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Abstract. We investigate prime ends in the Heisenberg group H1, extending Näkki’s con-

struction for collared domains in Euclidean spaces. The corresponding class of domains is defined

via uniform domains and the Loewner property. Using prime ends, we show the counterpart of

Carathéodory’s extension theorem for quasiconformal mappings, the Koebe theorem on arcwise

limits, the Lindelöf theorem for principal points, and the Tsuji theorem.

1. Introduction

The cornerstone for the theory of prime ends, is a work by Carathéodory [21],
who first defined prime ends for simply-connected domains in the plane. The main
motivation for his studies came from the problem of continuous and homeomorphic
extensions of conformal mappings. A result due to Carathéodory (and Osgood–
Taylor [61]), ensures that a conformal map between Jordan domains in the plane
extends to a homeomorphism between the closures. However, there are simple exam-
ples, for instance a slit-disk, for which an extension theorem fails. Nevertheless, by
introducing the so-called prime end boundary, Carathéodory was able to show that a
conformal homeomorphism between bounded simply-connected planar domains U and
V extends to a homeomorphism between U and the prime ends compactification of
V . The subsequent development of the prime ends theory has led to generalizations
of prime ends for more general domains in the plane, and in higher dimensional Eu-
clidean spaces, for instance see Kaufman [43], Mazurkiewicz [51], Freudenthal [29] and
more recently Epstein [27] and Karmazin [42], see also [2] for a theory of prime ends
in metric spaces. Applications of prime ends encompass: the theory of continua, see
Carmona–Pommerenke [23, 24], the boundary behavior of solutions to elliptic PDEs,
see Ancona [4] and the studies of the Dirichlet problem for p-harmonic functions in
metric spaces, see Björn–Björn–Shanmugalingam [12].

In this work we follow the original motivation for studying prime ends and in-
vestigate extension problems and the related boundary behavior for quasiconformal
mappings in the setting of Heisenberg group H1. Similar results of this type were ob-
tained by Väisälä [68, Chapter 17], [70] and Näkki [57] in the Euclidean setting. The
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latter one introduced prime ends based on the notion of the n-modulus of curve fam-
ilies in R

n. One of our goals is to generalize Näkki’s results to the sub-Riemannian
setting. If one seeks to explore these ideas in other geometric settings, then the
Heisenberg group H1 together with the sub-Riemannian geometry is a natural can-
didate. The reason being that H1 has a large enough family of quasiconformal map-
pings to make it an interesting pursuit, see the discussion at the end of Section 2.3.
It is perhaps surprising that such a generalization is not straightforward and requires
a new approach. First we recall some basic definitions for the Heisenberg groups
including rectifiable curves, contact and quasiconformal mappings, which we define
also in terms of the modulus of curve families (the rudimentary properties of modulus
in H1 are recalled and proved in the Appendix).

In Section 3.1 we define prime ends following the approach in [57]. Upon in-
troducing a topology on the prime end boundary ∂P , Definition 3.5, we prove the
following extension result, allowing us to extend a quasiconformal mapping to a
homeomorphism between the prime end boundaries.

Theorem 1.1. Let Ω and Ω′ be domains in H1 and let f : Ω → Ω′ be a quasicon-
formal mapping of Ω onto Ω′. Then, the extension mapping F : Ω∪∂PΩ → Ω′∪∂PΩ

′,
where

F (p) =

{

f(p) if p ∈ Ω,

[f(Ek)] if p = [Ek] ∈ ∂PΩ,

is a homeomorphism.

Some of the most important definitions required in our work are given in Sec-
tions 3.2 and 3.3. There we recall the Loewner spaces, uniform domains in H1,
and observe in Lemma 3.3 that in uniform domains, our modulus-based definition of
prime ends, has an equivalent form in terms of the Heisenberg distance. This result
is the key-part of our Definition 3.8 of the so-called collared domains. The original
definition introduced by Väisälä and Näkki cannot be applied directly in our setting
due to a rigidity property of the conformal mappings in H1 that is not present in
the Euclidean setting (see Section 2), and the lack of domains satisfying the Loewner
condition (problems which do not arise in the Euclidean setting). Furthermore, in
Section 3.3 we relate collaredness with another important class of domains finitely
connected at the boundary, and prove the following result.

Denote by ∂SPΩ, the part of the prime end boundary ∂PΩ consisting of singleton
prime ends only.

Theorem 1.2. Let Ω ⊂ H1 be a collared domain and let f : Ω → Ω′ be a
quasiconformal map of Ω onto a domain Ω′ ⊂ H1. Then there exists a homeomorphic
extension f̃ : Ω → Ω′ ∪ ∂SPΩ

′ defined as follows:

f̃(x) =

{

f(x) if x ∈ Ω,

[f(Ex
k )] if x ∈ ∂Ω,

where [Ex
k ] is the canonical prime end associated with x ∈ ∂Ω.

For the definition of canonical prime ends, see the discussion following Observa-
tion 3.3. Moreover, Theorem 1.2 naturally corresponds to Theorem 4.1 in Näkki [57]
and Section 3.1 in Väisälä [70].

The goal of Section 4 is to present yet another perspective on prime ends, and
show that in the domains finitely (in particular, locally) connected at the boundary,
one can construct singleton prime ends associated with every boundary point. We
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also relate our prime ends to those studied in [2] in metric spaces, see Section 4.1.
There, we recall a notion of mod-uniform domains used in Section 5, see Defini-
tion 4.1.

The important results of this paper are presented in Section 5, where we study
the boundary behavior of quasiconformal mappings. We first recall notions of ac-
cessibility and observe that one can assign a singleton prime end to each accessible
boundary point, see Observation 5.2. In total we provide three methods to obtain
canonical prime ends in H1: by employing collaredness (Observation 3.3), via the
finite connectedness at the boundary (Lemma 4.1) and in Observation 5.2. We show
the Koebe theorem providing conditions which imply that a quasiconformal mapping
has arcwise limits along all end-cuts in domains finitely connected at the boundary.

Theorem 1.3. (The Koebe theorem in H1) Let f : Ω → Ω0 be a quasiconformal
map between a domain Ω ⊂ H1 finitely connected at the boundary and a mod-
uniform domain Ω0 ⊂ H1. Then f has arcwise limits along all end-cuts of Ω.

This result corresponds to the classical observation for conformal mappings and
generalizes similar result in R

n due to Näkki [57, Theorem 7.2]. We then prove a
version of the Lindelöf theorem relating the principal points of prime ends to cluster
sets of mappings along end-cuts (see the appropriate definitions in Section 5).

Theorem 1.4. (The Lindelöf theorem in H1) Let f be a bounded quasiconformal
mapping of a ball B ⊂ H1 onto a domain Ω0 ⊂ H1 with the property that

lim
r→0

diamH1

(

f(∂B(x0, r) ∩ B)
)

= 0 for all x0 ∈ ∂B.

Then for all x0 ∈ ∂B it holds that for every angular end-cut γ of B from x0 we have

Cγ(f, x0) = Π(f(Ex0

k )).

The proof of this result requires developing some new observations and illustrates
differences between the Euclidean and the Heisenberg settings. The corresponding
results in R

n are due to Gehring [31, Theorem 6], Näkki [57, Theorem 7.4] and
Vuorinen [74, Section 3]. Finally, we show the following variant of the Tsuji theorem
on the Sobolev capacities of sets of arcwise limits.

Theorem 1.5. (The Tsuji theorem in H1) Let f be a quasiconformal mapping
of a ball B = BR ⊂ H1 of radius R such that f(B) is a mod-uniform domain (cf
Definition 4.1) and let F : B → f(B) ∪ Af be an arcwise extension of f . If Af is
compact and the Sobolev 4-capacity C4(Af) = 0, then C ′

4(F
−1(Af)) = 0.

By C ′
4 we denote the Sobolev 4-capacity considered with respect to ball B (see

Section 5 for details of definitions). The main reason to employ the capacity C ′
4 in

the proof of Theorem 1.5, is that we face once again the lack of some techniques
available in R

n, namely the modulus symmetry property.

Acknowledgements. The authors would like to thank the referees for their careful
reading of our manuscript and valuable comments which helped us to improve our
work significantly.

2. Preliminaries

In this section we recall basic definitions and properties of the Heisenberg group
H1, including a brief discussion on curves and their lengths, the Heisenberg and
the sub-Riemannian metrics. Moreover, we recall notions of the horizontal Sobolev
spaces and quasiregular and quasiconformal mappings in H1. Further discussion,
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including the definition and properties of the modulus of curve families, is presented
in the Appendix.

2.1. The Heisenberg group H1. The Heisenberg group H1 is often presented
using coordinates (z, t) where z = x+ iy ∈ C, t ∈ R with multiplication defined by

(z1, t1)(z2, t2) = (z1 + z2, t1 + t2 + 2 Im (z1z̄2))

= (x1 + x2, y1 + y2, t1 + t2 + 2(x2y1 − x1y2)).

It follows that (z, t)−1 = (−z,−t), and a natural basis for the left invariant vector
fields is given by the following vector fields

X̃ =
∂

∂x
+ 2y

∂

∂t
, Ỹ =

∂

∂y
− 2x

∂

∂t
and T̃ =

∂

∂t
,

where [X̃, Ỹ ] = −4T̃ . The horizontal bundle is given pointwise by Hp = span{X̃(p),

Ỹ (p)} and a curve γ : I → H1 is horizontal if for almost all t0 ∈ I, γ′(t0) exists and
belongs to Hγ(t0).

The pseudonorm given by

||(z, t)|| = (|z|4 + t2)1/4

gives rise to a left invariant distance defined by dH1
(p, q) = ‖p−1q‖ which is called

the Heisenberg distance. More explicitly we have

dH1
((z1, t1), (z2, t2)) = ||(−z1,−t1)(z2, t2)||

= ||(z2 − z1, t2 − t1 − 2Im(z1z̄2))||
= (|z2 − z1|4 + (t2 − t1 − 2Im(z1z̄2))

2)1/4,

and we use the notation τ(z0,t0) to denote the isometric map (z, t) → (z0, t0)(z, t),
called the left-translation (in (z0, t0)).

