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Abstract. In this article, to each generic real meromorphic function (i.e., having only simple

branch points in the appropriate sense) we associate a certain combinatorial gadget which we call

the park of a function. We show that the park determines the topological type of the generic real

meromorphic function and the set of parks produce a stratification of the space of generic real

meromorphic functions. For any of the above topological types, we introduce and calculate the

corresponding Hurwitz number. Finally we relate the topological types of generic real meromorphic

functions with the monodromy of orbifold coverings.

1. Introduction

The main object of study in the present paper is the Hurwitz space RH of
real meromorphic functions on compact surfaces. Its structure is substantially more
complicated than that of the classical Hurwitz space H of complex meromorphic
functions. The latter space consists of pairs (P, f) where P is a complex algebraic
curve, i.e., a compact orientable Riemann surface and f : P → C is a meromorphic
function, i.e., a holomorphic map to the Riemann sphere. Each point (P, f) may
be described by polynomial equations with complex coefficients providing a natural
topology to the space H .

In applications one often encounters generic meromorphic functions, i.e., func-
tions forming a dense subset H0 ⊂ H which is stable with respect to arbitrary small
perturbations of functions. For complex meromorphic functions, H0 consists of func-
tions with all simple critical values. In other words, H0 contains all functions f whose
branchings are of second order and such that the images of all branchings under f
are pairwise distinct, i.e., the critical values of f are simple.

According to the basic classical results of Hurwitz [6], the space H may be strati-
fied and each stratum consists of all functions of a given degree d on curves of a given
genus g. (Such stratum is denoted by Hg,d.) Analogously we can stratify H0 by
strata containing generic complex functions of degree d on curves of genus g. (Each
stratum is denoted by H0

g,d.) Obviously, H0
g,d ⊂ Hg,d and one can show that the

difference Hg,d \H
0
g,d has real codimension two in Hg,d which explains why strata of

H are in 1− 1-correspondence with that of H0.
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Critical values of functions from H0
g,d provide the complex structure on H0

g,d (and

on Hg,d as well) induced by H . The number of functions belonging to H0
g,d with a

given set of 2d+2g−2 distinct critical values was defined and in many cases calculated
by Hurwitz in [6]. (Observe that 2d + 2g − 2 is also the dimension of H0

g,d over C.)
The latter number of functions is classically referred to as the corresponding Hurwitz

number. Hurwitz numbers play important role in modern algebraic geometry and
mathematical physics.

The space H is endowed with a natural involution τH : H → H anti-holomorphic
with respect to the complex structure on H . This involution associates to a pair (P, f)
the pair (P, f), where the Riemann surface P is obtained from P by substituting all

local charts on P by their complex-conjugates and by using f(z) = f(z). The set of
fixed points of τH coincides with the space RH of all real meromorphic functions.

Let us now discuss the structure of RH . By definition, for (P, f) ∈ RH , one
has that τH(P, f) = (P, f). Therefore, τH generates an anti-holomorphic involution

τ : P → P such that f(τ(p)) = f(p). The category of such pairs (P, τ) is isomorphic
to the category of real algebraic curves, see [1]. Under this isomorphism, real alge-
braic functions correspond to morphisms of real algebraic curves to (C, conj), where
conj(z) = z̄.

The set of strata of RH is substantially more complicated than that of H , see
[4, 3, 9, 10, 11, 8]. (We will discuss these strata in details in § 5.) As in the complex
case, the most important real meromorphic functions for applications are generic
ones; these functions are the main object of study here.

As in the complex case, they form an open, dense and stable with respect to arbi-
trary small deformations subset RH0 ⊂ RH . But in the real situation the definition
of RH0 becomes more involved. In particular, RH0 does not coincide with RH ∩H0

since the closure of the latter intersection is strictly smaller than RH . To improve
the situation, one has to define RH0 as the set of all real meromorphic functions
whose branchings are of the second order and for the images of these branchings, i.e.,
for the critical values, one should require that

(i) critical values are distinct when they are non-real;
(ii) critical values are the images of at most two branchings when they are real.

