∥∥∥
1/q

=
∥∥∥

∞∑

j=0

∞∑

l=0

(γ∗
j,l)

qχ̃j,l(·)|L p1
q
(0,∞)

∥∥∥
1/q

.

Here, we have used Lemma 3.3 due to p1
q
≥ 1 and χ̃j,l is the characteristic function

of [2−jnl, 2−jn(l + 1)). Furthermore, (γ∗
j,l)

∞
l=0 is a non-increasing rearrangement of

(|γj,m|)m∈Zn , i.e. a non-increasing sequence of non-negative real numbers, such that
the sets

{m ∈ Z
n : |γj,m| > t} and {l ∈ N0 : γ

∗
j,l > t}

have the same cardinality for all t > 0. Formally, it can be defined for every j ∈ N0

by
γ∗
j,l = sup{λ > 0: #{m ∈ Z

n : |γj,m| > λ} > l}, l ∈ N0,

where #A denotes the number of elements of the set A.
We discretize the last norm, i.e. we use that

‖ϕ|Lr(0,∞)‖ ∼
( ∞∑

k=−∞

2−knϕ(2−kn)r
)1/r

holds for 1 ≤ r < ∞ and every non-negative non-increasing function ϕ. Further, we
observe that χ̃j,l(2

−kn) = 1 only for l = 2(j−k)n if j− k ≥ 0 and for l = 0 if j− k < 0.



196 Helena F. Gonçalves, Henning Kempka and Jan Vybíral

This can be summarized as l = ⌊2(j−k)n⌋, where ⌊x⌋ is the integer part of a real
number x.

This leads to

‖γ|f 0
p1,q(R

n)‖ .
( ∞∑

k=−∞

2−kn
[( ∞∑

j=0

∞∑

l=0

(γ∗
j,l)

qχ̃j,l(·)
)
(2−kn)

]p1
q
) 1

p1

=
( ∞∑

k=−∞

2−kn
( ∞∑

j=0

∞∑

l=0

(γ∗
j,l)

qχ̃j,l(2
−kn)

)p1
q
) 1

p1

=
( ∞∑

k=−∞

2−kn
( ∞∑

j=0

(γ∗
j,⌊2(j−k)n⌋)

q
)p1

q
) 1

p1

.
[ 0∑

k=−∞

2−kn
( ∞∑

j=0

(γ∗
j,2(j−k)n)

q
) p1

q
] 1

p1 +
[ ∞∑

k=1

2−kn
(k−1∑

j=0

(γ∗
j,0)

q
)p1

q
] 1

p1

+
[ ∞∑

k=1

2−kn
( ∞∑

j=k

(γ∗
j,2(j−k)n)

q
) p1

q
] 1

p1 = I + II + III.

We estimate all the three terms separately.
The first term can be estimated in the following way. Starting with Hölder’s

inequality with p0/q ≥ 1 for the sum over j and with β > 0, we get

I =
[ 0∑

k=−∞

2−kn
( ∞∑

j=0

(γ∗
j,2(j−k)n)

q
)p1

q
] 1

p1

.
[ 0∑

k=−∞

( ∞∑

j=0

2
−kn

p0
p1 2jnβ

p0
q (γ∗

j,2(j−k)n)
p0
)p1

p0

] p0
p1

1
p0 .

Now, after using the triangle inequality with p1
p0

> 1 and the embedding ℓ p0
p1

→֒ ℓ1 in

the sum over k, we substitute l = j − k and get

I .
[ ∞∑

j=0

( 0∑

k=−∞

2−kn2jnβ
p1
q (γ∗

j,2(j−k)n)
p1
) p0

p1

] 1
p0

≤
[ ∞∑

j=0

0∑

k=−∞

2
−kn

p0
p1 2jnβ

p0
q (γ∗

j,2(j−k)n)
p0
] 1

p0

=
[ ∞∑

j=0

2jnβ
p0
q

∞∑

l=j

2
(l−j)n

p0
p1 (γ∗

j,2ln)
p0
] 1

p0

=
[ ∞∑

j=0

2
jn(β

p0
q
−

p0
p1

)
∞∑

l=j

2ln2
ln(

p0
p1

−1)
(γ∗

j,2ln)
p0
] 1

p0 .