A dilation by r ∈ R is defined by δr(z, t) = (rz, r2t), indeed dH1
(δr(p), δr(q)) =

|r|dH1
(p, q). The left invariant Haar measure λ is simply the 3-dimensional Lebesgue

measure on H1 and δ∗rdλ = r4dλ. It follows that the Hausdorff dimension of the
metric measure space (H1, dH1

, λ) is Q = 4 and the space is Q-Ahlfors regular, i.e.,
there exists a positive constant c such that for all balls B with radius r we have

1

c
rQ ≤ HQ(B) ≤ crQ,(1)

where HQ denotes the Q-dimensional Hausdorff measure induced by dH1
.

Definition 2.1. A Q-regular metric measure space will be a triple (X, d, µ)
satisfying (1).

We note that Q-regularity implies that the metric space (X, d) has Hausdorff
dimension Q and µ is a constant multiple of the Q-dimensional Hausdorff measure
induced by d, see [67].

Examples are when X is a Carnot group with sub-Riemannian distance ds and
Haar measure. Indeed, the Haar measure is a multiple of Lebesgue measure which is
a multiple of the Q-dimensional Hausdorff measure induced by ds. We can replace
ds with any equivalent metric. On H1 in particular the measure H4 is a constant
multiple of 3-dimensional Lebesgue measure, an inequality similar to (1) is valid with
H4 replaced by λ.

2.2. Rectifiable curves. A curve γ in H1 is a continuous map γ : I → H1

where I is an open or closed interval. If I = [a, b] then the Heisenberg length of γ is
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given by

l(γ) = sup

n
∑

i=1

dH1
(γ(ti), γ(ti+1)),(2)

where the supremum is over all finite sequences a = t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1 = b. If
I is not closed then

l(γ) = sup l(γ|J)
where the supremum is over all closed subintervals J ⊂ I. If l(γ) < ∞ we say that
γ is rectifiable.

A curve γ : I → H1 is locally rectifiable if each subcurve γ|[α,β] is rectifiable for
all closed intervals [α, β] ⊆ I. For example the horizontal curve γ : (−1, 1) → H1

defined by γ(s) = (x(s) + iy(s), t(s)) where

x(s) + iy(s) = s sin(1/s) + is cos(1/s) and t(s) = −2s(3)

is not locally rectifiable since any subcurve γ(s)|[α,β] such that 0 ∈ [α, β] is not
rectifiable, see (4) below. Conversely, the curve γ|(0,1) is locally rectifiable but not
rectifiable.

l(γ|[α,β]) =
ˆ β

α

√

ẋ(s)2 + ẏ(s)2 =

ˆ β

α

√

1 +
1

s2
ds.(4)

When α = 0 the integral diverges, since
ˆ β

0

√

1 +
1

s2
ds = lim

t→∞

ˆ t

1/β

1

u

√

1 +
1

u2
du > lim

t→∞

ˆ t

1/β

1

u
du = ∞.

The following theorem is proved in exactly the same way as Theorem 3.2 in [68] with
the Euclidean metric replaced by the Heisenberg distance and so we omit the proof.

Theorem 2.1. If γ : (a, b) → H1 is rectifiable then it has a unique extension
γ∗ : [a, b] → H1 such that l(γ∗) = l(γ).

For each rectifiable curve γ of a closed interval there is a unique arc length
parametrization of γ arising from the arc length function Sγ : [a, b] → [0, l(γ)] given
by Sγ(t) = l(γ|[a,t]). In particular there is a unique 1-Lipschitz map γ̄ : [0, l(γ)] → H1

called the arc length parametrization such that γ(t) = γ̄ ◦ Sγ(t). The arc length
parametrization facilitates the definition of the line integral of a nonnegative Borel
function ̺ : H1 → [0,∞] as follows:

ˆ

γ

̺ dl :=

ˆ l(γ)

0

̺ ◦ γ̄(s) ds.(5)

If I is open, then we set
ˆ

γ

̺ dl := sup
γ′

ˆ

γ′

̺ dl,

where the supremum is over all closed subcurves γ′ of γ.
By Pansu [63], Lipschitz mappings between open subsets of Carnot groups are

Pansu differentiable almost everywhere. For locally rectifiable curves this means that
lims→0 δ1/s ◦ τ−1

γ̄(s0)
◦ γ̄(s0 + s) exists for almost all s0 which implies that γ̄′(s0) exists

and is horizontal, moreover the same is true for γ′(s0). If γ : [a, b] → H is a horizontal
curve, then the sub-Riemannian length of γ is given by the integral

lS(γ) =

ˆ b

a

√

ẋ(s)2 + ẏ(s)2 ds
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and l(γ) = lS(γ) (see Koranýi [45]). Moreover, the change of variable s = Sγ(t) in
(5) shows that

ˆ

γ

̺ dl =

ˆ b

a

̺(γ(s))|γ′(s)| ds

where |γ′(s)| =
√

ẋ(s)2 + ẏ(s)2.
The sub-Riemannian distance ds(p1, p2) is defined as the infimum of sub-Rie-

mannian lengths of all horizontal curves joining points p1 and p2. The Heisenberg
metric and the sub-Riemannian metric are equivalent, to be precise

1√
π
ds(p1, p2) ≤ dH1

(p1, p2) ≤ ds(p1, p2),

see Bellaïche [9].

2.3. Horizontal Sobolev space on H1, contact, quasiregular and quasi-

conformal mappings on H1. Below we recall some basic definitions in the theory
of the Sobolev spaces in H1 and contact mappings, and apply them to define the main
classes of mappings we study in the paper, namely quasiregular and quasiconformal
mappings.

Definition 2.2. Let U ⊂ H1 be an open subset of H1. For 1 ≤ p < ∞, we
say that a function u : U → R belongs to the horizontal Sobolev space HW 1,p(U) if

u ∈ Lp(U) and the horizontal derivatives X̃u and Ỹ u exist in the distributional sense
and are represented by elements of Lp(U). The space HW 1,p(U) is a Banach space
with respect to the norm

‖u‖HW1,p(U) = ‖u‖Lp(U) + ‖(X̃u, Ỹ u)‖Lp(U).

In the similar way we define the local spaces HW 1,p
loc
(U). We define space HW 1,p

0 (U)
as a closure of C∞

0 (U) in HW 1,p(U).

The horizontal gradient ∇0u of u ∈ HW 1,p
loc
(U) is given by the equation

∇0u = (X̃u)X̃ + (Ỹ u)Ỹ .

A contact form on H1 is given by ω = dt + 2(x dy − y dx), in particular ω ∧ dω is a
volume form and Hp = kerωp.

Definition 2.3. Let Ω,Ω′ ⊂ H1 be domains in H1. We say that a diffeomor-
phism f : Ω → Ω′ is a contact transformation if it preserves the contact structure,
i.e.

f ∗ω = Λω,

where Λ: Ω → R and Λ 6= 0 in Ω.

Note that the definition implies that f∗ preserves the horizontal bundle, more-
over we can weaken the regularity assumption to HW 1,Q

loc
(Ω,Ω′) and simply require

statements to hold λ-a.e. The contact maps that will be of relevance in our work
here will be those which are quasiconformal.

Quasiconformality has a number of quantitatively equivalent definitions, although
the distortion factor need not be the same for each definition. We begin with the
metric definition. Let f : Ω → Ω′ be a homeomorphism where Ω and Ω′ are domains
in H1, and let the distortion function of f be given by

Hf (p1, r) =
sup{d(f(p1), f(p2)) : d(p1, p2) ≤ r}
inf{d(f(p1), f(p2)) : d(p1, p2) ≥ r} .
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Definition 2.4. Let Ω,Ω′ be domains in H1. A homeomorphism f : Ω → Ω′ is
quasiconformal, if

H̃f(q) := lim sup
r→0

Hf(q, r)

is bounded on Ω.

It was shown by Mostow that a quasiconformal map on a domain in H
1 is abso-

lutely continuous on lines (ACL), see the discussion in Korányi–Reimann [47]. This
property is defined analogously as the ACL property for mappings on open subsets of
R

n, but in terms of the fibrations given by the left invariant horizontal vector fields
X̃ and Ỹ instead of lines parallel to the coordinate axes.

Quasiconformal maps are Pansu differentiable almost everywhere, see [63], which

implies that they are HW 1,Q
loc

(Ω,Ω′) regular contact maps. We recall that the Pansu
differential Df(p1) is the automorphism of H1 defined as

Df(p1) p2 := lim
t→0

δ−1
t ◦ τ−1

f(p1)
◦ f ◦ τp1 ◦ δt(p2),

where p1, p2 ∈ H1 and δt(p2) stands for the dilation by t at p2, while τp1 denotes the
left-translation by p1.

It follows that quasiconformality can be expressed analytically by the requirement
that the map is ACL, Pansu differentiable a.e. and there exists 1 ≤ Ka < ∞ such
that

‖Hf∗‖4∞ ≤ Ka det f∗

where

‖Hf∗‖∞ = max{|f∗(V )| : V ∈ Hq, |V | =
√

dx(V )2 + dy(V )2 = 1}
and the subscript a indicates analytic. We note that Ka-analytically quasiconfor-
mal is equivalent to metrically quasiconformal with ess supΩ H̃f =

√
Ka, however

in practice we will not need this distinction and so we will simply use the term
K-quasiconformal.

As pointed out above, quasiconformal mappings are absolutely continuous on
almost all locally rectifiable curves in the sense that the family Γf consisting of
rectifiable curves whose image under a quasiconformal map f is not rectifiable satisfies
Mod4(Γf) = 0 (see Appendix for definitions and some properties of the modulus of
curve families). See Theorem 9.8 in Heinonen–Koskela–Shanmugalingma–Tyson [39]
for a proof in the setting of spaces with locally bounded geometry. Stated in terms
specific to the Heisenberg setting we have:

Theorem 2.2. (Theorem 18 in Balogh–Fässler–Platis [7]) If f : Ω → Ω′ is a
quasiconformal map between two domains in H1 and Γ is a curve family in Ω, then

1

Ka
Mod4(Γ) ≤ Mod4(fΓ) ≤ KaMod4(Γ).

We remark that inequalities in Theorem 2.2 are also a sufficient condition for
quasiconformality which is usually referred to as the geometric definition of quasi-
conformality.

In Capogna–Cowling [15], the authors prove that 1-quasiconformal maps (1-qc for
short) are C∞ and, consequently from Koranýi–Reimann [46], the following Liouville
theorem holds: an orientation preserving 1-qc map of a domain Ω ⊆ H1 is given by
the action of an element in SU(1, 2). In particular, a 1-qc map is always a composition
of the following five basic types of 1-qc maps:

(1) Left translation (isometry),
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(2) Dilation (1-qc),
(3) Rotation: Rθ(z, t) = (eiθz, t) (isometry),

(4) Inversion in the unit sphere: J(z, t) = −1
|z|4+t2

(z(|z|2 + it), t) =
(

z
it−|z|2

, −t
|z|4+t2

)

(1-qc),
(5) Reflection: S(z, t) = (z,−t) (isometry).

Note that the maps 1 to 4 generate SU(1, 2).
We remark that via the Cayley transformation, the inversion arises from the fact

that the one point compactification of H1 can be realised as the unit sphere in C
2, see

[46]. The inversion facilitates the definition of stereographic projection of any sphere
in H1 to the complex plane. Using translations and dilations, the given sphere is
mapped to the sphere with center (0,−3/2) and radius 1/

√
2 and then inverted in

the unit sphere centered at (0,−1), i.e., apply

τ(0,−1) ◦ J ◦ τ(0,1).(6)

We note that, unlike the case of Rn, we do not have the freedom to normalize, since
left translations do not preserve the complex plane. More explicitly, in the Euclidean
case we can post compose the stereographic projection with a translation to produce
a conformal map with the property that a given point on the sphere is mapped to a
chosen point in the complex plane, whereas in the Heisenberg group this not possible,
since left translations do not preserve the complex plane.

Since the 1-qc maps are given by the action of a finite dimensional Lie group,
we say that H1 is 1-qc rigid. In such cases, a Carathéodory extension theorem for
1-qc mappings is somewhat trivial. Similarly, if we are going to consider a non-
trivial Carathéodory extension theorem for quasiconformal maps, we at least need to
avoid Carnot groups that are contact rigid, i.e., the contact maps are given by the
actions of a finite dimensional Lie group, see [62]. Following Euclidean space, the
most nonrigid of all Carnot groups is H1. Indeed, the pseudo group of local contact
mappings is large and so a reasonably interesting theory can be expected. In fact,
in [46] the authors produce an infinite dimensional family of quasiconformal maps as
flows of vector fields as well as developing a Beltrami type equation. However, there
is no existence theorem for this equation. On the other hand, in Balogh [5], it is
shown that quasiconformal maps exist on H1 that are not bi-Lipschitz. Furthermore,
quasiconformal mappings which are not global arise from the winding maps discussed
by Balogh–Fässler–Peltonen [6].

3. Prime ends in the Heisenberg group H1

In this section we give basic definitions of the prime ends theory in the sub-
Riemannian setting. First, following the modulus approach of Näkki, we define prime
ends and a topology on the prime end boundary. Using prime ends, we show the
first extension result for quasiconformal mappings, see Theorem 1.1. The remaining
part of this section is devoted to study the so-called collared domains. Näkki [57]
and Väisälä [68] defined collared domains in order to study extension properties and
the prime end boundary. It turns out that the structure of the Heisenberg group
does not allow us to follow their approach. Namely, the Loewner property of col-
laring domains, crucial for the properties of prime ends, need not hold for natural
counterparts of collaring domains in H1. Therefore, we need a new definition, in
particular we impose an additional uniformity assumption on the collaring neighbor-
hood. See details in Section 3.3 and Section 3.2 for Loewner and uniform domains in
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the Heisenberg setting. Using collared domains, we obtain another extension result
for quasiconformal mappings, namely Theorem 1.2.

3.1. Prime ends according to Näkki. Näkki in [57] introduced a theory of
prime ends for domains in R

n based on the notion of n-modulus. We follow his idea
and develop the appropriate theory in the Heisenberg setting based on the notion of
Q-modulus where Q = 4 is the Hausdorff dimension of H1.

Definition 3.1. (cf. Section 3.1 in [57]) A connected subset E of a domain
Ω ⊂ H1 is called a cross-set if:

(1) E is relatively closed in Ω,
(2) E ∩ ∂Ω 6= ∅,
(3) Ω \ E consists of two components whose boundaries intersect ∂Ω.

Definition 3.2. A collection {Ek}∞k=1 of cross-sets is called a chain if Ek sepa-
rates Ek−1 and Ek+1 within Ω for all k. We denote the component of Ω\Ek containing
Ek+1 by D(Ek) and define an impression of a chain {Ek}∞k=1 as follows

I[Ek] :=

∞
⋂

k=1

D(Ek).

The definition immediately implies that the impression of a chain is either a
continuum or a point. (We remark that by a continuum we always mean a nonde-
generate continuum, i.e. a connected compact set containing at least two points.)
The set of all chains is in some sense too large so the following additional conditions
are imposed to cut it down.

Recall that by Mod4(E, F,Ω) we denote a 4-modulus of a curve family of rectifi-
able curves γ with one endpoint in E and another in F and γ \ (E ∪F ) ⊂ Ω (cf. the
discussion before Lemma A.1 and also Lemma 5.1).

Definition 3.3. A chain is a prime chain if:

(a) Mod4(Ek+1, Ek,Ω) < ∞,
(b) For any continuum F ⊂ Ω we have that

lim
k→∞

Mod4(Ek, F,Ω) = 0.

In view of Theorem 2.2, conditions (a) and (b) are quasiconformally invariant,
and under certain restrictions on Ω, imply stronger separation of the cross sets as
well as control over their diameter. In particular, we will discuss domains Ω so that
(a) implies distH1

(Ek, Ek+1) > 0 and (b) implies diamH1
(Ek) → 0, cf. Lemma 3.3.

It is crucial for our further work to know that the impression of a (prime) chain
is a subset of the topological boundary ∂Ω. This follows from Lemma A.10 in [2]
together with Part (b) of Definition 3.3. Lemma A.10 is formulated for the so-called
acceptable sets (cf. Definition 4.2 below) but for the sake of convenience we will state
it without appealing to the definition of prime ends as in [2] and specialize to the
setting of H1. This is due to the fact that H1 satisfies the main assumptions of [2],
that is H1 is a complete metric measure space with a doubling measure, supporting
a (1, 4)-Poincaré inequality.

Lemma 3.1. (Lemma A.10 in [2]) Let {Dk}∞k=1 be a sequence of open bounded
connected sets Dk ( Ω such that Dk ∩ ∂Ω 6= ∅ satisfying Dk+1 ∩ Ω ⊂ Dk for each k.
If limk→∞Mod4(Dk, B,Ω) = 0 for some ball B ⊂ Ω \D1, then I =

⋂∞
k=1Dk ⊂ ∂Ω.
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Let now {Ek}∞k=1 be a (prime) chain in a domain Ω ⊂ H1. Notice that sets
D(Ek), as in Definition 3.2, for all k satisfy assumptions of Lemma 3.1. More-
over, Γ(Ek, F,Ω) < Γ(D(Ek), F,Ω) for all k sufficiently large, and thus, Part 5 of
Lemma A.1 implies that property (b) of Definition 3.3 holds for {D(Ek)}∞k=1 and
any continuum F ⊂ Ω as well. If B is a ball with B ⊂ Ω \ D(E1), then F = B
is a continuum in Ω. Furthermore, Mod4(D(Ek), B,Ω) ≤ Mod4(Ek, B,Ω). Thus,

Lemma 3.1 implies that I :=
⋂∞

k=1D(Ek) ⊂ ∂Ω.
It turns out that one can define an equivalence relation on the set of prime chains

in a given domain. This gives rise to one of the main notions of our work, the so-called
prime ends.

Definition 3.4. We say that a chain {Fk}∞k=1 divides the chain {Ek}∞k=1 if each
domain D(Ek) contains all but a finite number of the cross-sets Fl. If also the opposite
holds, that is each domain D(Fl) contains all but a finite number of the cross-sets
Ek, then we say that chains {Ek}∞k=1 and {Fk}∞k=1 are equivalent. The equivalence
classes of prime chains are called prime ends of Ω and the set of all prime ends is
denoted ∂PΩ and called the prime end boundary. We use the notation [Ek] to denote
the prime end defined by the prime chain {Ek}∞k=1.

If [Ek] ∈ ∂PΩ, then the impression of any representative of [Ek] is the same, and
so the impression I[Ek] of [Ek] is well defined. By Theorem 2.2, a quasiconformal
map f : Ω → Ω′, naturally extends to the prime ends by setting f([Ek]) := [f(Ek)],
see also Theorem 1.1.

We introduce a topology on the prime end boundary of a domain in H1. A similar
construction in R

n is presented in [57], see also [2, Section 8] for a discussion in metric
spaces. We then apply this topology in studying the extension of a quasiconformal
map to a map between the prime ends closures of the underlying domains.

Definition 3.5. A topology on Ω∪∂PΩ is given by extending the relative topol-
ogy of Ω by defining neighborhoods of prime ends as follows: A neighborhood of a
prime end [Ek] ∈ ∂PΩ has the form U ∪ UP where

(a) U ⊂ Ω is open,
(b) ∂U ∩ ∂Ω 6= ∅,
(c) U ∪ (∂U ∩ ∂Ω) is relatively open,
(d) D(Ek) ⊂ U for k sufficiently large,
(e) UP = {[Fl] ∈ ∂PΩ: D(Fl) ⊂ U for all sufficiently large}.
We comment that another definition of a topology can be given if one defines

the convergence of points and prime ends to a prime end. The above definition is
similar in construction to the one given in Proposition 8.5 in [2], however, there, the
constructed topology fails to be Hausdorff, cf. Example 8.9 in [2]. However, notice
that since cross-sets are assumed to be connected, one cannot consider boundaries of
acceptable sets (cf. Definitinion 4.1 in [2]) as in that example to be cross-sets. The
topology as in Definition 3.5 is Hausdorff at least for collared domains (according to
the Definition 3.8) or for more general domains finitely connected at the boundary.
This statement follows from Observation 3.3 and Lemma 4.1, respectively. In both
cases every boundary point is the impression of a prime end. Therefore, since interior
points of Ω are separated and points in the interior of Ω are separated from points
in the prime end boundary ∂PΩ = ∂SPΩ, it remains to see that any pair of distinct
points in ∂SPΩ are separated. To this end let [Ej ], [Fk] ∈ ∂SPΩ be distinct prime
ends, then it follows that there exists n ∈ N such that D(Ej) ∩ D(Fk) = ∅ for all
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j, k ≥ n. If U = D(En) and V = D(Fn), then (U ∪ UP ) ∩ (V ∪ VP ) = ∅, hence [Ej ]
and [Fk] are separated and the topology is indeed Hausdorff as claimed.

An important question to consider is: when does Ω ∪ ∂PΩ together with the
topology described above become a compact space? Obviously, it is necessary that
Ω is relatively compact in the metric topology of H1 but delicate issues can arise
with regards to ∂PΩ. In particular, if Ω is relatively compact and {Uα} is a covering
of Ω by relatively open sets, then we can select a finite collection {Uβ} which covers
Ω and write {Uβ} = {Uβ0} ∪ {Uβ1} where each element of the collection {Uβ1}
satisfies ∂Uβ1 ∩ ∂Ω 6= ∅. Then, one considers if {Uβ0} ∪ {Uβ1 ∪ Uβ1

P } is a cover of

Ω∪ ∂PΩ which requires that every prime end of Ω belongs to Uβ1

P for some β1. If an
underlying domain is finitely connected at the boundary and so every boundary point
is the impression of a prime end, then this requirement is fulfilled (see the discussion
below, in particular Observation 3.3 and Lemma 4.1). In the context of extension
of quasiconformal mappings, the domains of interest, the so-called collared domains,
will be seen to have the property that all the prime ends have singleton impressions
(see Section 3.3).

Example 1. The following variant of the topologist’s comb is an example of
a domain which fails to be finitely conntected at the boundary and its prime end
boundary is noncompact, see also Example 5.1 and the presentation in Sections 7–10
of [2], and Björn [10].

Let Lk = (0, 1/2]×{1/2k}× (0, 1) and let Ω = (0, 1)3 \⋃∞
k=1Lk be a topologist’s

comb in H1. Define

Ek =

(

{1/2+1/2k+1}× (0, 1/2k]× (0, 1)

)

∪
(

(1/2, 1/2+1/2k+1)×{1/2k}× (0, 1)

)

.

Then {Ek}∞k=1 is a chain in Ω with impression I[Ek] = [0, 1/2]×{0}× [0, 1]. However,
{Ek}∞k=1 is not a prime chain. It satisfies part (a) of Definition 3.3 but fails part (b).
Indeed, since Ω has finite measure and distH1

(Ek+1, Ek) > 0 one has a positive lower
bound for the length of curves in the family Γ(Ek+1, Ek,Ω). Then, the standard
estimate provides an upper bound for Mod4(Ek+1, Ek,Ω), see e.g. [39, Lemma 5.3.1],
showing that Definition 3.3(a) holds for all k.

Let Dk denote domains as in Definition 3.2 and B be a ball in Ω \D1. Then,

Mod4(Ek, B,Ω) ≥ Mod4(Dk, B,Ω) > 0

for all large enough k and the same holds for the limit, when k → ∞. Indeed, the
positivity of the modulus is a direct consequence of the fact that all Dk contain a
copy of a line segement F := (0, 1) whose Sobolev capacity C4(F ) > 0. Hence, by
Lemma 2.24 in [11], also C ′

4(F ) > 0 and C ′
4(Dk) > 0 (cf. (16) in Section 5). Thus,

the modulus of curves in Ω passing through Dk is positive (Proposition 1.48 in [11]).
By a variant of Theorem 3.1 in [56] we get that Mod4(Dk, B,Ω) > 0 is equivalent to
Mod4(Dk, B

′,Ω) > 0 for all balls B′ ⊂ Ω \ D1 (cf. also Lemma A.11 in [2]). If the
latter failed, then also the modulus of curves in Ω passing through Dk would be zero.

Therefore, [Ek] is a not a prime end in Ω. Similar reasoning shows that there is
no prime end associated with a set [0, 1/2]× {0} × [0, 1] ⊂ ∂Ω. However, any other
point of ∂Ω is an impression of a singleton prime end.

Below we present the proof of our first extension result, Theorem 1.1 allowing us
to extend a quasiconformal mapping between domains in H1 to a homeomorphism
between the prime ends closures.
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Proof of Theorem 1.1. The map F is well defined. Indeed, for p ∈ Ω this follows
from f being a homeomorphism. For p = [Ek] ∈ ∂PΩ, the discussion following
Definition 3.4 gives us that the value of F ([Ek]) is independent on the representative
of [Ek].

The extended map is a bijection. If [F ′
l ] ∈ ∂PΩ

′ and Fl = f−1(F ′
l ) for all l, then

F ([Fl]) = [F ′
l ] and that {Fl}∞l=1 defines a (prime) chain and, thus, a prime end in ∂PΩ,

follows from f being a homeomorphism and Theorem 2.2. If F ([Ek]) = F ([Fl]), then
by the definition of F , it holds that [f(Ek)] = [f(Fl)], which again by Theorem 2.2,
implies that [Ek] = [Fl].

The map F is continuous. If V ∪VP is a neighborhood contained in Ω′∪∂PΩ′ such
that f([Ek]) ∈ VP for some [Ek] ∈ ∂PΩ, then D(f(Ek)) ⊂ V for k sufficiently large,
and since D(f(Ek)) = f(D(Ek)), we have that D(Ek) ⊂ f−1(V ). It follows that the
preimage F−1(V ∪VP ) is contained in f−1(V )∪f−1(V )P . Moreover, if [Fl] ∈ f−1(V )P
then D(Fl) ⊂ f−1(V ) for l sufficiently large and f(D(Fl)) = D(f(Fl)) ⊂ V . Hence
[f(Fl)] ∈ VP and we conclude that

F−1(V ∪ VP ) = f−1(V ) ∪ f−1(V )P .

It follows that the preimage F−1(V ∪VP ) is open, thus implying that F is continuous.
The extended map is open. Let U ∪ UP be a neighborhood in Ω ∪ ∂PΩ and

let [Ek] ∈ UP . It follows that F ([Ek]) ∈ f(U)P since f(D(Ek)) = D(f(Ek)).
Furthermore, if [Fl] ∈ f(U)P then f−1(D(Fl)) ⊂ U for l sufficiently large. Hence
F (U ∪ UP ) = f(U) ∪ f(U)P . �

We illustrate the above theorem with the following examples. At present, even
the classical theory on boundary behavior of quasiconformal mappings in Euclidean
spaces is not replete with explicit examples of QC-mappings between the two given
domains, e.g. see Chapter 17 in Väisälä [68] and references therein for R

n, see also
Meyer [52] for some examples in R

3. This circumstance is due to the lack of the
measurable Riemann mapping theorem in R

n for n ≥ 3 and in the setting of the
Heisenberg group H1.

In the example below we show a class of mappings with no extensions to home-
omorphisms between the topological closures but with extensions to the prime ends
boundaries as in Theorem 1.1. Then, in the remark we discuss the subtleties related
to the quasiconformal mappings on domains with inaccessible boundary points.

Example 2. (Winding map) A significant family of nontrivial quasiconformal ex-
tension problems arises from the winding maps studied by Balogh–Fässler–Peltonen
in [6]. In particular, their work leads to examples where we have a quasiconformal
map of a domain Ω such that ∂Ω contains points at which f does not extend to a
homeomorphism. In such cases a homeomorphic extension to a prime end compact-
ification is all that is available and thus in a sense essential.

We give a brief description of the aforementioned examples and refer the reader
to [6] for the detailed analysis. Let us recall that the cylindrical coordinate projec-
tion Φ: [0,∞) × R × R → H1 is defined by Φ(r, θ, t) = (reiθ, t). The restriction
Φ|[0,∞)×(−π,π]×R is injective and is denoted Φ0. It follows from the definition that

Φ−1
0 (z, t) = (|z|, arg(z), t),

where the argument is chosen so that arg(z) ∈ (−π, π].

The winding map f̃k : [0,∞) × R × R → [0,∞) × R × R, of degree k ∈ Z, is
given by

f̃k(r, θ, t) = (r, kθ, kt).
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By virtue of the fact that k is an integer, we can define a function fk : H1 → H1 by
setting

fk(z, t) = Φ ◦ f̃k ◦ Φ−1
0 (z, t) = (|z|1−kzk, kt).(7)

Note that the restriction of fk to the domain

Ωk = {(z, t) : z 6= 0, arg(z) ∈ (−π/k, π/k)}
is a diffeomorphism. However, fk is not invertible at any point on the t-axis. Fur-
thermore, as shown in [6], fk is K-quaisconformal on Ωk with K = k2 according to
the analytic definition of quasiconformality.

Let r > 0, T > 0 and let us define the following bounded subdomain of Ωk:

Ωk,r,T = {(z, t) : 0 < |z| < r, arg(z) ∈ (−π/k, π/k), |t| < T}.
Then, fk|Ωk,r,T

is quasiconformal and

Ω′
k,r,T = fk(Ωk,r,T ) = {(z, t) : 0 < |z| < r, arg(z) ∈ (−π, π), |t| < T}.

We denote fk(Ωk,r,T ) by Ω′
k,r,T .

Note that fk|Ωk,r,T
is quasiconformal, and has a continuous extension to Ωk,r,T ∪ t-

axis which is injective. However on the faces given by arg(z) = ±π/k the continuous
extension fails to be injective and, thus, cannot be homeomorphic. Nevertheless,
Theorem 1.1 applied with f = fk|Ωk,r,T

and Ω = Ωk,r,T , Ω′ = Ω′
k,r,T gives the existence

of a homeomorphism between Ωk,r,T ∪ ∂PΩk,r,T and Ω′
k,r,T ∪ ∂PΩ

′
k,r,T . In particular,

all prime ends are singletons and each point p in the set

{(z, t) ∈ ∂Ω′
k,r,T : arg(z) = −π or arg(z) = π} ∪ t-axis

corresponds to two prime ends with p as their impression.
We remark that another example with a bounded domain is given by

fk ◦ τ−1
(1,0) ◦ J : J ◦ τ(1,0)(Ωk) → Ω′.

Remark 1. (Domains with inaccessible boundary points) In the planar setting
one studies several examples of simply-connected domains with inaccessible boundary
points and such domains are known to be conformally, and thus quasiconformally,
equivalent to a unit disc via the Riemann mapping theorem. Consequently, the clas-
sical theory of prime ends due to Carathéodory applies (see e.g. Sections 3 and 5
in [2], Chapter 9 in Collingwood–Lohwater [25]). Hence it follows that in the pla-
nar case, one has at hand a number of explicit examples to illustrate the boundary
behavior of quasiconformal maps. The situation changes in the setting of higher
dimensional Euclidean spaces and for the Heisenberg groups, where a viable coun-
terpart of the Riemann mapping theorem is still to be discovered. This leads to
several problems when studying quasiconformal mappings between domains without
inaccessible boundary points, e.g., a ball and domains with inaccessible boundary
points.

A counterpart of a topologist’s comb in H1 is possible however constructing a
nonextendable quasiconformal map of the comb presents challenges which appear
to be difficult to overcome. At the very least, the comb must be the domain of a
contact map which does not extend homeomorphically to the topological boundary.
A potential candidate for such a map is the prolongation (in the jet space sense) of
the Riemann mapping of the two dimensional comb to the unit disc, see Chapter 4
in Olver [60] or [76] for details on prolongation in jet spaces. Whilst it is always
the case that the prolongation is locally diffeomorphic and contact on its domain of
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definition, it is not necessarily injective which is already a nontrivial obstacle. To
address the quasiconformality of the prolongation is equally if not more challenging.

3.2. The Loewner condition and uniform domains. Let (X, d, µ) be a
rectifiably connected metric measure space of Hausdorff dimension Q, equipped with
a locally finite Borel regular measure µ. Following Definition 8.1 in Chapter 8 of
Heinonen [34], we define a Loewner function ΨX : (0,∞) → [0,∞) by the formula

(8) ΨX(t) := inf{ModQΓ(E, F,X) : ∆(E, F ) ≤ t},
where E, F ⊂ X are nondegenerate disjoint continua in X and

∆(E, F ) =
dist(E, F )

min{diamE, diamF}
denotes the relative distance between sets E and F . We note that by definition ΨX

is decreasing.

Definition 3.6. A rectifiably connected metric measure space (X, d, µ) is said
to be Q-Loewner if ΨX(t) > 0 for all t > 0.

In general, if a metric measure space (X, d, µ) satisfies some connectivity and
volume growth conditions, then it is Q-Loewner if and only if it supports a weak
(1, Q)-Poincaré inequality (see Chapter 9 in [34]). A Carnot group G equipped with
the sub-Riemannian metric ds and Lebesgue measure is such a metric measure space,
and in fact a Q-Loewner space where Q is the Hausdorff dimension of (G, ds) (see
Proposition 11.17 in Hajłasz–Koskela [33]).

From the point of view of our studies, where we use the Heisenberg metric in
preference to the sub-Riemannian, we have the following result:

Theorem 3.1. (Proposition 14.2.9 in Heinonen–Koskela–Shanmugalingam–Ty-
son [39]) The metric measure space (H1, dH1

, λ) is 4-Loewner.

We remark that the previous theorem is also a consequence of Theorem 9.27 in
[34].

Next, we recall the definition of uniform domains. Such domains play an im-
portant role in analysis and PDEs, see Heinonen [34], Martio–Sarvas [50], Näkki–
Väisälä [59] and Väisälä [69] for more information on uniform domains. Examples of
uniform domains encompass bounded Lipschitz domains, quasidisks including some
domains with fractal boundaries such as the von Koch snowflake, see also Capogna–
Garofalo [17], Capogna–Tang [19], Monti–Morbidelli [53] for further examples of
uniform domains in the setting of Heisenberg groups. In particular, Theorem 1.3 in
[53] states that every C1,1 domain in a step 2 homogeneous group is an NTA domain
and thus uniform.

Definition 3.7. A domain Ω ⊂ H1 is called uniform, if there exist two positive
constants α and β, such that each pair of points x, y ∈ Ω can be joined by a rectifiable
curve γ, such that:

(a) l(γ) ≤ βdH1
(x, y),

(b) αmin{l(γxz), l(γyz)} ≤ distH1
(z, ∂Ω) for all z ∈ γ, where γxz (γyz) denote

subarcs of γ joining x and z (y and z).

An important example of uniform domains in H1 is provided by the following
result.

Lemma 3.2. (Corollary 1 in Capogna–Garofalo [17]) Balls in the Heisenberg
metric are uniform domains.
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We note that the class of uniform domains is independent of the choice between
the Heisenberg metric dH1

or the sub-Riemannian metric ds. Indeed, this is clear
once it is observed that the length of a curve in the sub-Riemannian metric is the
same as the length in the Heisenberg metric, and that the two metrics are equiva-
lent. Similarly, the class of quasiconformal mappings is the same regardless of which
metric we use. We can, thus, state the following theorem for the Heisenberg metric
even though in Capogna–Tang [19] it is proved only for the sub-Riemannian metric
(cf. Theorem 2.15 in Martio–Sarvas [50] for the prototypical result in the Euclidean
setting).

Theorem 3.2. (Theorem 3.1 in [19]) Let Ω ⊂ H1 be a uniform domain with
constants α and β. If f : H1 → H1 is a global K-quasiconformal map, then f(Ω) is a
uniform domain with constants α′ and β ′ depending on α, β, K and the homogeneous
dimension Q = 4.

The following theorem uses the concept of a space being locally Q-Loewner which
is somewhat technical in its definition and of no concern anywhere else in the dis-
cussion, so we direct the reader to Bonk–Heinonen–Koskela [14] and Herron [41] for
details rather than provide them here.

Theorem 3.3. (Theorem 6.47 in [14]) An open connected subset Ω of a locally
compact Q-regular Q-Loewner space is locally Q-Loewner. In particular, uniform
subdomains of such spaces are Q-Loewner.

The following consequences of Theorem 3.3 will be of vital importance from the
point of view of the notation of collaredness and prime ends, cf. Definition 3.8.

Theorem 3.4. (Fact 2.12 in [41]) Let Ω be a uniform subdomain of a locally
compact Q-regular Q-Loewner space and let E and F be nondegenerate connected
subsets of Ω with E ∩ F 6= ∅, then ModQ(E, F,Ω) = ∞.

Lemma 3.3. If {Ek} is a prime chain in a uniform subdomain Ω ⊂ H1, then
conditions (a) and (b) in Definition 3.3 are equivalent to the following ones, respec-
tively:

(a) distH1
(Ek, Ek+1) > 0 for k = 1, 2, . . .,

(b) limk→∞ diamH1
(Ek) = 0.

Proof. Property (a) is an immediate consequence of Theorem 3.4. To see that
(b) holds we first note that condition (b) in Definition 3.3, and ∆(Ek, F ) ≤ t0 for
some t0 > 0 and all k, together imply that ΨX(t0) = 0. This contradicts the Loewner
condition, and hence ∆(Ek, F ) → ∞ which in turn implies (b).

For the opposite direction, notice that for any k = 1, 2, . . ., condition distH1
(Ek,

Ek+1) > 0 implies that one can inscribe an annulus intersected with the domain
Ω and apply argument similar to the last estimate in (12) to conclude part (a)
in Definition 3.3. As for the part (b), notice that diamH1

(Ek) → 0, for k → ∞
implies that for any N ≥ 1 it holds that Ek ⊂ B(I[Ek], 1/N) for large enough
k = k(N). From this observation the standard curve family argument gives part (b)
in Definition 3.3. �

3.3. Collared domains. The notion of collared domains in R
n was introduced

by Väisälä, see Definition 17.5 in [68] in the context of the boundary behavior of
quasiconformal mappings, see also Näkki [54, 55, 56]. Moreover, in [57], Näkki em-
ployed collaredness in the studies of prime ends based on the conformal modulus in
Euclidean domains. In this section we introduce collared domains in the setting of
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the Heisenberg groups equipped with the Heisenberg metric (the Korányi metric).
This notion will be subsequently used to develop prime ends theory in H1.

In some sense a collared domain, according to Väisälä’s definition, is a manifold
with boundary, where the coordinate maps of charts containing boundary components
are quasiconformal with target in the closed upper half space. In the spirit of Väisälä
one could consider the following definition which we provide for the sake of discussion,
but which will not be our working definition: a domain Ω ⊂ H1 is said to be locally
quasiconformally collared at x ∈ ∂Ω if there exists a neighborhood U ⊂ H1 of x such
that U ∩Ω is uniform and there exists a homeomorphism h of U ∩Ω onto a half ball

B((x0, 0), r)+ := B((x0, 0), r) ∩ {(z, t) ∈ H1 : t ≥ 0}

such that h(x) = x0 ∈ C and h|U∩Ω is quasiconformal. We call (U, h) a collaring
coordinate and note that U ∩ ∂Ω is mapped onto the open disc B((x0, 0), r)+ ∩C.

Note that this definition differs from Definition 17.5 in [68] in the following ways:
firstly we do not require x0 = 0 due to the restrictions inherent in the stereographic
projection, in particular we cannot follow up with a normalization to x0 = 0 with
left translation, since left multiplication does not stabilize C, and secondly and per-
haps most importantly, we impose the assumption of some local uniformity which is
required so that Lemma 3.3 is applicable. However, there is one major drawback in
this definition, namely, we need to know that half balls in H1 are uniform, which is
difficult to verify since half balls are not mapped to half balls under left translations,
while the definition of a ball is a left translation of the ball at the origin.

Moreover, there is another problem with mimicking [68]. Namely, in Theo-
rem 17.10, and in [57, Lemma 2.3], it is proved that in the Euclidean case, collaring
coordinates satisfy a local Loewner property without assuming local uniformity. How-
ever, their proof relies on estimates involving the modulus of curve families contained
in spheres [68, Section 10], which are not available to us in the Heisenberg setting,
due to the fact that spheres contain very few horizontal curves.

Therefore, we will work with the following alternate definition for collaredness.

Definition 3.8. A domain Ω ⊂ H1 is said to be locally quasiconformally collared
at x ∈ ∂Ω if there exists a uniform subset U ⊆ Ω and a quasiconformal map h : U →
B(0, 1) such that h(U) = B(0, 1) and:

(a) x ∈ ∂U ,

(b) h extends to a map H : U ∪ (∂U ∩ ∂Ω) → B(0, 1), homeomorphic onto its
image and such that H(∂U∩∂Ω) ⊆ ∂B(0, 1) is connected, closed, and contains
H(x) in the interior of ∂B(0, 1) (in the topology of ∂B(0, 1)).

We call (U, h) a collaring coordinate of x.

Definition 3.9. A domain Ω is said to be collared if every boundary point of Ω
is locally quasiconformally collared.

From now on, the term collared domains will refer to domains collared in the
sense of Definitions 3.8 and 3.9.

Example 3. A ball B in H1 is collared. Indeed, since B is a uniform domain,
by Lemma 3.2, we are allowed to take U = B and h = Id in Definition 3.8.

Observation 3.1. Let Ω ⊂ H1 be a bounded uniform domain, such that Ω is the
image of the unit ball B(0, 1) under a quasiconformal mapping f , with a continuous

extension to a map F : B(0, 1) → Ω. Then, Ω is collared.
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Proof. In Definition 3.8 let U := Ω and h := f . The assumptions of Observa-
tion 3.1 imply that F is, in fact, a homeomorphic extension of f . Indeed, since balls
are locally connected at the boundary and by Observation 4.1 a uniform domain is
mod-uniform, then by the Koebe theorem, see Theorem 1.3, mapping f has arcwise
limits along all end-cuts in B(0, 1). Therefore, by Theorem 4 and Example 5 in [1]
(specialized to the setting of H1), and by the comment following [1, Theorem 4], f

has a homeomorphic extension F : B(0, 1) → Ω.
Then (a) in Definition 3.8 holds trivially, while F (∂U ∩∂Ω) = F (∂U) = ∂B(0, 1)

and thus Definition 3.8(b) holds true as well (for H := F ). �

Remark 2. The following variant of the above definition of collaredness at x ∈
∂Ω can be used as well. As in Definition 3.8, we consider a neighborhood U ⊂ Ω,
not necessarily uniform, such that x ∈ ∂U , but we require (b) to hold with respect
to a global quasiconformal map h : H1 → H1 such that h(U) = B(0, 1). Although
this definiton is more restrictive, it takes advantage of the fact that we know from
Lemma 3.2 together with Proposition 4.2 and Theorem 4.4 in [19], that balls are
uniform and their images under global quasiconformal mappings are uniform.

In either the definition which we have settled on, or this alternative case, since H1

admits a large family of locally quasiconformal mappings, there is a large family of
collared domains. Moreover, in [5], Balogh constructs global quasiconformal maps on
H1 which are not Lipschitz and distort Hausdorff dimension. It is therefore possible
that a collared domain can have a complicated boundary, i.e., not rectifiable.

In what follows we will appeal also to the following connectedness properties of
the boundaries.

Definition 3.10. We say that Ω ⊂ H1 is finitely connected at a point x ∈ ∂Ω if
for every r > 0 there exists a bounded open set V in H1 containing x such that x ∈
V ⊂ B(x, r) and V ∩Ω has only finitely many components. If Ω is finitely connected
at every boundary point, then we say it is finitely connected at the boundary.

In particular, if V ∩ Ω has exactly one component, then we say that Ω is locally
connected at x ∈ ∂Ω.

The following result extends discussion in Sections 6.3 and 6.4 in Näkki [56],
and Theorem 17.10 in Väisälä [68], to the setting of H1 and relates the notions of
collaredness and boundary connectivity of the domain.

Observation 3.2. Collared domains in H1 are locally connected at the bound-
ary.

We remark that using Näkki’s definition of collaredness, the above lemma says
that a collared domain is finitely connected at the boundary, see Theorem 6.4 and
Corollary 6.6 in [56].

Proof. Let Ω ⊂ H1 be a collared domain and consider any x ∈ ∂Ω. Let U be
as in Definition 3.8 with x ∈ ∂U . Let B(x, r) ⊂ H1 be as in Definition 3.10. Recall
that h(U) = B(0, 1) is locally connected at the boundary, since B(0, 1) is uniform by
Corollary 1 in Capogna–Garofalo [17] and uniform domains are locally connected at
the boundary, see Proposition 11.2 in [2]. Therefore, we can choose an open connected
set V ⊂ H1 with h(x) ∈ ∂(V ∩B(0, 1)). Since h is a homeomorphism, we obtain that
h−1(V ∩B(0, 1)) is a connected subset of U∩B(x, r) and x ∈ ∂(U ∩h−1(V ∩B(0, 1))).
Thus, Ω is locally connected at x. �

The following observation will play a fundamental role in our studies.
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Observation 3.3. Let Ω ⊂ H1 be collared. Then for every boundary point
x ∈ ∂Ω, there exists a singleton prime end [Ek] such that I[Ek] = {x}.

Proof. Let x ∈ ∂Ω and (U, h) be its collaring coordinate as in Definition 3.8. Let
x0 = H(x) ∈ ∂B(0, 1) and define sets Ek by

(9) Ek := H−1(∂B(x0, 1/k) ∩ B(0, 1))

for k = 1, 2, . . .. It is an immediate observation that Fk := ∂B(x0, 1/k) ∩B(0, 1) are
cross-sets for all k, cf. Definition 3.1. Moreover, since by Lemma 3.2 we have that
B(0, 1) is a uniform domain, then the definition of the sets Fk, and Lemma 3.3, imply
that {Fk}∞k=1 is a prime chain in B(0, 1) as in Definition 3.3. By construction I[Fk] =
{x0}. The definition of Ek in (9) together with the uniformity of U , imply that every
Ek satisfies conditions (a) and (b) of Lemma 3.3, and hence, by Theorem 3.4, we
conclude that {Ek}∞k=1 is a prime chain in Ω. Clearly I[Ek] ⊂ ∂Ω and x ∈ I[Ek].
By Lemma 3.3 it holds that diamH1

Ek → 0 for k → ∞ and, hence I[Ek] is a
singleton. �

In what follows, we will call such a prime chain a canonical prime chain associated
with x ∈ ∂Ω, and similarly the associated prime end will also be called a canonical
prime end associated with x.

Recall, that by ∂SPΩ we denote the part of the prime end boundary ∂PΩ consisting
of singleton prime ends only.

Theorem 3.5. If Ω is a collared domain, then the impression map I : ∂PΩ → ∂Ω
is a surjection. Moreover, I|∂SPΩ is a bijection.

Proof. By Observation 3.3, the impression map is onto so we only need to show
that I|∂SPΩ is injective. If the impression map is not injective then we can find
distinct prime ends [Ei] and [Fj] such that I[Ei] = I[Fj ] = {x} for some x ∈ ∂Ω or
equivalently

⋂

i

D(Ei) =
⋂

j

D(Fj) = {x}.

Since [Ei] 6= [Fj ], we can assume that for each j there exists nj ∈ N such that
nj ≥ j and Ei * D(Fj) for all i ≥ nj (note that it in the last assertion it may
be necessary to pass to a subsequence of the {Ei}∞i=1 denoted again, for simplicity,
by {Ei}∞i=1). If in this case we have Ei ∩ D(Fj) = ∅, then by choosing i larger if

necessary, we may assume by (a) in Lemma 3.3 that Ei∩D(Fj) = ∅. Then it follows

that D(Ei) ∩D(Fj) = ∅ which contradicts I[Ei] = I[Fj ] = {x}. Therefore, we must
assume that Ei∩D(Fj) 6= ∅ for all i ≥ nj which implies Ei∩∂D(Fj) 6= ∅ for all i ≥ nj .
For each i ≥ nj, choose xi ∈ Ei ∩ ∂D(Fj), then it follows that x is a limit point of
Ω \D(Fj). Indeed, since xi → x, we have that x ∈ Fj ∩ ∂Ω which contradicts item
(a) in Definition 3.3 of prime chain, namely Mod4(Fj+1, Fj,Ω) < ∞. In particular, if
(U, h) is a collaring coordinate at x, then for j sufficiently large, we have F j ⊂ U ∩Ω
and, since distH1

(Fj+1, Fj) = 0, Theorem 3.4 implies that Mod4(Fj+1, Fj , U∩Ω) = ∞.
By the monotonicity of the 4-modulus it follows that Mod4(Fj+1, Fj ,Ω) = ∞, which
contradicts the assumption that {Fj}∞j=1 is a prime chain. �

We are now in a position to prove Theorem 1.2, where we study the extension of
a quasiconformal map, to a homeomorphic transformation between the topological
and the prime ends closures of a domain and the target domain, respectively. Results
of this kind have a long history going back to Carathéodory’s idea of prime ends.
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Väisälä [70, Section 3] studied the special case of a ball in R
n, whereas Näkki [57,

Theorem 4.1] studied the setting of collared domains in R
n.

Proof of Theorem 1.2. As a consequence of Theorem 1.1 and Theorem 3.5 above,
we need only to check that the extension of the identity map IΩ : Ω → Ω, to a map
ĨΩ : Ω ∪ ∂Ω → Ω ∪ ∂SPΩ, where

ĨΩ(x) =

{

x if x ∈ Ω,

[Ex
k ] if x ∈ ∂Ω,

is continuous and open. To this end we need only examine the behavior at the
boundary.

Let U ⊂ Ω have the property that ∂U ∩∂Ω 6= ∅ and the property that U ∪ (∂U ∩
∂Ω) is relatively open, then for UP as in Definition 3.5, we have

ĨΩ (U ∪ (∂U ∩ ∂Ω)) = U ∪ UP ,

since by collaredness, every [Fl] ∈ UP satisfies [Fl] = [Ex
k ] for some x ∈ ∂U ∩ ∂Ω.

Hence ĨΩ is open.
Now let U∪UP ⊂ Ω∪∂PΩ where U∪(∂U∩∂Ω) is relatively open. By collaredness,

every [Fl] ∈ UP satisfies [Fl] = [Ex
k ] for some x ∈ ∂U ∩ ∂Ω. Hence,

U ∪ UP = ĨΩ(U ∪ (∂U ∪ ∂Ω))

and so ĨΩ is continuous. �

4. Further properties of prime ends. Relations to

the theory of prime ends on metric spaces

In this section we develop and discuss further properties of prime ends as defined
in Section 3.1 in the setting of the Heisenberg group H1. Moreover, for domains in
H1, we present relations between Näkki’s prime ends and the theory of ModQ-ends
as well as ModQ-prime ends as developed in [2]. We restrict our discussion to H1

mainly for the sake of uniformity of the presentation. However, most of the results in
this section can be stated for the higher order Heisenberg groups and even for more
general Carnot–Carathéodory groups under natural modifications of the statements
below.

The following definition is due to Näkki, see [55, 56]. Näkki uses the term uniform
domains, whereas we call them mod-uniform domains in order to distinguish from
uniform domains as in Martio–Sarvas [50], see comments below.

Definition 4.1. We say that a domain Ω ⊂ H1 is mod-uniform if for every t > 0
there is ǫ > 0 such that if min{diam(E), diam(F )} ≥ t, then Mod4(Γ(E, F,Ω)) ≥ ǫ
for any nondegenerate connected sets E, F ⊂ Ω.

As observed by Näkki, mod-uniform domains in Rn are finitely connected at the
boundary, see Theorem 6.4 in [56]. Moreover, a domain Ω ⊂ Rn which is finitely
connected at the boundary, is mod-uniform if and only if Ω can be mapped quasicon-
formally onto a collared domain, see [56, Section 6.5]. From the point of view of our
discussion, it is important that Theorem 6.4 in [56] easily extends to the H1 setting,
and we omit the proof of this observation.

We further remark that one should not confuse Definition 4.1 with the uniform
domains studied by [50], Näkki–Väisälä [59] and Väisälä [69], see Definition 3.7 and
Section 3.2 for the importance of uniform domains in our studies. For instance, the
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latter uniform domains are necessarily locally connected at the boundary, see e.g.
Proposition 11.2 in [2]. In fact the following holds.

Observation 4.1. A uniform bounded domain Ω ⊂ H1 is mod-uniform.

Proof. By Theorem 3.3 we get that Ω is 4-Loewner. Let then E, F ⊂ Ω be
nondegenerate disjoint continua and suppose that min{diam(E), diam(F )} ≥ t for
some t > 0. Then

∆(E, F ) ≤ 1

t
distH1

(E, F ) ≤ 1

t
diamH1

Ω

and hence by Definition 3.6, it holds that

Mod4(E, F,Ω) ≥ ΨΩ(∆(E, F )) > 0.

Moreover, since Ω is bounded and ΨΩ is a nonincreasing function, we in fact obtain
that there exists a uniform lower bound

ΨΩ(∆(E, F )) ≥ ΨΩ

(

1

t
diamH1

Ω

)

:= ǫ > 0

and the proof is completed. �

In the discussion following Definition 3.9, we noticed that every boundary point of
a collared domain is an impression of the singleton prime end, the so-called canonical
prime end. In fact, the following stronger result holds, cf. Observation 3.2.

Lemma 4.1. If Ω ⊂ H1 is a domain finitely connected at the boundary, then
every x ∈ ∂Ω is the impression of a prime end.

The proof of this observation is based on the following topological result.

Lemma 4.2. (Lemma 10.5 in [2]) Assume that Ω is finitely connected at x0 ∈
∂Ω. Let Ak ( Ω be such that:

(1) Ak+1 ⊂ Ak,
(2) x0 ∈ Ak,
(3) distH1

(x0,Ω ∩ ∂Ak) > 0 for each k = 1, 2, . . ..

Furthermore, let 0 < rk < distH1
(x0,Ω ∩ ∂Ak) be a sequence decreasing to zero.

Then for each k = 1, 2, . . . there is a component Gjk(rk) of B(x0, rk)∩Ω intersecting

Al for each l = 1, 2, . . ., and such that x0 ∈ Gjk(rk) and Gjk(rk) ⊂ Ak.

Proof of Lemma 4.1. Following the notation of Lemma 4.2, we let x0 ∈ ∂Ω and
set Ak = Ω \ {x} for some x ∈ Ω and all k = 1, . . .. First, we construct a nested
sequence of connected sets

F x0

k = Gjk(rk) ⊂ B(x0, rk) ∩ Ω

with diamH1
(F x0

k ) → 0 as k → ∞. The idea of such construction is based on the
proof of Lemma 10.6 in [2] and, therefore, we present only a sketch of the reasoning.

Let us consider the rooted tree with vertices Gj(rk), j = 1, 2, . . . , N(rk), k =
1, 2, . . ., where two vertices are connected by an edge provided that they are Gj(rk)
and Gi(rk+1) for some i, j and k with Gi(rk+1) ⊂ Gj(rk). Denote by P the collection
of all descending paths starting from the root and define a metric function measuring
the distance between branches of the tree. Namely, let t(p, q) = 2−n, where n is
the level where paths p and q branch (or end), i.e. n is the largest integer such
that p and q have a common vertex Gj(rn). For each k = 1, 2, . . ., we consider the
subcollection Pk consisting of all paths p ∈ P for which there exists a component
Gj(rk) ⊂ Ak such that p passes through the vertex Gj(rk). By Lemma 4.2 all Pk
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are nonempty, Pk+1 ⊂ Pk for k = 1, . . . and each Pk is complete in t. Since P is
totally bounded in t, we get that all Pk are compact. As a consequence, we obtain an
infinite path q ∈ ⋂∞

k=1Pk. The vertices through which it passes define the sequence
of sets {F x0

k }∞k=1 such that F x0

k = Gjk(rk), k = 1, 2, . . .. Moreover,

diamH1
F x0

k ≤ diamH1
(B(x0, rk) ∩ Ω) ≤ 2rk → 0 as k → ∞.

Next, we use sets F x0

k to define a prime chain [Ek] with impression I[Ek] = {x0}.
Define

(10) Ek :=
(

F x0

2k−1 ∩ Ω
)

\
(

F x0

2k ∩ Ω
)

, k = 1, . . . .

Then, Ek are connected, relatively closed in Ω for all k, also Ek∩∂Ω 6= ∅ and Ω\Ek has
exactly two components. By construction we get that Ek separates Ek−1 and Ek+1.
Furthermore, since distH1

(Ek, Ek+1) > 0 it holds that Mod4(Ek, Ek+1,Ω) < ∞.
Finally, let K ⊂ Ω be a continuum. Note that

Ek ⊂ F x0

2k−1 ⊂ B(x0, rk) ∩ Ω and lim
k→∞

distH1
(B(x0, rk) ∩ Ω, {x0}) = 0.

Therefore, limk→∞Mod4(Ek, K,Ω) = 0, as the family of curves passing through the
fixed point has zero p-modulus for 1 ≤ p ≤ Q = 4, cf. (12) below, for the similar
argument. Thus, [Ek] is a prime chain and defines a prime end. �

We illustrate the above construction of prime ends with the following observation
similar to Theorem 1.2. However, here we do not require the domain to be collared.

Lemma 4.3. Let Ω0 ⊂ H1 be a domain locally connected at the boundary and
let f be a quasiconformal mapping from Ω0 onto a domain Ω ⊂ H1. Then, there
exists an extension map F : Ω0 ∪ ∂Ω0 → Ω ∪ ∂SPΩ, such that F |Ω0

= f .

Let us remark that in the Euclidean setting, Theorem 4.2 in Näkki [54] shows
that for Ω0 being a ball and collared Ω (in the sense of Definition 17.5 in [68]), map
F in the lemma is a homeomorphism. The same assertion holds also when Ω ⊂ R

n if
finitely connected at the boundary, see Section 3.1 in Väisälä [70]. For more general
type domains in H1 (and more general metric measure spaces) we refer to Theorem 5
in [1].

Proof. Since Ω is 1-connected at the boundary, it is in particular finitely con-
nected at the boundary and, hence, Lemmas 4.2 and 4.1 can be applied with sets

F x0

k := B(x0, 1/k) ∩ Ω0 for k = 1, . . .

and any x0 ∈ ∂Ω0. As in the proof of Lemma 4.1 we construct a prime end [Ex
k ] in

Ω0 following (10). Define F : ∂Ω0 → ∂SPΩ as follows:

F (x) =

{

f(x) for x ∈ Ω0,

[f(Ex
k )] for x ∈ ∂Ω0.

The proof of the observation will be completed once we show that {f(Ex
k )}∞k=1 defines

a prime chain (end) in Ω = f(Ω0) with singleton impression I[f(Ex
k )] := {y} ⊂ ∂Ω.

Indeed, since f is a homeomorphism, it holds that f(Ex
k ) are cross-sets in Ω for

all k. In particular, since for all k cross-sets Ex
k divide Ω0 into exactly two do-

mains, then so do f(Ex
k ) for all k. Similarly, by topology we have that if Ek+1

separates Ek and Ek+2, then the same holds for their images under homeomor-
phism f . Next, if distH1

(Ex
k , E

x
k+1) > 0, then by the injectivity of f we have

that distH1
(f(Ex

k ), f(E
x
k+1)) > 0 for all k. Since f is quasiconformal we infer from

ModQ(E
x
k , E

x
k+1,Ω0) < ∞ that ModQ(f(E

x
k ), f(E

x
k+1),Ω) < ∞.
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Finally, since [Ex
k ] is a prime end in Ω0, we have that for any continuum C ⊂ Ω0

0 ≤ lim
k→∞

ModQ(f(E
x
k ), f(C),Ω) ≤ K lim

k→∞
ModQ(E

x
k , C,Ω0) = 0

by quasiconformality of f . Note that every continuum C ′ ⊂ Ω is an image under f
of some continuum in C ⊂ Ω0, as we can set C := f−1(C ′). This argument, together
with Lemma 3.1 imply that I[fEn] ⊂ ∂Ω. The proof of Lemma 4.3 is therefore
completed. �

4.1. Näkki’s prime ends and prime ends on metric spaces. In this section
we compare a variant of Näkki’s theory of prime ends introduced in previous sections,
to a theory of prime ends developed for a general metric measure spaces in [2]. First,
we recall some building blocks of this metric measure space theory.

Let Ω ⊂ X be a domain in a complete metric measure space with a doubling
measure, supporting the (1, p)-Poincaré inequality for 1 < p < ∞. For the signifi-
cance of these assumptions we refer to [2]. Here we only note that these conditions
hold for the Heisenberg groups Hn and more general Carnot–Carathéodory groups,
see e.g. Section 11 in Hajłasz–Koskela [33].

Definition 4.2. We say that a bounded connected set E ( Ω is an acceptable
set if E ∩ ∂Ω is nonempty.

Since an acceptable set E is bounded and connected, it holds that E is compact
and connected. Moreover, E is infinite, otherwise we would have E = E ⊂ Ω.
Therefore, E is a continuum.

Definition 4.3. A sequence {Ek}∞k=1 of acceptable sets is a chain if

(1) Ek+1 ⊂ Ek for all k = 1, 2, . . .,
(2) distH1

(Ω ∩ ∂Ek+1,Ω ∩ ∂Ek) > 0 for all k = 1, 2, . . .,
(3) the impression

⋂∞
k=1Ek ⊂ ∂Ω.

We further comment that a variant of this definition can be considered as well
with the Heisenberg distance in condition (2) substituted with the Mazurkiewicz
distance, see Definition 2.3 in Estep–Shanmugalingam [28].

Definition 4.4. Similarly to the setting of Näkki’s prime chains, we define the
division of chains and say that two chains are equivalent if they divide each other.
A collection of mutually equivalent chains is called an end and denoted [Ek], where
{Ek}∞k=1 is any chain in the equivalence class. An end [Ek] is called a prime end if
any other end dividing it must be equivalent to it, i.e., if [Ek] is not divisible by any
other end.

For further definitions and properties of prime ends as in Definition 4.4, we refer
to Sections 3–5 and 7 of [2]. Among the topics studied in [2] are also notions of
Modp-ends and Modp-prime ends for 1 ≤ p < ∞, see Section 6 in [2]. However,
here we confine our discussion to the setting of p = Q only with Q = 4, the Ahlfors
dimension of H1.

Definition 4.5. A chain {Ek}∞k=1 is called a Mod4-chain if

(11) lim
k→∞

Mod4(Ek, K,Ω) = 0

for every compact set K ⊂ Ω.

In fact Lemma A.11 in [2] allows us to require (11) to hold only for some compact
set K0 with the Sobolev capacity C4(K0) > 0, see also Lemma 3.1 above.
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Definition 4.6. An end [Ek] is a Mod4-end if it contains a Mod4-chain repre-
senting it. A Mod4-end [Ek] is a Mod4-prime end if the only Mod4-end dividing it is
[Ek] itself.

Remark 3. Similar to the prime chains studied in Section 3.1, it holds that the
impression is either a point or a continuum, since {Ek}∞k=1 is a decreasing sequence of
continua. Furthermore, Properties 1 and 2 of Definition 4.3, imply that Ek+1 ⊂ intEk.
In particular, intEk 6= ∅.

Theorem 4.1. Let Ω ⊂ H1 be a collared domain. Then, a prime chain defines a
Mod4-chain as in Definition 4.5, while a prime end defines a Mod4-end according to
Definition 4.6. Moreover, a singleton prime end defines a Mod4-prime end according
to Definition 4.6.

Proof. Let {Ek}∞k=1 be a prime chain in Ω. Recall, that by D(Ek) := Ω \ Ek

we denote the component of Ω containing Ek+1 for k = 1, . . .. Then D(Ek) are
acceptable sets as in Definition 4.2, cf. Lemma 3.1. Moreover, D(Ek+1) ⊂ D(Ek) for
all k.

Claim: The definition of a prime chain together with Lemma 3.3 show that
distH1

(Ek, Ek+1) > 0 since Mod4(Ek, Ek+1,Ω) < ∞, and it follows that distH1
(Ω ∩

∂D(Ek),Ω ∩ ∂D(Ek+1)) > 0.
Indeed, by Observation 3.2 collared domains are 1-connected at the boundary,

which in turn gives us that every boundary point of ∂Ω is the impression of a singleton
prime end, cf. Lemma 4.1. Let us apply this observation to point x = I[Ek]. Since Ω
is collared, there exists a uniform set U ⊂ Ω associated with x, such that x ∈ ∂U∩∂Ω.
Then, Lemma 3.3 can be applied to U concluding the proof of the claim for k large
enough.

Again by Lemma 3.3, and the discussion following Definition 3.3 (see Lemma 3.1),

it holds that the impression
⋂∞

k=1D(Ek) ⊂ ∂Ω. Hence, {D(Ek)}∞k=1 defines a chain as
in Definition 4.3. The Mod4-condition for all continua assumed in Part (b) of Näkki’s
Definition 3.3, implies that {D(Ek)}∞k=1 is in fact a Mod4-chain. Finally, since [Ek]
is a class of equivalent prime chains, we obtain that [D(Ek)] is a Mod4-end.

Let [Ek] be additionally a singleton prime end. Then, Proposition 7.1 in [2] says
that a singleton end is a prime end (in the sense of Definition 4.4). As a consequence,
[D(Ek)] is a Mod4-prime end (as in Definition 4.6). �

5. Boundary behavior of quasiconformal mappings in H1

The main purpose of this section is to employ the theory of prime ends in the
studies of the boundary behavior of quasiconformal mappings in the Heisenberg group
H1. Our results extend the corresponding ones proved in Näkki [57, Section 7]. We
provide counterparts of the following three results from the theory of conformal and
quasiconformal mappings in R

n:

• the Koebe theorem on existence of arcwise limits along end-cuts (Theo-
rem 1.3),

• the Lindelöf theorem on relation between asymptotic values of a map and sets
of principal points for prime ends (Theorem 1.4),

• the Tsuji theorem on the Sobolev capacities of sets of arcwise limits (Theo-
rem 1.5).
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These results require some definitions and auxiliary results, which we now present.
Recall that if {Ek}∞k=1 is a chain of cross-sets in Ω, then by D(Ek) we denote the
component of Ω \ Ek containing Ek+1 (cf. Definition 3.2).

Definition 5.1. A point x ∈ ∂Ω is an accessible boundary point if there exists
a curve γ : [0, 1] → H1 such that γ(1) = x and γ([0, 1)) ⊂ Ω. We call γ an end-cut
of Ω from x. Moreover, if [Ek] is a prime end and there is a curve γ as above such
that for every k there is tk ∈ (0, 1) with γ([tk, 1)) ⊂ D(Ek), then x ∈ ∂Ω is accessible
through [Ek].

Remark 4. Note that x ∈ ∂Ω can be accessible through [Ek] only if x belongs
to the impression of [Ek].

The following result relates connectivity of the boundary of a domain to accessi-
bility of points.

Observation 5.1. Let Ω ⊂ H1 be a domain finitely connected at the boundary.
Then every x ∈ ∂Ω is accessible and accessible through some prime end [En].

Proof. Lemma 4.1 allows us to assign with every x ∈ ∂Ω a prime end, denoted
[En], with I[En] = {x}. Moreover, x is accessible through [En] (cf. Definition 5.1).
To see this choose xn ∈ D(En) for n = 1, 2, . . .. Since both xn and xn+1 belong to
the pathconnected set D(En), there exists a curve γn connecting xn to xn+1. Let γ
denote the concatenation of all curves γn, with γ([0, 1)) ⊂ Ω and γ(1) = x. From the
proof of Lemma 4.1 we infer that limn→∞ diamH1

(En) = 0 and so γ is continuous at
1. Hence, x is accessible and accessible through [Ek]. Moreover, γ is an end-cut of Ω
from x. �

Using Definition 5.1 we may provide another method to associate with every
accessible boundary point a prime end. The following result will play a particular
role in the studies of cluster sets of quasiconformal mappings (cf. Lemma 7.7 in [2]).
One can consider Observation 5.2 as a complimentary result to Lemma 4.1.

Observation 5.2. Let Ω ⊂ H1 and x ∈ ∂Ω be an accessible point. Let further
rn for n = 1, 2, . . . be a strictly decreasing sequence converging to zero as n → ∞.
Then there exist a sequence tn for n = 1, 2, . . . with 0 < tn < 1 and a prime end [En]
such that:

(1) I[En] = {x},
(2) γ([tn, 1)) ⊂ D(En),
(3) D(En) is a component of Ω ∩B(x, rn) for all n = 1, 2, . . ..

In particular, x is accessible through [En]. Moreover, [En] is s singleton prime end.

Proof. Let γ be an end-cut of Ω from x as in Definition 5.1. It is easy to notice
that continuity of γ implies existence of a sequence tn ∈ (0, 1) for n = 1, 2, . . . , with
a property that

γ([tn, 1)) ⊂ Ω ∩ B(x, rn).

For n = 1, 2, . . . we define Dn as the component of Ω∩B(x, rn) containing γ(tn) and
set

En := (Dn \Dn) ∩ Ω.

We show that {En}∞n=1 is a prime chain and, thus, gives rise to a prime end as in
Definition 3.4.

By the definition, sets En for all n are relatively closed in Ω and

En ∩ ∂Ω = (∂Dn ∩ Ω) ∩ ∂Ω 6= ∅.
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Moreover, the choice of sets Dn implies that every Ω \ En consists of exactly two
components whose boundaries intersect ∂Ω. Hence, every En is a cross-set as in
Definition 3.1.

By construction Dn+1 ⊂ Dn ⊂ Dn−1 and, since the radii rn are strictly decreasing,
we obtain that En separates En−1 and En+1 for all n = 2, . . .. Hence, {En}∞n=1 fulfills
conditions of a chain, cf. Definition 3.2.

Since En = Ω ∩ ