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Abstract. In this paper we study relations between the existence of a conformal measure

on the Julia set J(f) of a transcendental meromorphic map f and the existence of a zero of the

topological pressure function t 7→ P (f, t) for the map f (with respect to the spherical metric). In

particular, we show that if f is hyperbolic and admits a t-conformal measure which is not totally

supported on the set of escaping points of f , then P (f, t) = 0. On the other hand, for a wide

class of maps f , including arbitrary maps with at most finitely many poles and finite set of singular

values as well as hyperbolic maps with at most finitely many poles, if P (f, t) = 0, then there exists

a t-conformal measure on J(f). This partially answers a question of Mauldin.

1. Introduction

Let f : C → Ĉ be a transcendental meromorphic function. We denote by fn =
f ◦ · · · ◦ f the n-th iterate of f . The Fatou set F (f) consists of all points z ∈ C for
which there exists a neighbourhood U of z such that the family of iterates {fn|U}n>0

is defined and normal. The complement C\F (f) is called the Julia set and is denoted

by J(f). Note that some authors define J(f) as Ĉ \F (f), so that it always contains
the point at infinity. In this paper we adopt the convention ∞ /∈ J(f). Intuitively,
the Julia set carries the chaotic part of the dynamics of f . See e.g. [Ber93] for a
detailed presentation of the theory of iteration of transcendental meromorphic maps.

In this paper we investigate ergodic properties of the dynamics of transcendental
maps, using tools of the thermodynamic formalism, developed by Ruelle, Bowen and
Walters in the 1970’s and applied successfully to the study of the dynamics of rational
maps on the Riemann sphere (see [Rue78, PU10] and the references therein). An
important result in this area is the celebrated Bowen’s formula (see [Bow79]), which
states that the Hausdorff dimension of the Julia set J(f) of a hyperbolic rational
map f of degree d ≥ 2 is equal to the unique zero of the topological pressure function

(1) R+ ∋ t 7→ lim
n→∞

1

n
ln

∑

w∈f−n(z0)

|(fn)′(w)|−t

for z0 ∈ J(f). Note that in general, the topological pressure is defined with lim sup
instead of lim in the above formula. However, in the considered case the limit in (1)
exists (see [PU10, Remark 12.5.8]. Recall that a rational map f is hyperbolic, if the
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closure in Ĉ of the union of forward trajectories of all critical values of f is disjoint
from J(f).

Attempts to generalise the theory of thermodynamic formalism to the case of
transcendental meromorphic maps started in the 1990’s (see [Bar95, MU96]) and
progressed in the subsequent years (see e.g. [KU02, UZ03, KU04, UZ04, KU05, KU06,
CS07, UZ07, MU10, BKZ09, BKZ12, May17] and surveys [KU08, MU10]).

In [UZ03, UZ04], Urbański and Zdunik established the thermodynamic formalism
theory for hyperbolic exponential maps of the form z 7→ λez, λ ∈ C \ {0}. Recall
that for the transcendental case, in the definition of a hyperbolic map f one requires
that the closure of the union of forward trajectories of all singular (critical and as-
ymptotic) values of f is bounded and disjoint from the Julia set (see Definition 2.1).
In the above two papers the authors discovered a crucial role of the radial Julia set

Jr(f) (see Definition 2.3) in the study of ergodic properties of transcendental maps.
In particular, it turned out that the Bowen formula holds for a large class of tran-
scendental meromorphic maps in a modified form: the zero of the pressure function
is equal to the Hausdorff dimension of the radial Julia set. As shown in [Rem09], the
dimension of the radial Julia set coincides with the hyperbolic dimension of J(f).
Contrary to the case of rational dynamics, the radial Julia set of a transcendental
map is often essentially smaller (in the sense of dimension) than the whole Julia set,
even in the hyperbolic case. For instance, the Julia set of an arbitrary exponential
map has Hausdorff dimension 2 (see [McM87]), while the Hausdorff dimension of the
radial Julia set for a hyperbolic exponential map is greater than 1 and smaller than
2 (see [UZ03, UZ04]). The fact that the Hausdorff dimension of Jr(f) is greater than
1 was generalised in [BKZ09] to the case of transcendental meromorphic maps with
logarithmic tracts over ∞ (see Definition 2.6), in particular, for maps with a bounded
set of singular values (class B), which are entire or meromorphic with a finite number
of poles.

In [Bar95, KU02, KU04, KU05, CS07], some elements of the thermodynamic
formalism theory were established for other families of hyperbolic transcendental
maps, both entire and meromorphic, including the sine and tangent family. The
most general approach was presented in [MU10, MU10], where Mayer and Urbański
developed a detailed theory for hyperbolic transcendental meromorphic maps of finite
order with the balanced derivative growth condition, which relates the growth of the
derivative of the function (at a point tending to infinity) with the growth of the
function itself. This class includes many families of maps of the form Q(eR), where
Q,R are polynomials or rational functions.

Note that the pressure function defined in (1) with the derivative of f in the
standard (Euclidean) metric is usually not suitable in transcendental case, since it
can be infinite for all values of t. To overcome this difficulty, one considers derivative
in some other conformal metric on C. For instance, in [MU10, MU10], this metric

has the form |dρ| = |dz|
1+|z|β for a suitable β ∈ R.

In the previous paper [BKZ12] the authors considered the topological pressure
function

(2) P (f, t) = P (f, t, z0) = lim
n→∞

1

n
ln

∑

w∈f−n(z0)

|(fn)∗(w)|−t

for t > 0, where f ∗ is the derivative of f taken with respect to the spherical metric
(see Section 2 for details). They proved that for all transcendental meromorphic
maps with a finite set of singular values (class S) and a large family of maps with
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a bounded set of singular values (class B), including all hyperbolic transcendental
meromorphic maps, the pressure defined in (2) exists and does not depend on typical
z0. In addition, in [BKZ12] they present a version of Bowen’s formula for such maps,
which asserts that the Hausdorff dimension of the radial Julia set of a map f is equal
to a number t0, defined as the infimum of the values t > 0 for which P (f, t) is non-
positive. See Definition 2.9 and Theorem 2.10 for a precise formulation. Note that
similar results were obtained previously by Przytycki, Rivera-Letelier and Smirnov
[Prz99, PRLS04] for arbitrary rational maps of degree d ≥ 2.