Since p0
p1

− 1 < 0, we have

I .
[ ∞∑

j=0

2
jn(β

p0
q
−

p0
p1

)
2
jn(

p0
p1

−1)
∞∑

l=j

2ln(γ∗
j,2ln)

p0
] 1

p0

=
[ ∞∑

j=0

2
−jn

p0
p1 2

jn(β
p0
q
+

p0
p1

−1)
∞∑

l=j

2ln(γ∗
j,2ln)

p0
] 1

p0 .
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We finish this estimate choosing β with β p0
q
+ p0

p1
− 1 < 0, i.e., 0 < β < q( 1

p0
− 1

p1
)

and get with (3.18)

I .
[ ∞∑

j=0

2−jn
( ∞∑

l=j

2ln(γ∗
j,2ln)

p0
)p1

p0

] 1
p1 . ‖γ|b

n
(

1
p0

− 1
p1

)
p0,p1 (Rn)‖.

To estimate the second term, we start by using Hölder’s inequality with p1/q > 1
for the sum over j with β > 0

IIp1 .

∞∑

k=1

2−kn2knβ
p1
q

k−1∑

j=0

2−jnβ
p1
q (γ∗

j,0)
p1

=

∞∑

j=0

2−jnβ
p1
q (γ∗

j,0)
p1

∞∑

k=j+1

2kn(β
p1
q
−1).

Now, choosing β > 0 with β p1
q
− 1 < 0, i.e., 0 < β < q

p1
, we get again by (3.18)

IIp1 .

∞∑

j=0

2−jnβ
p1
q (γ∗

j,0)
p12jnβ

p1
q 2−jn

=
∞∑

j=0

(γ∗
j,0)

p12−jn . ‖γ|b
n
(

1
p0

− 1
p1

)
p0,p1 (Rn)‖p1.

Finally, we estimate the third term starting again by using a parameter δ > 0
and Hölder’s inequality

IIIp1 =

∞∑

k=1

2−kn
( ∞∑

j=k

2jnδ2−jnδ(γ∗
j,2(j−k)n)

q
)p1

q

.

∞∑

k=1

2−kn2−knδ
p1
q

∞∑

j=k

2jnδ
p1
q (γ∗

j,2(j−k)n)
p1

=
∞∑

j=1

2jnδ
p1
q

j∑

k=1

2−kn(1+δ
p1
q
)(γ∗

j,2(j−k)n)
p1.

We substitute l = j − k and obtain

IIIp1 .

∞∑

j=1

2jnδ
p1
q

j−1∑

l=0

2(l−j)n(1+δ
p1
q
)(γ∗

j,2ln)
p1

=

∞∑

j=1

2−jn
[ j−1∑

l=0

2
ln( q

p1
+δ)

p1
q (γ∗

j,2ln)
p1
]

≤

∞∑

j=1

2−jn
[ j−1∑

l=0

2
ln( q

p1
+δ)

p0
q (γ∗

j,2ln)
p0
] p1

p0 ,

where the last step comes from the elementary embedding ℓp0 →֒ ℓp1. Choosing now
δ > 0 such that ( q

p1
+ δ)p0

q
= 1, i.e. δ = q

p0
− q

p1
> 0, we get

IIIp1 .

∞∑

j=1

2−jn
[ j−1∑

l=0

2ln(γ∗
j,2ln)

p0
] p1

p0 . ‖γ|b
n
(

1
p0

− 1
p1

)
p0,p1 (Rn)‖p1,

which concludes the proof. �
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4. Franke–Jawerth embeddings - variable exponent case

We now return to the scale of Besov and Triebel–Lizorkin spaces with variable
exponents. First, we state the result in the form of embeddings of sequence spaces
under the assumptions we really need in the proof. After that, we combine those
with the conditions required in Theorems 2.9 and 2.8, and we present the results on
function spaces in the form of a corollary.

Before we come to the main aim of this section, we define a certain lifting operator
between sequence spaces and establish its basic properties.

Lemma 4.1. Let p, q ∈ P log(Rn) and let s, σ ∈ C log
loc (R

n). Then the lifting
operator Iσ(·) given by

(Iσ(·)λ)j,m = 2jσ(2
−jm)λj,m, j ∈ N0, m ∈ Z

n,

is an isomorphism (i.e. bounded linear operator with bounded inverse) of b
s(·)
p(·),q(·) onto

b
s(·)−σ(·)
p(·),q(·) and, if p+ < ∞, also of f

s(·)
p(·),q(·) onto f

s(·)−σ(·)
p(·),q(·) .

Proof. First of all we observe that for s ∈ C log
loc (R

n) the norms of the sequence
spaces from Definition 2.7 can equivalently be expressed by

‖λ | b
s(·)
p(·),q(·)(R

n)‖ ∼
∥∥∥
( ∑

m∈Zn

|λj,m| 2
js(2−jm) χj,m

)
j∈N0

| Lp(·)(ℓq(·)(R
n))
∥∥∥(4.19)

and

‖λ | f
s(·)
p(·),q(·)(R

n)‖ ∼
∥∥∥
( ∑

m∈Zn

|λj,m| 2
js(2−jm) χj,m

)
j∈N0

| ℓq(·)(Lp(·)(R
n))
∥∥∥.

