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Abstract. We study Sobolev spaces on noncompact metric measure spaces. We show compact

embedding of H-invariant Sobolev spaces, where H is a subgroup of all isometries preserving the

measure on the metric measure space.

1. Introduction

Let Ω be an open subset of the Euclidean space R
n. If the boundary of Ω is

sufficiently regular and p < n, then the Sobolev embedding W 1,p(Ω) →֒ Lq(Ω) holds,
where p ≤ q ≤ p∗ := np

n−p
. Additionally, if the set Ω is bounded, then the Rellich–

Kondrachov compactness theorem W 1,p(Ω) →֒→֒ Lq(Ω) is satisfied, where p ≤ q < p∗

(see e.g. [1]). Furthermore, if Ω is not bounded, then compactness not necessarily
holds. Indeed, by taking Ω = R, nonzero φ ∈ C∞

0 (R) such that supp φ ⊂ [−1
2
, 1
2
]

and un(x) = φ(x− n), we obtain that un is bounded in W 1,p(R), but there does not
exist a subsequence of un that converges in Lq(R).

On the other hand, suppose that n ≥ 2 and define the subspace of W 1,p(Rn)
consisting of radially symmetric functions (invariant under the action of ortogonal
group O(n)), i.e.,

W 1,p
r (Rn) :=

{

u ∈ W 1,p(R)n | u is radially symmetric
}

.

Then it was shown by Berestycki–Lions [4, 33], (see also Coleman–Glazer–Martin [9]
and Strauss [37]) that

W 1,p
r (Rn) →֒→֒ Lq(Rn),

where p < q < p∗. The Berestycki–Lions type theorem has also been established
on Riemannian manifolds (see Hebey–Vaugon [27] and Skrzypczak–Tintarev [35]).
Namely, assume that G is a compact subgroup of the group of global isometries of
the complete Riemannian manifold (M, g). Then, under some additional assumptions
on the geometry of (M, g) and some assumptions on the orbits under the action of G,
the following compact embedding holds W 1,p

G (M, g) →֒→֒ Lq(M, g), where W 1,p
G (M, g)

is the subspace of W 1,p(M, g) consisting of G-invariant functions. Moreover, Balogh
and Kristály proved the Berestycki–Lions compactness on the Heisenberg group [3].
More recently, the compact embedding results of the Berestycki–Lions type have
been extended to the generalized Lebesgue–Sobolev spaces W 1,p(·) (see Fan–Zhao–
Zhao in the Euclidean case [11] and Gaczkowski–Górka–Pons in the case of complete
Riemannian manifolds [13]).

The main objective of the paper is to prove the Berestycki–Lions compactness
type theorem (see Theorem 3.2) on metric measure spaces. Roughly speaking, we
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aim to prove the following result. Suppose that (X, ρ, µ) is a metric measure space
equipped with s-Ahlfors regular measure and H is a subgroup of the measure-
preserving isometries of (X, ρ). Then, by employing some assumption on the or-
bits under the action of H , we have that the following compact embedding holds
M

1,p
H (X) →֒→֒ Lq(X), where p < q < p∗ := sp

s−p
and M

1,p
H (X) is H-invariant Hajłasz–

Sobolev space.
Finally, we collect known results about compactness theorems for M1,p spaces.

Kałamajska has proved compactness of the embedding M1,p in Lp assuming that the
measure is finite (see Theorem 2 in [31]). Tilli and Ambrosio showed that the em-
bedding M1,p →֒→֒ Lq, where q < p∗ = sp

s−p
holds for compact metric measure spaces

with lower s-Ahlfors measure (see Theorem 5.4.3 in [2] ). Recently, compactness
results have been proved for variable exponent Hajłasz–Sobolev spaces M1,p(·)(X),
where X is a compact metric space (see [12, 19]).