In the present paper we consider another element of the thermodynamic formal-
ism theory in a general setup of transcendental maps, investigating the question of
the existence of a t-conformal measure, i.e. a Borel probability measure ν on J(f)
such that

ν(f(A)) =

ˆ

A

|f ′(z)|t dν(z)

for every Borel set A ⊂ C on which f is injective (see Definition 2.4). This notion,
introduced by Patterson [Pat76] and Sullivan [Sul82]) in the context of Fuchsian
and Kleinian groups, and developed in the papers by Denker and Urbański (see
e.g. [DU91a, DU91b, DU91c]), proved to be extremely useful in many areas of con-
formal dynamics (see e.g. [LSV98, DG99, Prz99, BPS01, GS09, VV10, Tho12] and
surveys [Urb03, KU08]).

In the context of rational dynamics, it is known that the Julia set of a rational
map always admits a t-conformal measure for a suitable t > 0, and the minimal
exponent t for which such a measure exists is equal to the Hausdorff dimension of
the radial Julia set (see e.g. [Prz99]). In the case of transcendental maps the question
of existence of a t-conformal measure, where t is the Hausdorff dimension of the radial
Julia set, was answered positively for several specific families of maps, e.g. for the
maps considered in [UZ07, MU10]. However, the general question on existence of
such a conformal measure has been open.

Seeking analogies between transcendental dynamics and the theory of infinite
conformal iterated function systems (CIFS), developed by Mauldin and Urbański
(see [MU96]), recall that a conformal iterated function system is called regular, if it
admits a conformal measure on its limit set. In [MU96, Theorem 3.5 and Lemma
3.13] it was proved that a CIFS is regular if and only if there exists t > 0 such that
P (t) = 0 where P (t) is the topological pressure function defined for this system. In
view of this, Mauldin (in a private communication) asked the following question.

Question. Let f : C → Ĉ be a transcendental meromorphic function for which
the pressure function P (f, t) defined in (2) exists. Is the existence of a value t > 0
such that P (f, t) = 0 equivalent to the existence of a t-conformal measure on J(f)?

Here and in the sequel a t-conformal measure on J(f) is taken with respect to
the spherical metric and denoted by mt, i.e. satisfies

mt(f(A)) =

ˆ

A

|f ∗(z)|t dmt(z)

for every Borel set A ⊂ C on which f is injective.
Note that, in general, we do not know in which cases we have P (f, t0) = 0 for t0

defined in (2) (although P (f, t) is continuous and convex when it is finite, it could
have a ‘jump’ from the infinite value at t = t0). It is known that P (f, t0) = 0 for some
classes of maps f considered in [MU10, MU10], but it is an open question whether
the opposite case can actually appear (cf. Proposition 3.8).
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In this paper we partially answer Mauldin’s question. The first result we prove
is the following.

Theorem A. If a hyperbolic transcendental meromorphic map f : C → Ĉ ad-
mits a t-conformal measure mt on J(f) for some t > 0, with respect to the spherical
metric, then P (f, t) ≤ 0. Moreover, if mt(J(f) \ I(f)) > 0, then P (f, t) = 0.

By I(f) we denote the escaping set of f defined as

I(f) = {z ∈ C : {fn(z)}∞n=0 is defined and fn(z) → ∞ as n → ∞}.

The case mt(J(f) \ I(f)) = 0 in Theorem A can actually occur, as shown in the
following example.

Example 1.1. For f(z) = λ sin z, λ ∈ C \ {0}. Then I(f) has positive 2-
dimensional Lebesgue measure (see [McM87]) and the normalized 2-dimensional
spherical Lebesgue measure on I(f) is 2-conformal. Moreover, if additionally, f
is hyperbolic, then P (f, 2) < 0 (see [CS07, MU10]).

Theorem A is an immediate corollary of the following more general result.

Theorem B. Let f : C → Ĉ be a transcendental meromorphic map. Assume
that there exists a t-conformal measure mt on J(f) for some t > 0, with respect to
the spherical metric.

(a) Suppose f ∈ S. Then at least one of the following two assertions hold.
◦ P (f, t) ≤ 0.

◦ The measure mt is totally supported on a set E ⊂ P(f) ∩ J(f) of Haus-
dorff dimension 0.

Moreover, at least one of the following two assertions hold.
◦ P (f, t) ≥ 0.

◦ fn(z) → (P(f) ∩ J(f)) ∪ {∞} as n → ∞ for mt-almost every z.

(b) Suppose f ∈ B, such that J(f)\P(f) 6= ∅ and J(f) does not contain (Picard)
exceptional values of f . Then P (f, t) ≤ 0. Moreover, at least one of the
following two assertions hold.

◦ P (f, t) = 0.

◦ fn(z) → (P(f) ∩ J(f)) ∪ {∞} as n → ∞ for mt-almost every z.

Remark 1.2. In fact, in the case (b) the assumptions can be weakened. It
is enough to assume that the map f ∈ B is non-exceptional (see Definition 2.2),

J(f)\P(f) 6= ∅ and J(f) contains no parabolic cycles of length 1 or 2 and multiplier
1 composed of exceptional values of f , nor exceptional values which are non-fixed
critical points of f (including poles of f of degree larger than 1).

The next result we prove in this paper assumes that the map f has a logarith-
mic tract over ∞ (see Definition 2.6). See also Definition 2.2 for the definition of
exceptional maps.

Theorem C. Let f : C → Ĉ be a transcendental meromorphic map with a
logarithmic tract over ∞. Assume that f is an arbitrary map from class S, or a
non-exceptional map from class B such that J(f) \ P(f) 6= ∅. If P (f, t) = 0 for
some t > 0, then there exists a t-conformal measure mt on J(f), with respect to the
spherical metric. Moreover,

mt(C \D(r)) = o

(
(ln r)3t

rt

)
as r → ∞,
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where D(r) = {z ∈ C : |z| < r}.
In particular, the assertions hold for all hyperbolic transcendental meromorphic

maps f , which are entire or have a finite number of poles.

Remark 1.3. In fact, the proof gives
ˆ ∞

1

rt

(ln r)3t
mt(C \D(r)) dr < ∞.

Remark 1.4. Under the assumptions of Theorem C, for every α > 1/2, the

probability measure m
(α)
t on J(f) defined as dm

(α)
t = η dmt/

´

η dmt for η(z) =
(1+|z|2)t/(1+|z|α)t is t-conformal with respect to the conformal metric |dz|/(1+|z|α).
The case α = 1, concerning the ‘cylindrical’ metric is of special interest, since it
corresponds to the situation, when the map is lifted by the logarithmic coordinates,
which is now a standard tool in transcendental dynamics.