This simply follows from Lemma 4.1.6 in [10] which gives for s ∈ C log
loc (R

n)

2js(x) ∼ 2js(2
−jm) for all x ∈ Qj,m.(4.20)

Using the definition of Iσ(·) and (4.19) twice leads to

‖Iσ(·)λ | b
s(·)−σ(·)
p(·),q(·) (Rn)‖

∼
∥∥∥
( ∑

m∈Zn

2js(2
−jm)−jσ(2−jm)2jσ(2

−jm)|λj,m|χj,m

)
j∈N0

| ℓq(·)(Lp(·)(R
n))
∥∥∥

∼ ‖λ | b
s(·)
p(·),q(·)(R

n)‖.

The proof in the f -case follows in the same way. �

We shall use the lifting operator in the connection with embeddings of sequence
spaces.

Lemma 4.2. Let p, p̃, q, q̃ ∈ P log(Rn), s, s̃ ∈ C log
loc (R

n) and a, ã ∈ {b, f}. We

assume that p+ < ∞ if a equals f and p̃+ < ∞ if ã equals f . Then a
s(·)
p(·),q(·)(R

n) →֒

ã
s̃(·)
p̃(·),q̃(·)(R

n) if, and only if, a
s(·)−s̃(·)
p(·),q(·) (R

n) →֒ ã0p̃(·),q̃(·)(R
n).

Proof. The proof follows by standard arguments involving two applications of

Lemma 4.1. Let, for example, a
s(·)
p(·),q(·)(R

n) →֒ ã
s̃(·)
p̃(·),q̃(·)(R

n). Then

‖λ | ã0p̃(·),q̃(·)(R
n)‖ = ‖Is̃(·) ◦ I−s̃(·)(λ) | ã

0
p̃(·),q̃(·)(R

n)‖ . ‖I−s̃(·)(λ) | ã
s̃(·)
p̃(·),q̃(·)(R

n)‖

. ‖I−s̃(·)(λ) | a
s(·)
p(·),q(·)(R

n)‖ . ‖λ | a
s(·)−s̃(·)
p(·),q(·) (R

n)‖.

The other direction follows in the same way. �
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4.1. Jawerth embedding.

Theorem 4.3. Let p0, p1, q ∈ P log(Rn) with p+0 < ∞ and s0, s1 ∈ C log
loc (R

n). Let
inf

x∈Rn
(s0(x)− s1(x)) > 0 with

(4.21) s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.

Then

(4.22) f
s0(·)
p0(·),q(·)

(Rn) →֒ b
s1(·)
p1(·),p0(·)

(Rn).

Proof. Let us put

ε′ = inf
x∈Rn

(s0(x)− s1(x)) = inf
x∈Rn

( n

p0(x)
−

n

p1(x)

)
> 0.

Then

p1(x)

p0(x)
− 1 = p1(x)

( 1

p0(x)
−

1

p1(x)

)
≥ p1(x)

ε′

n
≥

p−1 ε
′

n
.

Putting ε =
p−1 ε′

2n
> 0 we get for every x ∈ R

n

(4.23) p0(x) < (1 + ε)p0(x) < p1(x).

The proof of (4.22) will be the result of the following chain of embeddings

f
s0(·)
p0(·),q(·)

(Rn) →֒ f
s0(·)
p0(·),∞

(Rn) →֒ b
s0(·)−

n
p0(·)

+ n
(1+ε)p0(·)

(1+ε)p0(·),p0(·)
(Rn)

= b
s1(·)−

n
p1(·)

+ n
(1+ε)p0(·)

(1+ε)p0(·),p0(·)
(Rn) →֒ b

s1(·)
p1(·),p0(·)

(Rn).
(4.24)

The first embedding in (4.24) is an elementary statement about the monotonicity of f -
spaces in the summability index q and the last embedding follows from Theorem 2.10
and (4.23). The identity in (4.24) is a simple consequence of (4.21). Hence, it remains
to prove the second embedding in (4.24), which is actually a special case of (4.22)
with q = ∞ and p1(x) = (1+ε)p0(x). Finally, by the lifting property from Lemma 4.2,
we may consider only the case when the smoothness exponent of the target space is
zero.