In the latter case, when there are two branchings mapped to the same real critical
value, they must necessarily be interchanged by the involution τ on P . Therefore, the
set RH0 defined in the above way is stable under arbitrary small deformations inside
the class of real meromorphic functions. On the other hand, RH0 is dense in RH .
Indeed, for any given real meromorphic function, using small perturbations symmet-
ric with respect to τ , one can achieve that all branchings of its small perturbations
will be of order two and, therefore, belong to RH0.

Contrary to the complex case, there are many more strata of the space RH0 than
in the space RH which, in the first place, is related to the fact that RH \RH0 has
real codimension one. To describe the topological invariants distinguishing strata
of RH0, we have to introduce a rather complicated combinatorial gadget which we
call a park of a real meromorphic function. This notion is similar to the notion of a
garden introduced in our earlier paper [13] and which describes strata in the space
RH ∩ H0

0,d of real generic rational functions. (The notion of a park is substantially
more complicated.) In [12] there is a classification of a particular class of generic real
meromorphic functions and now we shall present the complete classification of these
functions.
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The structure of this paper is as follows. In §2 we define a park which, as we
will see later, uniquely determines the topological type of generic real meromorphic
functions. In §3 we explain how to associate a park to an arbitrary generic real
meromorphic function. In §4 we show that given an arbitrary abstract park P, we
can always find a generic real meromorphic function whose associated park coincides
with P. Let H(P) denote the space of functions corresponding to a given park P.
We show that H(P) is connected. In §5 we recall some basic information about
the classification of real meromorphic functions, see [9, 10, 11] and explain how to
identify the strata of the space RH coinciding with the sets H(P). In §6 we define
and calculate the corresponding Hurwitz number for H(P). Finally, in §7 we explain
how parks are related to the monodromy of coverings of orbifolds.
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ics (HSE) in 2017–2018 (grant 17-01-0030) and by the Russian Academic Excellence
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2. Gardens and parks

In order to motivate the main definition we shall start with an example.

Example 1. Let f : P → C be a generic real meromorphic function from a
Riemann surface P of genus 8 such that f has two real critical values. Now we
construct a combinatorial object that will determine the topological type of (P, f).

Consider in C the hemispheres C+ and C− of complex numbers with positive and
negative imaginary part respectively. Let U be a symmetric annular neighbourhood
of the real cycle R which contains only real critical values. Its boundary ∂U consists
of the contours C+ ⊂ C+ and C− ⊂ C−. We shall denote by D+ ⊂ C+ and D− ⊂ C−

the two connected components of C \ U .
We consider the set S = f−1(C+) ∪ f−1(C−) of simple contours in P . We cut the

surface P by the contours in S, we assume that in our example the result is:

• a sphere with four holes PR = f−1(U) (f restricted to PR is a two-fold covering
of the annulus U) and

• two (possibly disconnected) surfaces with boundary: P+ = f−1(D+) and
P− = f−1(D−).

The covering f : PR → U can be extended to a real rational meromorphic function
g which is described by an object called garden. In this case the garden is given by
the preimage by g of R, decomposing C in four regions and a bicolouration of the
four regions (white for the preimage of C+ and black for the preimage of C−.) In
other cases there are other elements but they are not essential in our example: the
enumeration of the preimage of real critical values and some numbers related to the
degree of f on the preimage of real points.

Our results will imply that the topological type of (P, f) depends on the number
of connected components of P+ and P− (the number of entrances and exits), the
genera of the components of P+ and P− (weights of entrances and exits), the way
of connecting the boundaries of P+ and P− with the boundaries of PR (encoded by
the alleys connecting the white regions with entrances and the black regions with
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exits.) In our example, we have one entrance and one exit of genus three that must
be joined by alleys as shown in the Figure 2.

Figure 1. The garden of Example 1. The bicolouration of the faces is marked using the letters

W and B.

Figure 2. The park of Example 1.

To define our main combinatorial object: park, we need four preliminary con-
cepts: orientable garden, oriented separated garden, non-orientable garden and non-
oriented separated garden.