Remark 1.5. Theorems A, B and C contribute to answer the Mauldin question
in both directions. A main problem which remains to be determined, is under which
conditions the measure mt constructed in Theorem C satisfies mt(J(f) \ I(f)) = 0.

The plan of the paper is as follows. After preliminary Section 2, containing
notation, basic definitions and used results, in Section 3 we prove some general facts
concerning the radial Julia sets, conformal measures and topological pressure. The
proof of Theorem B and Remark 1.2 is presented in Section 4 (as noted above, this
proves also Theorem A). The last Section 5 contains the proof of Theorem C together
with Remarks 1.3 and 1.4.

Acknowledgement. We wish to thank the referees for helpful comments and
suggestions.

2. Preliminaries

Notation. In all definitions and formulations of the results we assume that f is
a transcendental meromorphic function on the complex plane.

By a conformal metric we mean a Riemannian metric on C of the form

|dρ| = ρ|dz|,

where |dz| is the standard (Euclidean) metric and ρ is a continuous positive function
on C. The derivative of a map f with respect to the metric dρ is equal to

(3) f ′
ρ(z) =

ρ(f(z))

ρ(z)
f ′(z),

where f ′ is the standard derivative. In particular, we consider the spherical metric

defined by

|ds| =
2 |dz|

1 + |z|2

and the spherical derivative

f ∗(z) := f ′
s(z) =

(1 + |z|2)f ′(z)

1 + |f(z)|2
.

The spherical distance in Ĉ (defined by the spherical metric) will be denoted by
distsph.
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By D(z, r) (resp. D(z, r)) we denote the disc centred at z ∈ C (resp. z ∈ Ĉ) of
radius r > 0 with respect to the Euclidean (resp. spherical) metric. For simplicity,
we write D(r) for D(0, r).

Definition 2.1. We write Sing(f) for the singular set of f , which consists of all
finite singular (critical and asymptotic) values of f and define the post-singular set

by

P(f) =
∞⋃

n=0

fn(Sing(f)),

where we neglect terms which are not defined.
Recall that we consider two classes of transcendental meromorphic functions:

S = {f : Sing(f) is finite}, B = {f : Sing(f) is bounded}.

The class B was introduced in the context of holomorphic dynamics by Eremenko
and Lyubich in [EL92], and S is called the Speiser class.

We say that f is hyperbolic, if P(f) is bounded and disjoint from the Julia set of
f . Note that hyperbolic maps are in the class B.

Definition 2.2. We call f exceptional, if there exists a (Picard) exceptional value
a of f , such that a ∈ J(f) and f has a non-logarithmic singularity over a.

Radial Julia sets and conformal measures.

Definition 2.3. The radial Julia set Jr(f) is the set of points z ∈ J(f) for which
all iterates fn(z) are defined and there exist r > 0 and a sequence nk → ∞, such
that a holomorphic inverse branch of fnk sending fnk(z) to z is well-defined on the
spherical disc D(fnk(z), r).

Recall that we denote by I(f) the escaping set of f , i.e.

I(f) = {z ∈ C : {fn(z)}∞n=0 is defined and fn(z) → ∞ as n → ∞}.

We consider conformal measures with respect to some conformal metrics on C.

Definition 2.4. We say that a Borel probability measure ν on J(f) is t-conformal

for some t > 0, with respect to a conformal metric |dρ| = ρ|dz|, if

(4) ν(f(A)) =

ˆ

A

|f ′
ρ(z)|

tdν(z)

for every Borel set A ⊂ C on which the map f is injective.

As noted in the introduction, in this paper we consider t-conformal measures
taken with respect to the spherical metric.

Distortion estimates. We use the following spherical version of the classical
Koebe Distortion Theorem, see, e.g. [BKZ12] for its detailed proof.

Theorem 2.5. (Spherical Distortion Koebe Theorem) Let 0 < r1, r2 < diamsph Ĉ.
Then there exists a constant c > 0 depending only on r1, r2, such that for every spher-

ical disc D = D(z0, r) and every univalent holomorphic map g : D → Ĉ with z0 ∈ Ĉ,

diamsphD < r1 and diamsph(Ĉ \ g(D)) > r2, if z1, z2 ∈ D(z0, λr) for some 0 < λ < 1,
then

|g∗(z1)|

|g∗(z2)|
≤

c

(1− λ)4
.

We recall the notion of a logarithmic tract, and formulate some distortion esti-
mates which will be used in subsequent sections.
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Definition 2.6. Let U ⊂ C be an unbounded simply connected domain, such
that the boundary of U in C is a smooth open simple arc, and let R > 0. If f : U → C

is a continuous map, such that |f(z)| = R for every z in the boundary of U and f
on U is a holomorphic universal covering of {z ∈ C : |z| > R}, then we call U a
logarithmic tract of f over ∞.

Remark 2.7. If a map f ∈ B is entire or has a finite number of poles, and R is
sufficiently large, then there exists a component of f−1(V ), where V = {z ∈ C : |z| >
R}, which is a logarithmic tract of f over ∞. See [EL92] for details.

We shall make use of the following facts, proved in [BKZ12, Corollaries 3.7 and
3.9]. They strengthen the estimates proved previously in [Sta99, Lemmas 2.6 and
2.7].

Lemma 2.8. Let R,L > 1. Then there exist constants c1, c2 > 0 depending only
on R,L, such that for every logarithmic tract U ⊂ C of a map f : U → V over ∞,
where V = {z ∈ C : |z| > R} and 0 /∈ U , for every z1, z2 ∈ V with |z1| ≥ |z2| ≥ LR
and every inverse branch of f in a neighbourhood of z1 (resp. z2), denoted by g, we
have

c−1
1

(
ln |z1|

ln |z2|

)−4π

<
|g(z1)|

|g(z2)|
< c1

(
ln |z1|

ln |z2|

)4π

,

c−1
2

|z1|

|z2|

(
ln |z1|

ln |z2|

)−3

≤
|g∗(z1)|

|g∗(z2)|
≤ c2

|z1|

|z2|

ln |z1|

ln |z2|
,

for some extension of the branch g to a neighbourhood of z2 (resp. z1).

Pressure for transcendental maps.

Definition 2.9. The topological pressure function with respect to the spherical
metric is defined as

P (f, t, z0) = lim
n→∞

1

n
ln

∑

w∈f−n(z0)

|(fn)∗(w)|−t

for z0 ∈ C and t > 0, assuming that the limit exists (possibly infinite).

We use the following results, proved in [BKZ12], establishing the existence of the
pressure function and Bowen’s formula for transcendental meromorphic maps.