The proof of (4.22) will therefore follow from

(4.25) f
n

p0(·)
· ε
1+ε

p0(·),∞
(Rn) →֒ b0(1+ε)p0(·),p0(·)

(Rn)

or, equivalently,

(4.26) ‖γ | b0(1+ε)p0(·),p0(·)
(Rn)‖ ≤ C ‖γ | f

n
p0(·)

· ε
1+ε

p0(·),∞
(Rn)‖,

for some constant C > 0 and γ = (γj,m)j,m, for j ∈ N0, m ∈ Z
n.

Let us put

h(x) = sup
j,m

2
jn

p0(x)
· ε
1+ε |γj,m|χj,m(x), x ∈ R

n.

Then for every x ∈ Qj,m we have 2
jn

p0(x)
· ε
1+ε |γj,m| ≤ h(x) and

|γj,m| ≤ inf
y∈Qj,m

2
−jn

p0(y)
· ε
1+εh(y).

Using this notation,

‖γ|f
n

p0(x)
· ε
1+ε

p0(·),∞
(Rn)‖ = ‖h | Lp0(·)(R

n)‖
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and (4.26) reads as

‖γ | b0(1+ε)p0(·),p0(·)(R
n)‖ ≤ C ‖h | Lp0(·)(R

n)‖.

We assume that ‖h | Lp0(·)(R
n)‖ ≤ 1, which is by the unit ball property (cf. [10,

Lemma 2.1.4] equivalent to

(4.27)

ˆ

Rn

h(x)p0(x) dx ≤ 1,

and need to prove that

‖γ | b0(1+ε)p0(·),p0(·)
(Rn)‖ ≤ C.

This we will show by finding C > 0 with

̺ℓp0(·)(L(1+ε)p0(·)
)

(
∑

m∈Zn

|γj,m|

C
χj,m

)
≤ 1,

i.e.
∞∑

j=0

∥∥∥ 1

Cp0(·)

(∑

m∈Zn

|γj,m|χj,m(·)
)p0(·)

| L(1+ε)(R
n)
∥∥∥ ≤ 1.

Due to 0 < p−0 ≤ p+0 < ∞, this in turn is equivalent to

∞∑

j=0

∥∥∥
(∑

m∈Zn

|γj,m|χj,m(·)
)p0(·)

| L(1+ε)(R
n)
∥∥∥ ≤ C

with possibly a different value of C > 0. To show this, we write

∞∑

j=0

∥∥∥
∑

m∈Zn

|γj,m|
p0(·)χj,m | L1+ε(R

n)
∥∥∥

≤
∞∑

j=0

∥∥∥
∑

m∈Zn

(
inf

y∈Qj,m

2
−jn

p0(y)
· ε
1+εh(y)

)p0(·)
χj,m | L1+ε(R

n)
∥∥∥

=
∞∑

j=0

{∑

m∈Zn

ˆ

Qj,m

(
inf

y∈Qj,m

2
−jn

p0(y)
· ε
1+εh(y)

)(1+ε)p0(x)

dx
} 1

1+ε

=

∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

(
inf

y∈Qj,m

2
−jnε

(
p0(x)
p0(y)

−1
)
h(y)(1+ε)p0(x)

)
dx
} 1

1+ε

.

We use the regularity of p0 to obtain for x, y ∈ Qj,m

2
−jn
(

p0(x)
p0(y)

−1
)
=
[
2
j
(

1
p0(x)

− 1
p0(y)

)]np0(x)
≤ 2np0(x)clog(1/p0) ≤ c′.

So, it is enough to prove

(4.28)

∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

≤ C,

where we denoted

hj,m = inf
y∈Qj,m

h(y).
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We split the left-hand side of (4.28) into
∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

≤
∞∑

j=0

2−jn ε
1+ε

{ ∑

{m:hj,m≤1}

ˆ

Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

+

∞∑

j=0

2−jn ε
1+ε

{ ∑

{m:hj,m>1}

ˆ

Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

= I + II.

The first term can be estimated by (4.27)

I ≤
∞∑

j=0

2−jn ε
1+ε

{ ∑

{m:hj,m≤1}

ˆ

Qj,m

h
p0(x)
j,m dx

} 1
1+ε

≤

∞∑

j=0

2−jn ε
1+ε

{ˆ

Rn

h(x)p0(x)dx
} 1

1+ε

≤ c.

To estimate II, we make first a couple of observations. Let hj,m ≥ 1. Then

1 ≥

ˆ

Rn

h(x)p0(x)dx ≥

ˆ

Qj,m

h(x)p0(x)dx ≥

ˆ

Qj,m

h
p0(x)
j,m dx ≥ |Qj,m|h

p−0
j,m = 2−jnh

p−0
j,m

and we get

1 ≤ hj,m ≤ 2jn/p
−

0 .

Hence there is an 0 ≤ α ≤ 1 such that hj,m = 2αjn/p
−

0 . Since p+0 < ∞, we have that

1/p0 ∈ C log
loc (R

n) implies p0 ∈ C log
loc (R

n) and we can use its regularity. Hence, there is
a constant c > 1 such that for any x, y ∈ Qj,m it holds c−1 ≤ 2j(p0(x)−p0(y)) ≤ c and
therefore

(4.29) c−αn/p−0 ≤ 2
αjn

p
−

0

(p0(x)−p0(y))
= h

(p0(x)−p0(y))
j,m ≤ cαn/p

−

0 ≤ cn/p
−

0 .

If we also denote pj,m = infy∈Qj,m
p0(y), we obtain

h
p0(x)
j,m = h

p0(x)−pj,m
j,m · h

pj,m
j,m ≤ Ch

pj,m
j,m ≤ C inf

y∈Qj,m

(
h(y)p0(y)

)
.

The last fact we shall use is that

(4.30)
∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

( inf
y∈Qj,m

ϕ(y))1+εdx
} 1

1+ε

≤ c‖ϕ | L1(R
n)‖

for each non-negative ϕ ∈ L1(R
n). The proof follows easily using the technique of

non-increasing rearrangement:
∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

( inf
y∈Qj,m

ϕ(y))1+εdx
} 1

1+ε

≤
∞∑

j=0

2−jn ε
1+ε

{ ∞∑

l=1

2−jnϕ∗(l2−jn)1+ε
} 1

1+ε

.

∞∑

j=0

2−jn ε
1+ε

{ ∞∑

k=0

2(k−j)nϕ∗(2(k−j)n)1+ε
} 1

1+ε
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≤

∞∑

j=0

2−jn ε
1+ε

∞∑

k=0

2(k−j) n
1+εϕ∗(2(k−j)n)

=

∞∑

l=−∞

ϕ∗(2−ln)2−
ln
1+ε

∞∑

j=l

2−jn ε
1+ε .

∞∑

l=−∞

ϕ∗(2−ln)2−ln ∼ ‖ϕ | L1(R
n)‖.

We apply (4.30) with ϕ(y) = h(y)p0(y) to estimate II

II =

∞∑

j=0

2−jn ε
1+ε

{ ∑

{m:hj,m>1}

ˆ

Qj,m

h
(1+ε)p0(x)
j,m dx

} 1
1+ε

.

∞∑

j=0

2−jn ε
1+ε

{ ∑

{m:hj,m>1}

ˆ

Qj,m

( inf
y∈Qj,m

h(y)p0(y))1+εdx
} 1

1+ε

.

∞∑

j=0

2−jn ε
1+ε

{∑

m∈Zn

ˆ

Qj,m

( inf
y∈Qj,m

h(y)p0(y))1+εdx
} 1

1+ε

.

ˆ

Rn

h(y)p0(y)dy ≤ C

and finish the proof. �

Using the correspondence of sequence and function spaces from Theorems 2.8
and 2.9 we obtain the Jawerth embedding for the variable function spaces.

Corollary 4.4. Let p0, p1, q ∈ P log(Rn) with p+0 , q
+ < ∞ and s0, s1 ∈ C log

loc (R
n).

Let infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.

Then

F
s0(·)
p0(·),q(·)

(Rn) →֒ B
s1(·)
p1(·),p0(·)

(Rn).

Proof. Let d > 1 and consider K,L ∈ N0 such that

K > s+0 and L > max
(
σp0,q − s−0 , σp1 − 1− s−1

)
.

By Theorem 2.8, each f ∈ F
s0(·)
p0(·),q(·)

(Rn) can be written as

f =
∞∑

j=0

∑

m∈Zn

λj,m aj,m (convergence in S ′(Rn))

with

(4.31) ‖λ(f) | f
s0(·)
p0(·),q(·)

(Rn)‖ ≤ c ‖f | F
s0(·)
p0(·),q(·)

(Rn)‖,

where c > 0 does not depend on f and (aj,m)j∈N0,m∈Zn are [K,L]-atoms. From
Theorem 4.3, we know that

(4.32) ‖λ(f) | b
s1(·)
p1(·),p0(·)

(Rn)‖ ≤ c′ ‖λ(f) | f
s0(·)
p0(·),q(·)

(Rn)‖,

with c′ > 0 independent of λ(f). Due to our choice of K and L, we can use now
the atomic characterization for Besov spaces stated in Theorem 2.9 and conclude

not only that f also belongs to B
s1(·)
p1(·),p0(·)

(Rn), but also that the following inequality

holds

(4.33) ‖f | B
s1(·)
p1(·),p0(·)

(Rn)‖ ≤ c′′ ‖λ(f) | b
s1(·)
p1(·),p0(·)

(Rn)‖,
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with c′′ > 0 independent of f . Then, the combination of (4.31)–(4.33) gives us the
desired estimate. �

4.2. Franke embedding. In this section we prove the Franke embedding for
function spaces with variable exponents. We have to avoid duality arguments in the
variable exponent setting and therefore reduce the proof to the constant exponent
case and apply Theorem 3.4, which we have shown in the previous section.

Theorem 4.5. Let p0, p1, q ∈ P log(Rn) with p+1 < ∞ and s0, s1 ∈ C log
loc (R

n). Let
infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.

Then
b
s0(·)
p0(·),p1(·)

(Rn) →֒ f
s1(·)
p1(·),q(·)

(Rn).

Proof. By the lifting property from Lemma 4.2 we may suppose again s1 = 0,
and the elementary embeddings between f -spaces allow one to set

q(x) =
1

r
p1(x), with r > 1 chosen big enough.

So it suffices to prove the embedding

(4.34) b
n( 1

p0(·)
− 1

p1(·)
)

p0(·),p1(·)
(Rn) →֒ f 0

p1(·),
1
r
p1(·)

(Rn).

Similarly to (4.23), p0(x) < p1(x) are again well separated and we may find ε > 0
with

p1(x) > (1− ε)p1(x) > p0(x).

By the Sobolev embedding from Theorem 2.10 we obtain

b
n( 1

p0(·)
− 1

p1(·)
)

p0(·),p1(·)
(Rn) →֒ b

n
p1(·)

ε
1−ε

(1−ε)p1(·),p1(·)
(Rn).

Hence, instead of (4.34) we show

(4.35) b
n

p1(·)
ε

1−ε

(1−ε)p1(·),p1(·)
(Rn) →֒ f 0

p1(·),
1
r
p1(·)

(Rn).

We assume that ‖γ | b
n

p1(·)
ε

1−ε

(1−ε)p1(·),p1(·)
(Rn)‖ ≤ 1, which is equivalent to

∞∑

j=0

∥∥∥
∑

m∈Zn

|γj,m|
p1(·)2jn

ε
1−εχj,m | L1−ε(R

n)
∥∥∥ ≤ 1

or even

(4.36)

∞∑

j=0

2jn
ε

1−ε

(
ˆ

Rn

∑

m∈Zn

|γj,m|
(1−ε)p1(x)χj,m(x)dx

) 1
1−ε

≤ 1.

This implies that, for every j ∈ N0, we have the inequality

(4.37)
∑

m∈Zn

ˆ

Qj,m

|γj,m|
(1−ε)p1(x)dx ≤ 2−jnε.

Our aim is to prove that ‖γ | f 0
p1(·),

1
r
p1(·)

(Rn)‖ ≤ C. By Definition 2.7 and (2.7),

it is sufficient to find C > 0, such that∥∥∥∥∥

( ∞∑

j=0

∑

m∈Zn

|γj,m|
p1(·)/rχj,m(·)

)r/p1(·)
∣∣∣∣∣Lp1(·)(R

n)

∥∥∥∥∥ ≤ C,
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or, equivalently,
ˆ

Rn

1

Cp1(x)

( ∞∑

j=0

∑

m∈Zn

|γj,m|
p1(x)/rχj,m(x)

)r

dx ≤ 1.

Finally, due to the restriction 0 < p−1 ≤ p+1 < ∞, it is enough to show

(4.38)
∥∥∥

∞∑

j=0

∑

m∈Zn

|γj,m|
p1(·)

r χj,m | Lr(R
n)
∥∥∥ ≤ C

with possibly a different value of C > 0.
We have

∥∥∥
∞∑

j=0

∑

m∈Zn

|γj,m|
p1(·)

r χj,m | Lr(R
n)
∥∥∥

≤
∥∥∥

∞∑

j=0

∑

{m:|γj,m|≤1}

|γj,m|
p1(·)

r χj,m | Lr(R
n)
∥∥∥+

∥∥∥
∞∑

j=0

∑

{m:|γj,m|>1}

|γj,m|
p1(·)

r χj,m | Lr(R
n)
∥∥∥

= I + II.

The estimate of I follows by (4.37)

I ≤
∞∑

j=0

( ∑

{m:|γj,m|≤1}

ˆ

Qj,m

|γj,m|
p1(x)dx

) 1
r

≤
∞∑

j=0

( ∑

{m:|γj,m|≤1}

ˆ

Qj,m

|γj,m|
(1−ε)p1(x)dx

) 1
r

≤
∞∑

j=0

2−jnε 1
r ≤ c.

To estimate II, we observe that (4.37) implies for every j ∈ N0 and m ∈ Z
n with

|γj,m| > 1

2−jnε ≥

ˆ

Qj,m

|γj,m|
(1−ε)p1(x)dx ≥ 2−jn|γj,m|

(1−ε)p−1

and therefore

1 ≤ |γj,m| ≤ 2
jn 1

p
−

1 .

Similarly to (4.29), for every x ∈ Qj,m we have |γj,m|
p1(x) ∼ |γj,m|

pj,m, where pj,m is
the value of p1 in the middle of Qj,m. Denoting αj,m = |γj,m|

pj,m, we get that (4.36)
implies

(4.39)

∞∑

j=0

2jn
ε

1−ε

(
2−jn

∑

{m:|γj,m|>1}

|γj,m|
(1−ε)pj,m

) 1
1−ε

≤ c,

or, equivalently,

(4.40)
∞∑

j=0

2−jn
( ∑

{m:|αj,m|>1}

|αj,m|
1−ε
) 1

1−ε

≤ c.

To estimate the second term II it is therefore sufficient to show that

(4.41)
∥∥∥

∞∑

j=0

∑

{m:|γj,m|>1}

|γj,m|
pj,m/rχj,m|Lr(R

n)
∥∥∥ ≤ C,
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which in turn is equivalent to

(4.42)
∥∥∥

∞∑

j=0

∑

{m:|αj,m|>1}

|αj,m|
1/rχj,m|Lr(R

n)
∥∥∥ ≤ C.

To obtain (4.42) from (4.40), we employ the constant-index case, i.e. Theorem 3.4.
Indeed, we put βj,m = |αj,m|

1/r if |αj,m| > 1 and zero otherwise and get

∥∥∥
∞∑

j=0

∑

{m:|αj,m|>1}

|αj,m|
1/rχj,m|Lr(R

n)
∥∥∥ =

∥∥∥
∞∑

j=0

∑

m∈Zn

|βj,m|χj,m|Lr(R
n)
∥∥∥

= ‖β | f 0
r,1‖ . ‖β | b

nε
r(1−ε)

(1−ε)r,r‖ =
{ ∞∑

j=0

2
jnε

(1−ε)r
r
(∑

m∈Zn

2−jnβ
(1−ε)r
j,m

) r
(1−ε)r

}1/r

=
{ ∞∑

j=0

2−jn
( ∑

m:|αj,m|>1

|αj,m|
1−ε
) 1

1−ε
}1/r

≤ c1/r. �

Likewise the previous section, we can use the characterization of the spaces via
atoms to transfer the result from the sequence spaces to the function spaces. We do
not present the proof here because it follows similarly as the proof of Corollary 4.4.

Corollary 4.6. Let p0, p1, q ∈ P log(Rn) with p+1 , q
+ < ∞ and s0, s1 ∈ C log

loc (R
n).

Let infx∈Rn(s0(x)− s1(x)) > 0 with

s0(x)−
n

p0(x)
= s1(x)−

n

p1(x)
, x ∈ R

n.

Then
B

s0(·)
p0(·),p1(·)

(Rn) →֒ F
s1(·)
p1(·),q(·)

(Rn).

5. Jawerth and Franke embedding in 2-microlocal spaces

The definition of Besov and Triebel–Lizorkin spaces of variable smoothness and
integrability is a special case of the so-called 2-microlocal spaces of variable integrabil-
ity. As all the proofs for spaces of variable smoothness do also serve for 2-microlocal
spaces, we devote this section to present these results. We start by the definition of
the spaces, which is based on the dyadic decomposition of unity as presented before
combined with the concept of admissible weight sequences.

Definition 5.1. Let α ≥ 0 and α1, α2 ∈ R with α1 ≤ α2. A sequence w =
(wj)j∈N0 of positive measurable functions in R

n belongs to the class Wα
α1,α2

(Rn) if
the following conditions are satisfied:

(i) There exists a constant c > 0 such that

0 < wj(x) ≤ c wj(y) (1 + 2j|x− y|)α for all j ∈ N0 and all x, y ∈ R
n.

(ii) For all j ∈ N0 it holds

2α1 wj(x) ≤ wj+1(x) ≤ 2α2 wj(x) for all x ∈ R
n.

Such a system (wj)j∈N0 ∈ Wα
α1,α2

(Rn) is called admissible weight sequence.

Properties of admissible weights may be found in [25, Remark 2.4]. Finally, here
is the definition of the spaces under consideration.

Definition 5.2. Let (ϕj)j∈N0 be a partition of unity as explained in Section 2,
w = (wj)j∈N0 ∈ Wα

α1,α2
(Rn) and p, q ∈ P log(Rn).
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(i) The space Bw

p(·),q(·)(R
n) is defined as the collection of all f ∈ S ′(Rn) such that

‖f | Bw

p(·),q(·)(R
n)‖ := ‖(wj (ϕj f̂)

∨)j∈N0 | ℓq(·)(Lp(·)(R
n))‖

is finite.
(ii) If p+, q+ < ∞, then the space Bw

p(·),q(·)(R
n) is defined as the collection of all

f ∈ S ′(Rn) such that

‖f | Fw

p(·),q(·)(R
n)‖ := ‖(wj (ϕj f̂)

∨)j∈N0 | Lp(·)(ℓq(·)(R
n))‖

is finite.

As before, the independence of the decomposition of unity for the 2-microlocal
spaces follows from the local means characterization (see [26] for Triebel–Lizorkin
and [28] for Besov spaces).

Remark 5.3. These 2-microlocal weight sequences are directly connected to
variable smoothness functions s : Rn → R if we set

wj(x) = 2js(x), x ∈ R
n.(5.43)

If s ∈ C log
loc (R

n), then w = (wj(x))j∈N0 = (2js(x))j∈N0 belongs to Wα
α1,α2

(Rn) with
α1 = s− and α2 = s+ and α = clog(s), where clog(s) is the constant for s(·) from (2.8).
That means that spaces of variable smoothness from Definition 2.2 are a special case
of 2-microlocal function spaces from Definition 5.2. Both types of function spaces
are very closely connected and the properties used in the proofs are either

2j|s(x)−s(y)| ≤ c or
wj(x)

wj(y)
≤ c(5.44)

for |x − y| ≤ c 2−j and j ∈ N0. This property follows directly either from the

definition of s ∈ C log
loc (R

n) or from Definition 5.1.

Theorem 5.4. Let w0,w1 ∈ Wα
α1,α2

(Rn) and p0, p1, q ∈ P log(Rn) with q+ < ∞.
Let p0(x) < p1(x) with infx∈Rn(p1(x)− p0(x)) > 0 and

1 <
w0

j (x)

w1
j (x)

= 2
j
(

n
p0(x)

− n
p1(x)

)

for all x ∈ R
n and j ∈ N0.

(i) If p+0 < ∞, then

Fw
0

p0(·),q(·)
→֒ Bw

1

p1(·),p0(·)
.

(ii) If p+1 < ∞, then

Bw
0

p0(·),p1(·) →֒ Fw
1

p1(·),q(·).

Regarding the proof, one just needs to use the corresponding Sobolev embeddings
for 2-microlocal spaces (see [17] and [1]) and follow exactly the same steps as before
using always property (5.44) for the weight sequences.

6. Open problems

We close by listing several open problems, which are connected to the study of
function spaces with variable exponents and their embeddings.

(1) Give an example that infx∈Rn(s0(x)− s1(x)) > 0 is really needed and can not
be replaced by s0(x) > s1(x) for all x ∈ R

n. This seems to be feasible when
working with function space on the whole R

n, but it might get more tricky,
when considering only functions with support in, say, the unit cube [0, 1]n.
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(2) It is well known, that the Triebel–Lizorkin spaces F s
p,q(R

n) with constant in-
dices might depend on the chosen decomposition of unity if p = ∞. Therefore,
the restriction p+ < ∞ seems to be quite natural in Definition 2.2 (i). On
the other hand, there is no such trouble for spaces F s

p,q(R
n) with p < ∞ and

q = ∞. It would be therefore highly interesting if the Triebel–Lizorkin spaces

F
s(·)
p(·),q(·)(R

n) can also be defined with q+ = ∞ but with still variable q. To

that end one needs to show that the spaces F
s(·)
p(·),q(·)(R

n) are independent on

the resolution of unity.
(3) Function spaces of Morrey type attracted recently a lot of attention in con-

nection with the analysis of Navier–Stokes equations [16] and function spaces
of Morrey type with variable exponents were introduced and studied already
[15]. Is there a version of the Franke and Jawerth embedding for this scale of
function spaces?

(4) The Franke and Jawerth embeddings were used in [20] to describe the fine
properties of Besov and Triebel–Lizorkin spaces in term of the so-called en-
velopes. They determine the kind and size of singularities, which the func-
tions from these spaces might posses. On the other hand, function spaces of
variable exponents capture very well the local properties of functions and dis-
tributions. The interplay of the theory of envelopes and the function spaces
with variable exponents would be therefore interesting.
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