The remainder of the paper is structured as follows. In Section 2, we introduce the
notations and recall the notion of Sobolev spaces on general metric measure spaces.
We also formulate and prove the covering lemma there. Our principal assertion, con-
cerning the compact embedding of the Hajłasz–Sobolev spaces on noncompact metric
spaces, is formulated and proven in Section 3. Some open problems are contained in
the final part.

2. Preliminaries

Let (X, ρ, µ) be a metric measure space equipped with a metric ρ and the Borel
regular measure µ. We assume throughout the paper that the measure of every
open nonempty set is positive and that the measure of every bounded set is finite.
Additionally, we assume that the measure µ satisfies a doubling condition. It means
that, there exists a constant Cd > 0 such that for every ball B(x, r),

µ (B(x, 2r)) ≤ Cdµ (B(x, r)) .

It is well known (see e.g. Lemma 14.6 in [23]) that the doubling condition implies
that, there exists a positive constant D satisfying

D

(

r1

r2

)s

≤
µ (B(x1, r1))

µ (B(x2, r2))
, where s = log2Cd,

for all balls B(x2, r2) and B(x1, r1) with r2 ≥ r1 > 0 and x1 ∈ B(x2, r2). It follows
from the above inequality that if X is bounded, then there exists b > 0 such that the
following inequality holds for r < diamX

(1) µ(B(x, r)) ≥
1

b
rs.

On the other hand, if the metric measure space equipped with a doubling measure
is not bounded, then inequality (1) does not necessarily hold.

In majority part of our paper we shall assume that the metric measure space
(X, ρ, µ) is Ahlfors s-regular (we also say that (X, ρ, µ) is a metric measure space
with s-regular measure µ). It means that there exists a constant b such that

1

b
rs ≤ µ (B(x, r)) ≤ brs

for all balls B(x, r) ⊂ X with r < diamX.
We are now in a position to recall the notion of Sobolev spaces on metric measure

spaces [21]. Let (X, ρ, µ) be a metric measure space. We say that a p-integrable
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function f belongs to the Hajłasz–Sobolev space M1,p(X) if there exists g ∈ Lp(X),
called a generalized gradient, such that

|f(x)− f(y)| ≤ ρ(x, y) (g(x) + g(y)) a.e. for x, y ∈ X.

We equip the space M1,p(X) with the norm

‖f‖M1,p(X) = ‖f‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all the generalized gradients. Then M1,p is a Banach
space. For the basic properties of this kind of spaces, we refer to [2, 21, 22, 23, 29,
28, 32].

Suppose that f is locally integrable and A is a measurable set then by fA we
denote the integral average of the function f over the set A, i.e.,

fA := −

ˆ

A

f dµ =
1

µ(A)

ˆ

A

f dµ.

To prove the main theorems we shall need the following result.

Proposition 2.1. [15] Let (X, ρ, µ) be a metric measure space with s-regular

measure µ. If s > p, then

M1,p(X) →֒ Lp∗(X),

where p∗ = sp

s−p
. Moreover, there exists C = C(s, p, b), depending on s, p, b, such that

for each u ∈ M1,p(X), the following inequality holds

‖u‖Lp∗(X) ≤ C
(

‖u‖Lp(X) + ‖g‖Lp(X)

)

.

Furthermore, if diamX = ∞, then

‖u‖Lp∗(X) ≤ C‖g‖Lp(X).

We need also the notion of isometries preserving the measure. Let Iso(X) be the
group of isometries of the metric space (X, ρ), then the group of measure-preserving
isometries of (X, ρ, µ) consists of all isometries of X preserving the measure µ:

Isoµ(X) = {φ ∈ Iso(X) | φ#µ = µ} ,

where φ#µ is the pushforward measure. It is also noteworthy that in the case of
Riemannian manifolds, we have that IsoVg(M, g) = Iso(M, g), where by Vg we denoted
the Riemannian measure. For a deeper discussion of measure-preserving isometries
we refer the reader to [36]. In further considerations H denotes a fixed subgroup
of Isoµ(X). As usual, the orbit of x ∈ X under the action of H is the set H(x) =
{h(x) | h ∈ H}. Given x in X and R > 0, we consider the following quantity

MH(x,R) = sup {Card{xi}i∈I | xi ∈ H(x), B(xi, R) ∩B(xj , R) = ∅ for i 6= j} .