Theorem 2.10. [BKZ12, Theorems A and B] For every transcendental entire
or meromorphic map f in the class S and every t > 0 the topological pressure
P (f, t) = P (f, t, z0) exists (possibly equal to +∞) and is independent of z0 ∈ C

up to an exceptional set of Hausdorff dimension zero (consisting of points quickly
approximated by the forward orbits of singular values of f). We have

P (f, t) = Phyp(f, t),

where Phyp(f, t) is the supremum of the pressures P (f |X, t) over all transitive isolated
conformal repellers X ⊂ J(f). The function t 7→ P (f, t) is non-increasing and convex
when it is finite. In addition, we have P (f, 2) ≤ 0. The following version of Bowen’s
formula holds:

dimH Jr(f) = dimhyp J(f) = t0,

where t0 = inf{t > 0 : P (f, t) ≤ 0}.
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Moreover, analogous results hold for every non-exceptional transcendental entire
or meromorphic map f in the class B, such that J(f) \ P(f) 6= ∅ (in particular, for

every hyperbolic map) and z0 in J(f) \P(f), which is an open dense subset of J(f).
If f is hyperbolic, then P (f, t) > 0 (possibly equal to +∞) for every 0 < t < t0

and P (f, t) < 0 for every t > t0.

We refer to the points z0 ∈ C outside the exceptional set from Theorem 2.10 as
to GPS points (good pressure starting points).

Following [BKZ12], for a set A ⊂ C and n > 0 we denote

(5) Sn(t, z) =
∑

w∈f−n(z)

|(fn)∗(w)|−t, SA
n (t, z) =

∑

w∈f−n(z)∩A
|(fn)∗(w)|−t.

It is understood that a sum over an empty set is zero.

3. Introductory results

In this section we present some results concerning the properties of the radial
Julia set, conformal measures and topological pressure. Note that some facts are
not used in the subsequent sections but are of independent interest. In all results of
this section we assume that f is a transcendental meromorphic map on the complex
plane.

The first two propositions study properties of the radial Julia set Jr(f) and the
set of non-escaping points in the Julia set.

Proposition 3.1. (a) If f has a finite number of poles, then Jr(f) ⊂ J(f) \
(I(f) ∪

⋃∞
n=1 f

−n(∞)). In particular, if f is entire, then Jr(f) ⊂ J(f) \ I(f).
(b) If f is hyperbolic, then J(f) \ (I(f) ∪

⋃∞
n=1 f

−n(∞)) ⊂ Jr(f). In particular,
if f is hyperbolic entire, then Jr(f) = J(f) \ I(f).

Proof. First, note that by definition, Jr(f)∪(I(f)∩J(f)) ⊂ J(f)\
⋃∞

n=1 f
−n(∞).

To show (a), assume that f has a finite number of poles and suppose that z ∈
Jr(f) ∩ I(f). Then there exist r > 0 and a sequence nk → ∞, such that the inverse
branch of f sending fnk(z) to fnk−1(z), denoted by gk, is defined on D(fnk(z), r).
Since z ∈ I(f), we have ∞ ∈ D(fnk(z), r/2) for large k, which implies that gk is
defined on D(∞, r/2), sending ∞ to some pole pk of f . Since the number of poles is
finite, passing to a subsequence we can assume that pk ≡ p for some pole p. Then
fnk−1(z) = gk(f

nk(z)) is in a small neighbourhood of p for every large k, which
contradicts z ∈ I(f).

To prove (b), suppose f is hyperbolic and take z ∈ J(f) \ (I(f)∪
⋃∞

n=1 f
−n(∞)).

Then there exist R > 0 and a sequence nk → ∞, such that |fnk(z)| < R for every
k. By the definition of hyperbolicity and the fact that the spherical and Euclidean
metric are comparable on compact sets in C we conclude that there exists r > 0 such
that D(fnk(z), r) ∩ P(f) = ∅ for every k, which gives z ∈ Jr(f). �

The proof of the following proposition, using the Lebesgue Density Theorem,
Theorem 2.5 and a normality argument, is rather standard, so it is omitted.

Proposition 3.2. (a) If J(f) 6= C (which holds if and only if J(f) has empty
interior), then the 2-dimensional Lebesgue measure of Jr(f) is zero.

(b) If f is hyperbolic, then the 2-dimensional Lebesgue measure of J(f) \ I(f) is
zero.

The next two propositions describe properties of conformal measures. The first
one, which can be proved by a straightforward computation, shows that the notion
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of t-conformality is independent of chosen conformal metric, at least within some
range.

Proposition 3.3. Let ν be a t-conformal measure with respect to a conformal
metric |dρ1| and let |dρ2| = ρ2|dz| be another conformal metric. If

M =

ˆ

η dν < ∞ for η(z) =

(
ρ2(z)

ρ1(z)

)t

,

then the measure µ defined as

dµ =
η

M
dν

is t-conformal with respect to the metric |dρ2|. If M = ∞, then the measure µ
defined as dµ = η dν satisfies (4) but is infinite.

The following proposition describes an alternative concerning properties of con-
formal measures, which can appear for non-hyperbolic maps f .

Proposition 3.4. If ν is a t-conformal measure on J(f) for some t > 0, then
either ν is positive on non-empty open sets in J(f) or ν is supported on the set of
(at most two) exceptional values of f .

Proof. Suppose ν(B) = 0, where B = D(z, r) for some z ∈ J(f) and r > 0. We
consider separately two complementary cases. First, assume that all iterates fn are
defined on B. Since ν(B) = 0, we have ν(fn(B)) = 0 for every n ≥ 0. This follows
easily from the formula (4) and the fact that the disc B can be divided into a finite
union of Borel subsets on which the map fn is injective. Hence, ν is supported on
A = C \

⋃
n≥0 f

n(B). Since the family {fn|B}n≥0 is not normal, the set A has at

most two elements p1, p2 ∈ C. By definition, f−1({p1, p2}) ⊂ {p1, p2}, so p1, p2 are
exceptional values of f .

In the second case, there exists n ≥ 0 such that fn(B) contains some pole of f ,
so fn+1(B) contains a neighbourhood of ∞. By Picard’s/Nevanlinna Theorem, the
function f assumes every value infinitely many times in every neighbourhood of ∞,

except of at most two points p1, p2 ∈ Ĉ, which are exceptional values of f . This

implies fn+2(B) ⊃ Ĉ \ {p1, p2}. Again, dividing B into a countable union of Borel
subsets on which the map fn+2 is injective, we see that ν(fn+2(B)) = 0, so ν is
supported on {p1, p2}, where we can assume p1, p2 ∈ C.

In both cases we conclude that the measure ν is supported on a set of at most
two exceptional values p1, p2 ∈ C, in particular f−1({p1, p2}) ⊂ {p1, p2}. Using this
and (4), we easily check that one of the following possibilities must occur.

◦ f(pj) = pj , f
′(pj) = 1 for some j ∈ {1, 2},

◦ f(p1) = p2, f(p2) = p1 and (f 2)′(p1) = 1,
◦ f(pj) 6= pj , f

′(pj) = 0 for some j ∈ {1, 2} (this includes the case when pj is a
pole of f of degree larger than 1). �

Remark 3.5. In fact, the proof of the above proposition shows that if the Julia
set of f contains no parabolic cycles of length 1 or 2 and multiplier 1 composed of
exceptional values of f , nor exceptional values which are non-fixed critical points of
f (including poles of f of degree larger than 1), then every t-conformal measure is
positive on non-empty open sets in J(f).

The second alternative in Proposition 3.4 can actually occur, as noted in the
following example.
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Example 3.6. For f(z) = zez , the value 0 is the unique finite exceptional value
of f , with f−1(0) = {0}, f(0) = 0 and f ′(0) = 1. Consequently, 0 ∈ J(f) and the
Dirac measure at 0 is t-conformal for every t > 0.

The next propositions consider properties of the topological pressure. The first
one is an essential strengthening of [BKZ12, Proposition 5.7]. We use the notation
described in (5).

Proposition 3.7. Let f satisfy the assumptions of Theorem C. Then for every
t > 0, every GPS point z0 and sufficiently large r > 0 we have

P (f, t) = lim sup
n→∞

1

n
lnSD(r)

n (t, z0).

Proof. It follows from Theorem 2.10 (see [BKZ12] for details) that

(6) P (f, t) = sup
r>0

lim sup
n→∞

1

n
lnSD(r)

n (t, z0).

However, by Lemma 5.4 (proved in Section 5), we have

SD(r2)
n (t, z0) = SD(r2)\D(r)

n (t, z0) + SD(r)
n (t, z0) ≤ c

(ln r)3t

rt
S
D(r)
n+1 (t, z0) + SD(r)

n (t, z0)

for sufficiently large r > 1 and a constant c > 0. Hence, lim sup in the formula (6) is
the same for r and r2 for large r. Since it is non-decreasing with r, this implies that
it is actually constant for large r, which ends the proof. �

The next result describes alternatives related to the existence of a zero of the
pressure function.

Proposition 3.8. Let f satisfy the assumptions of Theorem 2.10 and let

t0 = inf{t > 0: P (f, t) ≤ 0}, t∞ = sup{t ≥ 0: P (f, t) = +∞}.

Then one of the following three possibilities occurs:

(a) P (f, t∞) = limt→t+∞
P (f, t) = +∞, t0 > t∞ and P (f, t0) = 0.

(b) 0 ≤ P (f, t∞) < +∞, t0 ≥ t∞ and P (f, t0) = 0.
(c) t0 = t∞ and P (f, t∞) = P (f, t0) < 0.

Proof. Suppose P (f, t∞) = +∞. By Theorem 2.10, supX P (f |X, t∞) = ∞,
where sup is taken over all compact repellers X ⊂ J(f). Since the pressure func-
tion P (f |X, t) is finite and continuous for all t ≥ 0 (see e.g. [PU10]), this implies
limt→t+∞

P (f, t) = +∞. Similarly we show that if P (f, t∞) < ∞, then limt→t+∞
P (f, t) =

P (f, t∞). Other assertions of the proposition follow easily from the fact that the
function t 7→ P (f, t) is non-increasing and convex (and hence continuous) for t ∈
(t∞,+∞) and P (f, 2) ≤ 0 (see Theorem 2.10). �

Remark 3.9. By [BKZ09], we have t0 > 1.

Note that the cases (a) and (b) in Proposition 3.8 correspond to the existence
of a zero of the pressure function. It is an open problem, whether the case (c) can
actually appear for a map satisfying the assumptions of Theorem 2.10.
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4. Proof of Theorem B

Case (a). Assume that f ∈ S and f admits a t-conformal measure mt on J(f)
for some t > 0, with respect to the spherical metric. Let

Dn = D

(
n−1⋃

m=0

fm(Sing(f)) ∪ {∞}, e−
√
n

)
,

where we denote

D(X, r) = {z ∈ Ĉ : distsph(z, x) < r for some x ∈ X},

and

E =
∞⋂

k=1

∞⋃

n=k

Dn.

By definition, E ⊂ P(f)∪ {∞}, and since f ∈ S, it is easily seen that the Hausdorff
dimension of E equals 0. Let

Ak =
∞⋂

n=k

(Ĉ \Dn)

for k ≥ 1. Then (Ak)
∞
k=1 forms an increasing sequence of sets, and

Ĉ \ E =

∞⋃

k=1

Ak.

By the definition of Ak, the spherical area of Ĉ \ Ak =
⋃∞

n≥k Dn is smaller than

(#Sing(f) + 1)

∞∑

n=k

ne−
√
n,

which tends to 0 as k → ∞. Hence, for large k the set Ak has positive area and, in
particular, there exists a GPS point z0 ∈ Ak.

Again by the definition of Ak, for every z ∈ Ak all inverse branches of fn, n ≥ k
are defined on D(z, e−

√
n). Moreover, for every n ≥ k there exists at most countable

partition {A
(n)
k,j}j of Ak by non-empty Borel sets, such that A

(n)
k,j ⊂ D(v

(n)
k,j , e

−√
n/2)

for some v
(n)
k,j ∈ Ak. By Theorem 2.5, the distortion of all inverse branches of fn on

A
(n)
k,j is bounded by a constant independent of n. This and the t-conformality of mt

imply

(7)
1

C
mt(A

(n)
k,j )Sn(t, v

(n)
k,j ) ≤ mt(f

−n(A
(n)
k,j )) ≤ Cmt(A

(n)
k,j )Sn(t, v

(n)
k,j )

for some C > 0 independent of k, n, j. Using the definition of Ak and [Prz99,
Lemma 3.1], we show that there exists c > 0 such that

(8)
1

ec
√
n
Sn(t, z0) ≤ Sn(t, v

(n)
k,j ) ≤ ec

√
nSn(t, z0)

for every n ≥ k and every set A
(n)
k,j (see the proof of [BKZ12, Lemma 5.4] for details).

To prove the first assertion of the theorem, suppose that mt is not supported on
E. Then

mt(Ak) > 0
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for some k. Since (Ak)k is increasing, in fact this holds for every sufficiently large k.
Hence, by (7) and (8), we obtain

mt(f
−n(Ak)) =

∑

j

mt(f
−n(A

(n)
k,j )) ≥

1

C

∑

j

mt(A
(n)
k,j )Sn(t, v

(n)
k,j )

≥
1

C

∑

j

mt(A
(n)
k,j )

ec
√
n

Sn(t, z0) =
mt(Ak)

Cec
√
n
Sn(t, z0).

This implies

Sn(t, z0) ≤
Cec

√
n

mt(Ak)

for every n ≥ k, which gives P (t, f) ≤ 0 and ends the proof of the first assertion.
To prove the second assertion, suppose P (t, f) < 0. Then

Sn(t, z0) < e−nδ

for some δ > 0 and every sufficiently large n. Using again (7) and (8), we obtain,
similarly as previously, for sufficiently large n,

mt(f
−n(Ak)) ≤ C

∑

j

mt(A
(n)
k,j )Sn(t, v

(n)
k,j ) ≤ Cmt(Ak)e

c
√
nSn(t, z0)

< Cec
√
n−nδ < e−nδ/2.

This shows that for sufficiently large k, the series
∑

n mt(f
−n(Ak)) is convergent, so

by the Borel–Cantelli Lemma, for mt-almost every z there exists m0 = m0(z) such
that fm(z) ∈ C \ Ak ⊂

⋃∞
n=k Dn for all m ≥ m0. This implies that for mt-almost

every point z ∈ C, for every large k there exists m0 such that for every m ≥ m0 we

have distsph(f
m(z), ζm) < e−

√
k for some ζm ∈ P(f) ∪ {∞}. This proves the second

assertion of (a).

Case (b). Assume now that f ∈ B, such that J(f) \ P(f) 6= ∅ and J(f) does not
contain exceptional values of f . The proof is analogous to the one in case (a).

Take an open spherical disc D = D(z0, r) for a small r > 0, such that D(z0, 2r)∩

(P(f) ∪ {∞}) = ∅. Then all inverse branches of fn, n > 0 are defined on D, in
particular z0 is a GPS point. By Theorem 2.5, the distortion of the branches is
universally bounded. This together with the t-conformality of mt gives

(9)
1

C
mt(D)Sn(t, z0) ≤ mt(f

−n(D)) ≤ Cmt(D)Sn(t, z0)

for some C > 0.
Since J(f) \ P(f) is a non-empty open set in J(f) and J(f) does not contain

exceptional values of f , Proposition 3.4 implies that for every disc D = D(z0, r) as
above we have

(10) mt(D) > 0.

In particular, (9) gives

Sn(t, z0) ≤
Cmt(f

−n(D))

mt(D)

for every n, which implies P (f, t) ≤ 0. This proves the first assertion.
Suppose now P (f, t) < 0. Then there exists δ > 0, such that

Sn(t, z0) < e−nδ
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for large n, so (9) implies

mt(f
−n(D)) < Ce−nδ

for every disc D as above. Again, by the Borel–Cantelli Lemma, for mt-almost every
z there exists n0 such that fn(z) ∈ C \D for all n ≥ n0. Since for every ε > 0 the

set C \ D(P(f) ∪ {∞}, ε) can be covered by a finite number of discs D as above,

we conclude that for mt-almost every point z ∈ C we have fn(z) → P(f) ∪ {∞} as
n → ∞. This ends the proof of the second assertion of (b).

Finally, note that in the above proof, using Remark 3.5, we can obtain (10) for
every f such that J(f) contains no parabolic cycles of length 1 or 2 and multiplier
1 composed of exceptional values of f , nor exceptional values which are non-fixed
critical points of f (including poles of f of degree larger than 1). This proves Re-
mark 1.2.

5. Construction of a conformal measure – proof of Theorem C

Throughout this section, we assume that f satisfies the assumptions of Theo-
rem C, i.e. f is a transcendental meromorphic map with a logarithmic tract over
∞ and f is a map from class S or a non-exceptional map from class B such that
J(f)\P(f) 6= ∅. As noted in Remark 2.7, the maps from class B with at most finitely
many poles have a logarithmic tract over ∞. Moreover, by the Iversen Theorem, ex-
ceptional values of f are singular values of f , so hyperbolic maps are non-exceptional.
Therefore, hyperbolic transcendental meromorphic maps satisfy the assumptions of
Theorem C.

To prove Theorem C, we need the following lemmas, where we fix some t > 0.
Note that the constants c, c1, c2 used in the lemmas may have different meaning
depending on the context. Note also that the first two lemmas hold for arbitrary
transcendental meromorphic maps f with a logarithmic tract over ∞.

Lemma 5.1. There exist c1, c2 > 0, r0 > 1 such that for every z ∈ C with
|z| ≥ r0,

S
D(c1(ln |z|)4π)
1 (t, z) >

c2|z|
t

(ln |z|)3t
.

Proof. By assumption, f has a logarithmic tract U over ∞. Fix w ∈ C of a large
modulus r0 > 1 and let g be an inverse branch of f defined in a neighbourhood of w,
leading to U . Take an arbitrary point z with |z| > |w|. By Lemma 2.8 applied for
z1 = z, z2 = w, we have

|g(z)| < c̃1(ln |z|)
4π, |g∗(z)| >

c̃2|z|

(ln |z|)3

for a suitable extension of the branch g, where c̃1, c̃2 > 0 are constants depending
only on w. Putting c1 = c̃1, c2 = c̃t2 we conclude that

S
D(c1(ln |z|)4π)
1 (t, z) ≥ |g∗(z)|t >

c2|z|
t

(ln |z|)3t
. �

In particular, we have the following estimate.

Corollary 5.2. There exist c > 0, r0 > 1 such that for every z ∈ C with |z| ≥ r0,

S1(t, z) >
c|z|t

(ln |z|)3t
.
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Lemma 5.3. Let z0 ∈ J(f) be a GPS point. Then there exist c, k0 > 0 such
that for every n ≥ 1 there holds

Sn+1(t, z0) ≥ c

∞∑

k=k0

2kt

k3t
SD(2k+1)\D(2k)
n (t, z0).

Proof. By Corollary 5.2 and the fact that the function r 7→ rt/(ln r)3t is increasing
for large r > 1, we have the following bound for sufficiently large k:

S1(t, z) >
c2kt

(ln 2)3tk3t
for z ∈ D(2k+1) \D(2k),

where c is a positive constant. Therefore, for sufficiently large k0 we obtain

Sn+1(t, z0) =
∑

z∈f−n(z0)

S1(t, z)

|(fn)∗(z)|t
≥

∞∑

k=k0

∑

z∈f−n(z0),
z∈D(2k+1)\D(2k)

S1(t, z)

|(fn)∗(z)|t

≥
c

(ln 2)3t

∞∑

k=k0

2kt

k3t
SD(2k+1)\D(2k)
n (t, z0). �

Using more detailed estimates provided by Lemma 5.1 instead of Corollary 5.2,
we obtain also the following, slightly more delicate result, which is used in the proof
of Proposition 3.7.

Lemma 5.4. Let z0 ∈ J(f) be a GPS point. Then there exist c1, c2 > 0, r0 > 1
such that for every r > r0 and n ≥ 1 there holds

S
D(c1(ln r)4π)
n+1 (t, z0) ≥

c2r
t

(ln r)3t
SD(r2)\D(r)
n (t, z0).

Proof. The proof proceeds similarly as the one of Lemma 5.3. Let c̃1 = 24πc1,
where c1 > 0 is the constant appearing in the formulation of Lemma 5.1. Then for
every z ∈ D(r2), r > 1, we have

D(c1(ln |z|)
4π) ⊂ D(c̃1(ln r)

4π).

Using this together with Lemma 5.1 and the monotonicity of r 7→ rt/(ln r)3t for large
r > 1 we obtain

S
D(c̃1(ln r)4π)
n+1 (t, z0) =

∑

z∈f−n(z0)

S
D(c̃1(ln r)4π)
1 (t, z)

|(fn)∗(z)|t
≥

∑

z∈f−n(z0),
z∈D(r2)\D(r)

S
D(c̃1(ln r)4π)
1 (t, z)

|(fn)∗(z)|t

≥
∑

z∈f−n(z0),
z∈D(r2)\D(r)

S
D(c1(ln |z|)4π)
1 (t, z)

|(fn)∗(z)|t
≥

c2r
t

(ln r)3t
SD(r2)\D(r)
n (t, z0)

for sufficiently large r > 1, where c2 is a positive constant. �

Assume that there exists t > 0 such that P (f, t) = 0 and fix this value of t
from now on. Note that we can choose a GPS point z0 ∈ J(f), since the Hausdorff
dimension of J(f) is always positive (see [Sta94]). Since

P (f, t) = lim
n→∞

1

n
lnSn(t, z0) = 0,
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the series
∞∑

n=1

e−nsSn(t, z0)

is convergent for s > 0. As in [DU91c], consider now the modified sum

Σs =

∞∑

n=1

bne
−nsSn(t, z0),

wher the sequence bn of positive real numbers (independent of s) can be chosen so
that

(11) lim
n→∞

bn+1

bn
= 1, lim

s→0+
Σs = +∞

(see [DU91c, Lemma 3.1]).
As in [DU91c, MU10], we consider the probability measures µs, s ∈ (0, 1), defined

by

µs =
1

Σs

∞∑

n=1

bne
−ns

∑

w∈f−n(z0)

δw
|(fn)∗(w)|t

,

where δw denotes the Dirac measure at w. In particular, the measure µs is well-
defined, with its support in C. Since z0 ∈ J(f), in fact µs is supported on J(f).

Lemma 5.5. There exists C > 0 such that for every 0 < s < 1,
∞∑

k=1

2kt

k3t
µs(D(2k+1) \D(2k)) < C.

Proof. Write

νn =
∑

w∈f−n(z0)

δw
|(fn)∗(w)|t

for n ≥ 1. Then

µs =
1

Σs

∞∑

n=1

bne
−nsνn.

By Lemma 5.3, for some c, k0 > 0,

νn+1(J(f)) = Sn+1(t, z0) ≥ c
∞∑

k=k0

2kt

k3t
SD(2k+1)\D(2k)
n (t, z0)

= c
∞∑

k=k0

2kt

k3t
νn(D(2k+1) \D(2k)).

This together with (11) implies
∞∑

k=k0

2kt

k3t
µs(D(2k+1) \D(2k)) =

1

Σs

∞∑

k=k0

2kt

k3t

∞∑

n=1

bne
−nsνn(D(2k+1) \D(2k))

≤
1

cΣs

∞∑

n=1

bne
−nsνn+1(J(f))

≤
es

c
sup
m

bm
bm+1

1

Σs

∞∑

n=1

bn+1e
−(n+1)sνn+1(J(f))
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=
es

c
sup
m

bm
bm+1

(
µs(J(f))−

b1e
−s

Σs

ν1(J(f))

)

<
e

c
sup
m

bm
bm+1

µs(J(f)) =
e

c
sup
m

bm
bm+1

.

To end the proof, note that

k0−1∑

k=1

2kt

k3t
µs(D(2k+1) \D(2k)) ≤

k0−1∑

k=1

2kt

k3t
<

2k0t

2t − 1
. �

Proposition 5.6. There exists c > 0 such that for every 0 < s < 1,
∞∑

k=1

2kt

k3t
µs(J(f) \D(2k)) < c.

Proof. Enlarging k0 from the previous lemmas, we can assume

2(k−1)t

(k − 1)3t
< q

2kt

k3t

for some fixed 0 < q < 1 and every k ≥ k0. Then

j∑

k=k0

2kt

k3t
<

1

1− q

2jt

j3t

for every j ≥ k0. Using this and Lemma 5.5, we obtain
∞∑

k=k0

2kt

k3t
µs(J(f) \D(2k)) =

∞∑

k=k0

∞∑

j=k

2kt

k3t
µs(D(2j+1) \D(2j))

=

∞∑

j=k0

j∑

k=k0

2kt

k3t
µs(D(2j+1) \D(2j))

<
1

1− q

∞∑

j=k0

2jt

j3t
µs(D(2j+1) \D(2j)) <

C

1− q

for some C > 0 independent of s. Since

k0−1∑

k=1

2kt

k3t
µs(J(f) \D(2k)) ≤

k0−1∑

k=1

2kt

k3t
<

2k0t

2t − 1
,

this ends the proof of the proposition. �

Corollary 5.7. The family {µs}s∈(0,1) is tight. Consequently, there exists a weak
limit

mt = lim
j→∞

µsj

for some sequence sj → 0+, which is a probability measure with support in J(f).

Proof. To show the tightness of the family {µs}s∈(0,1), it is sufficient to check that
for every ε > 0 there exists a compact subset K of J(f) such that µs(K) > 1− ε for
every 0 < s < 1. This follows immediately from the estimate

µs(J(f) \D(2k)) < c
k3t

2kt
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for every 0 < s < 1, which is a consequence of Proposition 5.6. �

Corollary 5.8. There exists a constant c > 0 such that
∞∑

k=1

2kt

k3t
mt(J(f) \D(2k)) < c.

Proof. The estimate follows easily from Proposition 5.6 and the fact

mt(U) ≤ lim inf
j→∞

µsj(U)

for every open subset U of J(f). �

Note that Corollary 5.8 proves Remark 1.3 immediately.

Proposition 5.9. The measure mt is t-conformal with respect to the spherical
metric.

Proof. The proof is almost the same as in [DU91c, MU10]. We provide it for the
sake of completeness. Take a Borel set A ⊂ C such that f is univalent on A. By
definition, we have

µsj(f(A)) =
1

Σsj

∞∑

n=1

bne
−nsjSf(A)

n (t, z0),

where sj is such that µsj → mt as j → ∞, and
ˆ

A

|f ∗|t dµsj =
1

Σsj

∞∑

n=1

bne
−nsj

∑

w∈f−n(z0)∩A

|f ∗(w)|t

|(fn)∗(w)|t

=
b1e

−sj

Σsj

+
1

Σsj

∞∑

n=2

bne
−nsjS

f(A)
n−1 (t, z0)

=
b1e

−sj

Σsj

+
1

Σsj

∞∑

n=1

bn+1e
−(n+1)sjSf(A)

n (t, z0).

Take a small ε > 0 and fix n0 such that |bn+1/bn − 1| < ε for every n ≥ n0. Then
∣∣∣∣
ˆ

A

|f ∗|t dµsj − µsj(f(A))

∣∣∣∣ ≤
b1e

−sj

Σsj

+
1

Σsj

n0−1∑

n=1

(bn+1 + bn)S
f(A)
n (t, z0)

+
1

Σsj

∞∑

n=n0

|bn+1e
−sj − bn|e

−nsjSf(A)
n (t, z0).

The first and second term in the latter formula tend to 0 as j → ∞, since Σsj → ∞
(see (11)). The third term can be estimated as follows:

1

Σsj

∞∑

n=n0

|bn+1e
−sj − bn|e

−nsjSf(A)
n (t, z0) =

1

Σsj

∞∑

n=n0

∣∣∣∣e
−sj

bn+1

bn
− 1

∣∣∣∣ bne
−nsjSf(A)

n (t, z0)

≤
(1 + e−sj)ε

Σsj

∞∑

n=n0

bne
−nsjSf(A)

n (t, z0) ≤ (1 + e−sj)εµsj(f(A)) ≤ 2ε.

We conclude that ∣∣∣∣
ˆ

A

|f ∗|t dµsj − µsj(f(A))

∣∣∣∣→ 0
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as j → ∞. This together with the fact that

mt(U) ≤ lim inf
j→∞

µsj(U), mt(F ) ≥ lim sup
j→∞

µsj(F )

for every open subset U and closed subset F of J(f) easily proves

mt(f(A)) =

ˆ

A

|f ∗|t dmt. �

The above proposition ends the proof of Theorem C.

Proof of Remark 1.4. We use Proposition 3.3 for ν = mt, ρ1(z) = 1/(1 + |z|2)
and ρ2(z) = 1/(1 + |z|α). To do it, we check that

M =

ˆ

η dmt =

ˆ

(
1 + |z|2

1 + |z|α

)t

dmt(z)

is finite for α > 1/2. For α ≥ 2 this is obvious since η is bounded in that case. For
α < 2 we have

M ≤ c1 + c2

ˆ

|z|≥1

|z|(2−α)t dmt(z)

= c1 + c2

ˆ ∞

1

mt({z : |z|
(2−α)t ≥ s}) ds by the Fubini Theorem

= c1 + c2(2− α)t

ˆ ∞

1

r(2−α)t−1mt(C \D(r)) dr(12)

for some constants c1, c2 > 0. Since t = dimH Jr(f) ≤ 2 and α > 1/2, we have
(2−α)t−1 < t, which implies r(2−α)t−1 < rt/(ln r)3t for large r. Hence, by Remark 1.3,

the integral in (12) is finite and Proposition 3.3 implies that the measure µ = m
(α)
t

is t-conformal with respect to the metric |dρ2| = |dz|/(1 + |z|α). �

We complete the paper by the following observation considering the case t = 2.

Proposition 5.10. Suppose P (f, 2) = 0 and let m2 be the 2-conformal measure
constructed in the proof of Theorem C. Then the following hold.

(a) If J(f) 6= C, then m2(Jr(f)) = 0.
(b) If f is hyperbolic, then m2(J(f) \ (I(f) ∪

⋃∞
n=1 f

−n(∞))) = 0.

Proof. Let Leb2 denote the 2-dimensional Lebesgue measure on Ĉ, with respect
to the spherical metric. To prove (a), we will show

(13) lim inf
δ→0+

m2(D(z, δ))

δ2
< ∞

for z ∈ Jr(f). This will imply that m2 on Jr(f) is absolutely continuous with respect
to Leb2 (see e.g. [Mat95, Theorem 2.12]) and to prove (a), it will be enough to use
Proposition 3.2.

To show (13), take z ∈ Jr(f) and define the sequence nk, inverse branch of
fnk, denoted by gk, on the spherical disk Dk and numbers r, dk as in the proof of
Proposition 3.2. By the bounded distortion of gk, we have

D(z, c1dk) ⊂ gk(Dk)

for some constant c1 > 0. Moreover, Leb2(Dk) ≥ c2 for a constant c2 > 0 depending
only on r (and thus only on z), and m2(Dk) ≤ 1. Recall also that dk → 0 as
k → ∞. In view of these, using the 2-conformality of m2 and Leb2 together with
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the bounded distortion of gk and the comparability of the spherical and Euclidean
metric on compact sets in C, we obtain

m2(D(z, c1dk))

d2k
≤ c3

m2(gk(Dk))

Leb2(gk(Dk))
≤ c4

m2(Dk)

Leb2(Dk)
≤

c4
c2

for some constants c3, c4 independent of k, which shows (13) and ends the proof of (a).
The assertion (b) follows immediately from (a) and Proposition 3.1. �
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