2.1. Orientable gardens. A semi-garden SG is a structure composed of an
oriented surface, chords, simple contours, faces, edges, a colouration of faces, lengths
of edges and a cyclic order of the vertices. Now we describe each one of such ingre-
dients. The first one is a compact connected oriented differentiable surface P with
or without boundary together with a collection of chords, i.e., non-selfintersecting
curves connecting points on the boundary of P and simple contours, i.e., closed non-
selfintersecting curves embedded in P . Connected components of the boundary of P ,
the chords and the contours of SG may intersect transversely, but can not be tangent
to each other. The set of chords and simple contours splits P into simply-connected
domains called faces. Intersection points of chords and contours together with the
endpoints of chords are called vertices. Vertices split the boundary of each face into
curve segments or closed curves called edges. One additionally requires that the end
points of chords are pairwise distinct and that any vertex which is an intersection
point of chords and/or contours lies in the closure of exactly four edges.
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A semi-garden SG is additionally equipped with

(i) black and white colouring of the faces such that every two neighbouring faces
have different colours;

(ii) positive integers (“lengths”) assigned to its edges;
(iii) a cyclic order on the set of all vertices.

Figure 3. A semi-garden: P has genus 0 and three boundary components. The sides a and a
′

must be identified.

Let P ′ be the surface P with the opposite orientation. For a given semi-garden
SG, the semi-garden obtained by considering the surface P ′, the chords, simple con-
tours, lengths of edges and cyclic order of the edges of SG, but interchanging black
and white colours of faces, is called the conjugate semi-garden SG of SG.

Figure 4. An orientable garden. To obtain P̃ it is necessary to identify a with a
′, b with b

′, c

with c
′ and e with e

′, producing a surface of genus 2.

By an orientable garden we call a pair of conjugate semi-gardens SG and SG
defined on surfaces with non-empty boundary. To an orientable garden we associate

a Riemann surface P̃ obtained in the following way. Let P and P ′ be the surfaces
corresponding to SG and SG respectively, we consider P and P ′ as disjoint surfaces
with an orientation reversing diffeomorphism h : P → P ′ sending the elements of the
orientable garden SG to the elements of SG (the diffeomorphism h sends black faces
to white faces) and we identify the points of the boundaries of P with the ones of P ′
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by the map h. The surface P̃ has an orientation-reversing involution ν (given by h

and h−1) sending the initial semi-garden to its conjugate. The quotient surface P̃ /ν
is an orientable surface isomorphic to P . Thus an orientable garden is given by a

compact orientable surface P̃ without boundary with an anticonformal involution ν

such that P̃ /ν is orientable and an additional structure provided by a semi-garden

on P̃ /ν.
Figure 4 shows an orientable garden associated to a genus 2 surface; the corre-

sponding semigardens are the one represented in Figure 3 and its conjugate.

2.2. Oriented separated garden. An elementary orientable garden is given
by the Riemann sphere with the standard complex conjugation σ and a given integer
“length” of the real cycle (the corresponding semi-gardens have neither chords nor
simple contours.) Now consider a pair of elementary orientable gardens {(Gi, σi) : i =
0, 1} with equal lengths of their real cycles. Take the identical isomorphisms φi :
(Gi, σi) → (G1−i, σ1−i) and the involution σ := φiσi of G0 ∪ G1. Call the obtained
structure (G0 ∪ G1, σ) an oriented separated garden.

2.3. Non-orientable gardens. A symmetric semi-garden SSG is a pair con-
sisting of a semi-garden on a surface P without cyclic enumeration of its vertices and
an orientation-reversing involution τ : P → P without fixed points which changes the
colour of the faces and preserves the “lengths” of the edges. In a symmetric semi-
garden SSG the cyclic enumeration of the vertices of a semi-garden is substituted by
the cyclic numeration of pairs of vertices which are interchanged by the involution τ .

A non-orientable garden is a symmetric semi-garden SSG and an associated

orientable surface P̃ obtained identifying all pairs of points on the boundary of P
interchanged by τ . The involution τ induces an orientation-reversing involution τ̃

on P̃ . Fix(τ̃ ) does not separate P̃ , then P̃ /τ̃ is non-orientable.
Thus a non-orientable garden is given by a compact connected orientable surface

P̃ without boundary, an orientation reversing involution τ̃ such that P̃ /τ̃ is non-

orientable and with a symmetric semi-garden structure on P̃ − Fix(τ̃ ). Note that
Fix(τ̃) may be empty and in this case P has no boundary.

Figure 5. A symmetric semi-garden. The sides a and a′, b and b′ must be identified to obtain

a torus with two boundary components.

The Figure 5 shows a symmetric semi-garden corresponding to a surface P of
genus one with two boundary components. The orientation-reversing involution of P
is given by the glide-reflection of the axis r and vector v. The non-orientable garden
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given by the symmetric semi-garden is associated to a surface of genus two and the
orientation-reversing involution has one contour as fixed point set (one oval).

2.4. Non-oriented separated garden. A elementary non-orientable garden

is the Riemann sphere with the antipodal involution τ : z → −z̄−1, a given integer
“length” of the real cycle, and a given colouring of the hemispheres into which the
real cycle splits the Riemann sphere. Consider a pair of elementary non-orientable
gardens {(Gi, τi) | i = 0, 1} with equal lengths of their real cycles. Take the identical
isomorphisms φi : (Gi, σi) → (G1−i, σ1−i) and the involution σ := φiτi of G0 ∪ G1. The
obtained structure (G0 ∪ G1, σ) is called a non-oriented separated garden.

A separated garden is either an oriented or non-oriented separated garden.

2.5. Parks. A park is a structure consisting of

(i) (orientable and non-orientable) gardens and (oriented and non-oriented) sep-
arated gardens;

(ii) entrances and exits;
(iii) alleys,

which we define below.
An entrance (resp. exit) is a point coloured white (resp. black) and endowed

with a non-negative integer called weight. By an alley we call a path connecting an
entrance or an exit with a face of a garden or a separated garden.

The elements of a park satisfy the following:

(i) alleys connect entrances to white faces and exits to black faces;
(ii) each face has exactly one alley;
(iii) at least one alley is connected to each entrance and each exit;
(iv) there exists an involution sending entrances to exits (preserving weights),

alleys to themselves and acting on gardens and separated gardens as their
associated involutions.

Note that the information on the number of exits, alleys from exits and its weights
may be deduced from the corresponding concepts on entrances and vice-versa. We
maintain the two types of elements for aesthetical reasons.

Two parks are called isomorphic if there exist homeomorphisms of the associ-
ated surfaces to the gardens and bijections between the sets of entrances and exits
preserving all elements and relations of the structures.

Figure 6. Example of a park.
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The Figure 6 shows a park constructed from two non-orientable gardens as the
one in Figure 5. In the Example 3 of the next section we describe the generic real
meromorphic functions with the topological type represented by this park.

3. Park corresponding to a real meromorphic function

Recall that a real algebraic curve is a pair (P, τ) consisting of a compact Rie-
mann surface P and an anti-holomorphic involution τ : P → P . A real meromorphic
function on (P, τ) is a holomorphic function f : P → C such that for any p ∈ P ,

f(τ(p)) = f(p). A real meromorphic function f is called generic if (i) all critical
points p ∈ P have degree 2, and (ii) if critical points p1 6= p2 ∈ P have the same
image z = f(p1) = f(p2), then z ∈ R and τ(p1) = p2.

Let us now associate a park to any generic real meromorphic function.

3.1. Associated gardens. The real cycle R ⊂ C splits the Riemann sphere into
the hemispheres C+ and C− with positive and negative imaginary part respectively.
We will call them resp. the white and the black hemispheres.

Consider a symmetric neighbourhood of a real cycle U ⊃ R (i.e., U = U) which
contains only real critical values. Its boundary ∂U consists of the contours C+ ⊂ C+

and C− ⊂ C−.
Take the preimage f−1(U). Contracting each connected component of the bound-

ary of the preimage to a point, we obtain a finite family Φ of compact connected
Riemann surfaces. The preimage f−1(R) splits each of them into simply-connected
domains. The closures of these domains are called faces. Each face contains exactly
one point obtained as the result of the contraction of a component in f−1(∂ U). Let
us colour the face white if this point is obtained by contracting of the inverse image
of f−1(C+) and black if it is obtained by contracting f−1(C−).

Contracting each of the contours C± to a point, we get a sphere U with two
labelled points z±. The real cycle splits it into the white and the black hemispheres.
Function f induces the branched covering f̄ of U by the family Φ which maps white
faces to the white hemisphere and black faces to the black one. Points z± will be the
only non-real critical values.

A critical point with a real value will be called a vertex. The cyclic order of
critical values generates a cyclic enumeration of the vertices (or pair of vertices in
the case of non-orientable gardens). Observe that vertices lie on the union of the
boundaries of faces and they divide the boundary of each face into curve segments
called edges. The restriction of f to any edge r has no critical points and it maps r
in R. The degree of this restricted map, i.e., the minimal cardinality of the preimage
of a point of R by f is called the “ length” of the edge r.

Involution τ sends the family Φ to itself interchanging the colours of all faces and
preserving the rest of the structure.

Lemma 1. If a surface P ∈ Φ is invariant under τ (except for the colour change),
then it forms a garden. The rest of components split into pairs of separated gardens.

3.2. Associated entrances, exits and alleys. By an entrance (resp. exit) we
call a connected component of the inverse image f−1(C+ \ U) (resp. f−1(C− \ U)).
The weight of an entrance (resp. exit) is the genus of this connected component. Con-
nected component of the inverse image f−1(∂U) is a contour separating an entrance
or an exit from a face of a garden or a separated garden of the same colour. We assign
to this connected component its alley (i.e., a path) connecting the entrance/exit and
the face which it separates.
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The next statement is obvious.

Theorem 2. Gardens, separated gardens, and alleys of a generic meromorphic
function f form a park P(f) which we call the park of f . This park is determined
uniquely up to an isomorphism.

Example 2. To illustrate the two types of separate gardens, we give an example
of a generic real meromorphic function and its associated park. Take a generic
meromorphic function of degree four on (T, τ), where T is a torus and τ is an anti-
conformal involution of T without fixed points (i.e., T/ 〈τ〉 is a Klein bottle). Observe
that such a meromorphic function has 8 critical values. Its park consists of:

(i) two separated gardens: one oriented (Gor
0 ∪Gor

1 , σ) and one non-oriented (Gnor
0 ∪

Gnor
1 , τ);

(ii) two entrances N1, N2 and two exits X1, X2, all four entrances/exits being of
genus 0.

(iii) Denote by BGor
i , BGnor

i and WGor
i , WGnor

i the black and the white faces of
the separated gardens respectively. There are three alleys from N1 to WGnor

0 ,
WGnor

1 and WGor
0 and three alleys from X1 to BGnor

0 , BGnor
1 and BGor

1 , one
alley from X2 to BGor

0 and one alley from N2 to WGor
1 .

The involution of the park sends Ni to Xi and

(WGor
i , BGor

i ,WGnor
i , BGnor

i ) → (BGor
1−i,WGor

1−i, BGnor
1−i,WGnor

1−i).

(See Figure 7.)

Figure 7. A park with two separated gardens.

Example 3. Consider a generic rational function of degree 3. There is a unique
topological type of such functions with four critical values. Let us describe some
topological types of real meromorphic functions in the Hurwitz space H0,3. There
are three possibilities. Namely, either all the critical values lie on the real cycle, or
only two critical values are on the real cycle, or, finally, there are no real critical
values at all.

A park for a generic real meromorphic function with four real critical values
consists of a garden which is a sphere with two conjugate semi-gardens being disks
with two chords. There are six faces (three white and three black), each one with an
alley to an entrance/exit of genus 0 (see Figure 8).

A park of generic real meromorphic functions with two real critical values is as
follows. Its semi-garden consists of a disk and a chord joining two points on the
boundary. The corresponding orientable surface of the orientable garden is a sphere.
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There is an alley in each face (there are four faces) ending at an entrance/exit of
genus 0. The lengths of the three edges of each semi-garden are 0, 0 and 1.

Figure 8. Example of a generic real rational function of degree three.

Finally, a park of a generic real meromorphic function without real critical values
has a garden which is the elementary orientable garden with length 3 of its side. It
has one entrance/exit, each one of genus 0, joined by an alley with the corresponding
white/black face. A different park for this case may be constructed with one elemen-
tary orientable garden, one oriented separated garden and four entrances/exits, all
of them of genus 0. The edges are three contours of length 1.

Example 4. The park in Figure 6 corresponds to generic real meromorphic
functions from Riemann surfaces of genus 13, with 10 real critical values. The ori-
entation reversing involution has two Jordan closed curves as its fixed-point set and
the quotient surface is non-orientable.

4. Real meromorphic function corresponding to a park

The main goal of this section is to prove the following result.

Theorem 3. For any park P, there exists a generic real meromorphic function
f whose park P(f) is isomorphic to P.

Proof. For any finite branched covering f : P → C of the Riemann sphere C

by an orientable closed 2-manifold P , there exists a unique holomorphic structure
on P such that f becomes a meromorphic function, see [7]. Analogously, for any
orientation-reversing involution τ : P → P of an orientable closed 2-manifold P and
a finite branched covering f : P → C such that f(τ(p)) = f(p) for any p ∈ P , there
exists a unique complex structure on P which makes f a real meromorphic function,
see [10, 11]. Thus to obtain a generic real meromorphic function realizing a given
park P, it suffices to construct a topological model of this function.

We provide such construction for parks with orientable gardens. The case for
non-orientable gardens is similar.

We start with a topological model of a function realizing a garden with n vertices.
Consider the Riemann sphere with n points on its real cycle with cyclic enumeration.
The real cycle divides the Riemann sphere into white and black disks. By definition,
a garden is a 2-dimensional surface split into simply-connected white and black faces.
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The boundary of each face is split by labelled vertices into edges of a given integer
“length”. We will construct a branched covering, which maps any face to the disk of
the same colour and has at most one critical point inside each face. To obtain such a
covering, it suffices to determine the mapping of the boundary of each face to the real
cycle R. (This mapping of the boundary is uniquely determined by the coincidence
of the enumerations of the vertices of the face with the cyclic enumeration of points
on R together with the coincidence of the “length” of every edge with the degree of
the mapping on this edge.)

Mappings of elementary and separated gardens are constructed similarly. By the
degree of a face we call the degree of the resulting mapping of this face to a disk.
The latter degree will be called the degree of the alley related to the face under
consideration. This degree may be read from the park as the sum of the lengths of
the edges of the face where the alley ends.

Now consider a neighbourhood of the real cycle R ⊂ U ⊂ C symmetric with
respect to the complex conjugation and such that it contains only real critical values
of the constructed map. Its complement C \ U splits into the white and black disks
D+ and D−. The preimage of U with respect to the constructed branched covering
consists of gardens such that every face has exactly one hole. We call them gardens

with boundary.
Now we shall construct maps corresponding to the entrances and alleys starting at

them. Associate to an entrance its entrance surface whose genus equals to the weight
of the entrance and the number of holes equals to the number of alleys. Consider
a generic covering of this surface over D+ which maps the boundary components
corresponding to the alleys to ∂D+ in such a way that the degree of the (unbranched)
covering equals the degree of the alley. The number of critical points of such a
covering (the latter number being determined by the Riemann-Hurwitz formula) is
called the index of the entrance.

The boundary points of gardens with boundary and the boundary points of en-
trance surfaces are called related if their images on ∂D+ with respect to constructed
coverings coincide. Now glue together the boundary components of the alleys with
the corresponding boundary components of the gardens with boundary by homeo-
morphisms which identify related points. Using the involution, we do the same with
the exit surface.

As a result, we obtain a branched covering with an orientation-reversing involu-
tion whose corresponding real meromorphic function has a park isomorphic to P. �

5. Parks as topological types of generic real meromorphic functions

We now settle the following statement.

Theorem 4. Two generic real meromorphic functions with isomorphic parks are
topologically equivalent. The set H(P) of all generic real meromorphic functions
with a given (up to isomorphism) park P is a single connected component in the
space of generic meromorphic functions. In other words, in the space RH0 of generic
real meromorphic functions there exists a deformation transforming one generic real
meromorphic function with a given park P to any other generic real meromorphic
function with the same park.

Proof. We say that two generic real meromorphic functions are related if it is
possible to deform one to the other by means of a continuous change of real critical
values and pairs of complex conjugated non-real critical values. A real meromorphic
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function defined by a disjoint union of gardens and separated gardens is called simple.
Construction in § 4 associates to any real meromorphic function f a related class of
simple real meromorphic functions defined by the gardens and the separated gardens
of the park of f . Moreover, this related class is the same for two given functions
if and only if they have parks with isomorphic systems of gardens and separated
gardens.

A system of entrances and its alleys of a generic real meromorphic function
determines a set of ramified coverings with simple critical values ϕi : Pi → D of
degrees di, where Pi is a Riemann surface of genus gi with ki holes and D is a disk.
Consider the degrees d1i , . . . , d

ki
i of ϕi|∂Pi

: ∂Pi → ∂D on components cj ⊂ ∂Pi. It
follows from [8, 10] and Chapter 3 of [11] that any other covering ϕ′

i : P
′

i → D is
obtained from ϕi by a continuous change of critical values if the topological types
(gi, ki) and (g′i, k

′

i) respectively of Pi and P ′

i are the same, the degrees di and d′i of
ϕi and ϕ′

i are the same, and the degrees d1i , . . . , d
ki
i and d′1i, . . . , d′kii on the boundary

components are the same.
The park of a generic real function defines the topological type {(gi, ki)} of the

system of entrances and its alleys and the corresponding degrees d1i , . . . , d
ki
i . Thus for

functions with isomorphic parks, there exists a continuous change of critical values
deforming one system of entrances and its alleys to the other. The anti-holomorphic
involution generates a continuous change of critical values deforming one system of
exits and its alleys to the other. Together with the change of real critical values
which we considered above, this generates a continuous change of critical values
transforming one real function to the other. �

6. Hurwitz numbers

A Hurwitz number is, by definition, a weighted number of equivalence classes of
coverings with fixed critical values. Generic real meromorphic functions belong to
different equivalence classes if and only if they have different topological types (i.e.,
non-equivalent parks). Thus it is enough to find a Hurwitz number for any given
topological type.

Consider the set H(P) of all generic real meromorphic functions with a given
(up to an isomorphism) park P. In §4 we constructed a decomposition of a generic
real meromorphic function into a real function defined on the system of gardens and
separated gardens and a function defined on surfaces generated by entrances and
exits with alleys. Thus the Hurwitz number for H(P) is obtained by multiplication
of the Hurwitz number for the function corresponding to the gardens and separated
gardens by the Hurwitz number for the function defined on the surfaces generated
by the entrances and its alleys. (Notice that the function defined on the surfaces
generated by the entrances and its alleys determines the function defined on the
surfaces generated by the exits and its alleys.)

The main construction of §4 demonstrates that the Hurwitz number for the func-
tions corresponding to the gardens and separated gardens equals 1. This fact means
that in order to calculate the total Hurwitz number, it suffices to determine the
Hurwitz number for the function defined on the system of surfaces generated by the
entrances and its alleys. This function, in its turn, is a union of functions with simple
critical values on surfaces Pi of topological types {(gi, ki) : i = 1, . . . , n} and degrees
{dji : j = 1, . . . , ki} on boundary components, see §5.
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Collapsing the boundary components of Pi and the boundary of the image disk
to a point, we obtain a map of the closed surface P i to the Riemann sphere which
have only one non-simple critical value. The number of its simple critical values is
calculated by the Riemann–Hurwitz formula and is equal to

bi = 2gi − 2 + ki +

ki∑

j=1

dji .

The Hurwitz number Hgi(d
1
i , . . . , d

ki
i ) for such a map is equal to the Hurwitz number

corresponding to the coverings of Pi over a disk and is called a single Hurwitz number.
These numbers, appearing in different areas of mathematics from moduli spaces to
integrable systems, are well studied.

Now the Hurwitz number for the topological type given by all entrances and its
alleys equals

(b1 + · · ·+ bn)!

b1! . . . bk!

n∏

i=1

Hgi(d
1
i , . . . , d

ki
i ).

As we explained above, this number coincides with the Hurwitz number for generic
real meromorphic functions of type P.

Example 5. Consider the park P in Figure 2 where all the lengths of sides are
0. There is only one entrance of genus 3 with two boundary components of degree 1.
The number b is 8 and the Hurwitz number for the topological type of generic real
meromorphic functions given by P is

H(P) =
8!

8!
H3(1, 1).

7. Parks and monodromy of coverings

The traditional way to describe coverings and meromorphic functions is by us-
ing their monodromy. In the case of a degree d generic meromorphic function
f : P → C, the monodromy is a representation ω : π1(C \ {z1, . . . , zn}) → Symd,
where {z1, . . . , zn} is the set of critical values and Symd is the symmetric group of
permutations of d elements. For a generic meromorphic function, ω sends each based
small loop encircling a singular value to a transposition. The monodromy tells us
how the elements of π1(C \ {z1, . . . , zn}) lift to the surface P and ω−1(Stab(1)) is
isomorphic to the group π1(P \ f−1{z1, . . . , zn}). Two monodromy representations
correspond to topologically equivalent meromorphic functions if and only if there
exists an automorphism of π1(C \ {z1, . . . , zn}) (given by an orientation-preserving
homeomorphism) and an automorphism of Symd sending one representation to the
other. In this way, it is possible to prove that there exists a unique topological type
of degree d generic meromorphic functions from Riemann surfaces of a fixed genus
(see [2] and [5]).

The degree d generic real meromorphic functions may be described by a degree d

orbifold covering f̂ : P̂ → Dt,s where Dt,s is an orbifold with the topological type of a
disc, t conic points of order two and s corner points of angle π/2. If P is the complex

double of P , the covering f̂ provides f : P → C which is a generic meromorphic
function with 2t+ s = n critical values, s of them real. These coverings are given by
a monodromy representation

̟ : π1O(Dt,s) → Symd = Sym{1, . . . , d}.
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The group π1O(Dt,s) has a presentation:
〈
x1, . . . , xt, e, c1, . . . , cs+1 : x2

i = c2i = (cici+1)
2 = 1; x1 . . . xte = 1; c1 = ect+1e

−1
〉
.

Since ̟ is given by a generic real meromorphic function, it satisfies some specific
properties:

1. the permutations ̟(xi) are transpositions;
2. the permutations ̟(cici+1mod s) are transpositions or products of two (dis-

joint) transpositions;
3. every ̟(ci) is an element of order two.

The entrances of the park are given by the orbits of the subgroup generated by

〈̟(x1), . . . , ̟(xt)〉 .

The white faces and the corresponding alleys are in 1 − 1 correspondence with the
orbits of the element ̟(e). The face corresponding to an orbit of ̟(e) is joined with
the entrance which is the orbit of 〈̟(x1), . . . , ̟(xt)〉 containing it.

The exits, black faces and corresponding alleys are obtained using the orbits of

〈̟(c1x1c1), . . . , ̟(c1xtc1)〉

and the cycles of ̟(c1ec1).

Example 6. We can apply Theorem 4 to check if two generic real meromorphic
functions given by its monodromies have or not the same topological type. For
example, let f1 : P1 → C and f2 : P2 → C be two generic real meromorphic functions
of degree d without real critical values from two surfaces of a fixed genus g ≥ 2. Let

̟i : π1O(Dt,0) → Sym{1, . . . , d}, i = 1, 2,

be the monodromy representations of f̂1 and f̂2 respectively. Assume that ̟1(e) and
̟2(e) are d-cycles, and that the real involutions on P1 and P2 are separating. The
corresponding garden of each function is an elementary garden with length d on its
edge and there is only one entrance and one exit in each park. Hence the parks are
equivalent, (P1, f1) and (P2, f2) are topologically equivalent.
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