MH(x,R) gives the lowest upper bound for the number of non overlapping R-balls
in the orbit of x.

In addition, we denote by M
1,p
H (X) the subspace of M1,p(X) consisting of H-

invariant functions. Since H is a subgroup of measure-preserving isometries, one can
easily convince oneself that M

1,p
H (X) is a closed subspace of M1,p(X). Therefore,

M
1,p
H (X) is a Banach space.

2.1. Covering lemma. In this subsection we shall prove the following covering
lemma.

Lemma 2.1. Let (X, ρ, µ) be a metric measure space with doubling measure

and r > 0. Then, there exists a sequence {xi} ⊂ X such that for any δ > r:
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a) X =
⋃

i B(xi, r);

b) For any x ∈ X, x belongs to at most C6
d

(

δ
r

)log2 Cd
balls B(xi, δ).

Proof. Since the measure is doubling, the metric space X is separable. Let A be
a countable and dense subset of X. Put

X(r) =
{

{xi} ⊂ A | ∀i 6=j , ρ(xi, xj) ≥
r

2

}

.

By the Zorn–Kuratowski Lemma, there exists a maximal element {xi} in X(r). Thus,
since A is dense and {xi} is a maximal element, we get

X =
⋃

i∈J

B(xi, r).

This completes the proof of a).
Thus, it remains to prove b). For this purpose, we fix x ∈ X and δ > r. Set

Jδ(x) = {i ∈ J | x ∈ B(xi, δ)} .

It is easily seen that for i ∈ Jδ(x), we have

B
(

xi,
r

4

)

⊂ B(x, 2δ) ⊂ B(xi, 4δ).

Since B
(

xi,
r
4

)

∩B
(

xj ,
r
4

)

= ∅ for i 6= j, then by the elementary properties of measures
and by doubling condition, we obtain

µ(B(x, 2δ)) ≥ µ





⋃

i∈Jδ(x)

B
(

xi,
r

4

)



 =
∑

i∈Jδ(x)

µ
(

B
(

xi,
r

4

))

≥ C−2
d

( r

16δ

)log2 Cd ∑

i∈Jδ(x)

µ (B (xi, 4δ))

≥ C−6
d

(r

δ

)log2 Cd ∑

i∈Jδ(x)

µ (B (x, 2δ))

= C−6
d

(r

δ

)log2 Cd

Card(Jδ(x))µ (B (x, 2δ)) .

Consequently, we get

Card(Jδ(x)) ≤ C6
d

(

δ

r

)log2 Cd

,

which completes the proof of the covering lemma. �

3. Compactness

In this section of our paper we state and prove our principal assertion. We will
start with the proof of the following result.

Theorem 3.1. Suppose that (X, ρ, µ) is a metric measure space with s-regular

measure µ. Assume in addition that un is a bounded sequence in M1,p(X), where

p < s and, there exists r > 0 such that

lim
n→∞

sup
y∈X

ˆ

B(y,r)

|un|
p dµ = 0.

Then,

un → 0 in Lq(X),
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where p < q < p∗ = sp

s−p
.

Proof. The strategy of the proof is similar to the proof of Lemma 1.21 from [38].
Let us fix x0 ∈ X and define the following Lipschitz map

fx0,r(x) :=











1
r
(2r − ρ(x, x0)) if x ∈ B(x0, 2r) \ (x0, r),

1 if x ∈ B(x0, r),

0 if x ∈ X \B(x0, 2r) ,

where the Lipschitz constant Lr =
1
r

does not depend on x0.
We will show that if u ∈ M1,p(X) with the generalized gradient g, then fx0,ru ∈

M1,p(X). Indeed, taking

g̃(x) = (|u(x)|Lr + g(x))χB(x0,2r),

one can easily prove that g̃ is the Hajłasz gradient of fx0,ru.
Now, let us recall the following interpolation inequality. Suppose that ν ≤ σ ≤ α

and u ∈ Lν ∩ Lα. Then, u ∈ Lσ and

‖u‖Lσ ≤ ‖u‖θLν‖u‖1−θ
Lα ,

where
1

σ
=

θ

ν
+

1− θ

α
.

We are now in a position to prove our theorem. We may assume that ‖un‖M1,p(X) <

1. Let ǫ ≤ (q−p)2

2p
, such that

p < q < t := q + ǫ < p∗.

It is easy to see that for such ǫ, we have

q − p

q − p+ ǫ

q + ǫ

p
≥ 1.

Furthermore, by the interpolation inequality and Proposition 2.1, we have

‖unfx0,r‖Lt(X) ≤ C(t, p, s, b)‖unfx0,r‖M1,p(X).

Thus, taking into account the above considerations, we get

‖un‖Lt(B(x0,r)) ≤ C(t, p, s, b)
(

‖un‖Lp(B(x0,2r)) + ‖g̃n‖Lp(B(x0,2r))

)

≤ C(t, p, s, b, r)
(

‖un‖Lp(B(x0,2r)) + ‖gn‖Lp(B(x0,2r))

)

.
(2)

Additionally, using the interpolation inequality with σ = q, ν = p, α = t, we obtain
ˆ

B(y,r)

|un|
q dµ ≤

(
ˆ

B(y,r)

|un|
p dµ

)
t−q
t−p
(
ˆ

B(y,r)

|un|
t dµ

)
q−p
t−p

=

(
ˆ

B(y,r)

|un|
p dµ

)
ǫ

q−p+ǫ
(
ˆ

B(y,r)

|un|
q+ǫ dµ

)
q−p

q−p+ǫ

.

Subsequently, denoting τn = supy∈X

(

´

B(y,r)
|un|

p dµ
) ǫ

q−p+ǫ

and using inequality (2),

we get
ˆ

B(y,r)

|un|
q dµ ≤ τnC(t, p, s, b, r)

t−q
t−p

α
(

‖un‖Lp(B(x0,2r) + ‖gn‖Lp(B(x0,2r)

)
q−p

q−p+ǫ
(q+ǫ)

≤ τnD(t, p, q, r, s, b)

(

(
ˆ

B(x0,2r)

|un|
p dµ

)
q−p

q−p+ǫ
q+ǫ
p

+

(
ˆ

B(x0,2r)

|gn|
p dµ

)
q−p

q−p+ǫ
q+ǫ
p

)

.
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Since ‖un‖M1,p(X) < 1 and q−p

q−p+ǫ

q+ǫ

p
≥ 1, we may write that

ˆ

B(y,r)

|un|
q dµ ≤ τnD(t, p, q, r, s, b)

(
ˆ

B(y,2r)

|un|
p dµ+

ˆ

B(y,2r)

|gn|
p dµ

)

.

Thus, using the covering lemma, we have
ˆ

X

|un|
q dµ ≤

∞
∑

i=1

ˆ

B(xi,r)

|un|
q dµ ≤ τnD(t, p, q, r, s, b)

∞
∑

i=1

ˆ

B(xi,2r)

(|un|
p + |gn|

p) dµ

≤ τnD(t, p, q, r, s, b)C7
d

ˆ

X

(|un|
p + |gn|

p) dµ ≤ τnD(t, p, q, r, s, b)C7
d ,

where Cd = b22s is the doubling constant for s-regular measure. Finally, we conclude

lim
n→∞

ˆ

X

|un|
q dµ = 0,

which completes the proof of Theorem 3.1. �

Our next main result is the following claim.

Theorem 3.2. Assume that (X, ρ, µ) is a metric measure space with s-regular

measure µ such that M1,p(X) is reflexive. Moreover, let H ⊳ Isoµ(X) be such that

lim
R→∞

inf
x∈X\B(x0,R)

MH(x, r) = ∞ ,

where x0 is any fixed point of X and r > 0. If s > p > 1, then for any q such that

p < q < p∗, we have the compact embedding

M
1,p
H (X) →֒→֒ Lq(X).

Remark. If the metric measure space equipped with a doubling measure sup-
ports a Poincaré inequality, then the space M1,p(X) is reflexive. Indeed, from
Theorem 4.9 in [34] we know that if X is a metric measure space equipped with
a doubling measure and X supports q-Poincaré inequality for some q < p, then
M1,p(X) = N1,p(X), where N1,p(X) is a Newton–Sobolev space. On the other hand,
by the Cheeger reflexivity theorem (see [7] and for an elementary proof we refer the
reader to [10]), we have that N1,p(X) is reflexive, provided the measure µ on X is
doubling and X supports a p-Poincaré inequality.

Example 1. Let (M, g) be a complete Riemannian manifold. Assume that the
Ricci curvature Ric is nonnegative, then by the Bishop–Gromov comparison theorem
(see for instance [8]) we have that the metric measure space (M,Vg, dg) is doubling,
where Vg is the Riemannian measure and dg stands for the geodesic distance. Fur-
thermore, by the Buser isoperimetric inequality [5] we get that (M,Vg, dg) supports
a Poincaré inequality.

Example 2. Let (H1, d, l3) be the first Heisenberg group equipped with a Carnot
metrid d and the Lebesgue measure l3 (see [6] and the references given there). Then,
the measure l3 is doubling, in fact the space is 4-regular. Moreover, (H1, d, l3) sup-
ports a 1-Poincaré inequality [30].

Proof. By Proposition 2.1, we have M
1,p
H (X) →֒ Lq(X). For the rest of the proof

the following lemma is needed.

Lemma 3.1. For x0 ∈ X and R > 0, we define the operator

Fx0,R : M
1,p(X) → Lp(X)
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as follows

Fx0,R(u) = ufx0,R.

If the assumptions of Theorem 3.2 are satisfied, then Fx0,R is compact.

Proof. Let un be a bounded sequence in M1,p(X). We need to show that the
sequence Fx0,R(un) is relatively compact in Lp(X). For this purpose, we shall use the
characterization of relatively compact sets in Lp(X) from [18]. For convenience of
the reader, we briefly recall this result. Namely, the subset F of Lp(X) is relatively
compact in Lp(X) if and only if F is bounded, has uniform Lp-decay and is uniformly
Lp-equicontinous.

Since in our case, the proofs of boundedness and uniform Lp-decay are straight-
forward, we show that the family unfx0,R is uniformly Lp-equicontinous. Let r > 0.
We have

ˆ

X

∣

∣

∣
unfx0,R(x)− (unfx0,R)B(x,r)

∣

∣

∣

p

dµ(x)

≤

ˆ

X

∣

∣

∣

∣

∣

1

µ(B(x, r))

ˆ

B(x,r)

∣

∣

∣
unfx0,R(x)− unfx0,R(y)

∣

∣

∣
dµ(y)

∣

∣

∣

∣

∣

p

dµ(x)

≤

ˆ

X

∣

∣

∣

∣

∣

r

µ(B(x, r))

ˆ

B(x,r)

∣

∣

∣
g̃n(x) + g̃n(y)

∣

∣

∣
dµ(y)

∣

∣

∣

∣

∣

p

dµ(x)

≤

ˆ

X

∣

∣

∣

∣

∣

r






|g̃n(x)|+

1

µ(B(x, r))

ˆ

B(x,r)

|g̃n(y)| dµ(y)







∣

∣

∣

∣

∣

p

dµ(x)

≤ 2p−1rp







ˆ

X

|g̃n(x)|
p dµ(x) +

ˆ

X

∣

∣

∣

∣

∣

1

µ(B(x, r))

ˆ

B(x,r)

|g̃n(y)| dµ(y)

∣

∣

∣

∣

∣

p

dµ(x)







≤ 2p−1rp





ˆ

X

|g̃n(x)|
p dµ(x) +

ˆ

X

|M(g̃n)(x)|
p dµ(x)



 ,

where M is a maximal function.
By virtue of the Hardy–Littlewood maximal function theorem ‖M(v)‖Lp(X) ≤

Cp‖v‖Lp(X) (see e.g. [28]), we get

ˆ

X

∣

∣

∣
unfx0,R(x)− (unfx0,R)B(x,r)

∣

∣

∣

p

dµ(x) ≤ 2p−1rp(1 + Cp
p )

ˆ

X

|g̃n(x)|
p dµ(x)

≤ 22p−2rp(1 + Cp
p)(1 + L

p
R)‖un‖M1,p(X).

Therefore, the proof of Lemma 3.1 directly follows from Theorem 1 in [18]. �

We are now in a position to proceed further with the proof of Theorem 3.2. We
take a bounded sequence un ∈ M

1,p
H (X). In view of reflexivity, we may assume that,

there exists a subsequence, still denoted by {un}, that weakly converges to some u

in M
1,p
H (X). Thus, the sequence vn := un − u converges weakly to 0 in M

1,p
H (X).
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Since the measure µ is H-invariant, for each y1 ∈ X and for every y2 ∈ H(y1) we
have

ˆ

B(y1,r)

|vn(x)|
p dµ =

ˆ

B(y2,r)

|vn(x)|
p dµ.

Therefore, for every y in X,

(3) M(y, r)

ˆ

B(y,r)

|vn(x)|
p dµ ≤

ˆ

X

|vn(x)|
p dµ ≤ C.

Relation (3) and the assumptions on M(y, r) ensure that for each ǫ > 0, there exists
some finite Rǫ such that for every n

sup
y∈X\B(x0,Rǫ)

ˆ

B(y,r)

|vn(x)|
p dµ ≤

C

infy∈X\B(x0,Rǫ)M(y, r)
≤ ǫ.

Hence, by Lemma 3.1 and the Cantor diagonal method, we may construct a subse-
quence vn such that

lim
n→∞

sup
y∈X

ˆ

B(y,r)

|vn(x)|
p dµ = 0.

Finally, this and Theorem 3.1 imply desired result stated in Theorem 3.2. �

4. Final remarks

We summarize the paper with open problems.

Problem 1. Let M1,p(·)(X, ρ, µ) be the Hajłasz–Sobolev space with the variable
exponent p(·) (see [12, 24, 25, 26] for definition). Does Theorem 3.2 hold under some
condition on the exponent p?

Problem 2. Let G be a locally compact abelian group and G∧ denote the dual
group. Then, for s > 0 and map γ : G∧ → [0,∞) we define Sobolev space Hs

γ(G) (see

[20, 17, 16]) as follows. We shall say that f ∈ L2(G) belongs to the Sobolev space
Hs

γ(G) if
ˆ

G∧

(

1 + γ(ξ)2
)s
|f̂(ξ)|2 dµ̂G(ξ) < ∞.

Moreover, for f ∈ Hs
γ(G) its norm ‖f‖Hs

γ(G) is defined as follows

‖f‖Hs
γ(G) =

(
ˆ

G∧

(

1 + γ(ξ)2
)s
|f̂(ξ)|2 dµ̂G(ξ)

)
1

2

.

Suppose that H is a group acting on G and Hs
γ,H(G) stands for the subspace of

Hs
γ(G) consisting of H-invariant functions. The problem is: find conditions implying

compact embedding of Hs
γ,H(G).
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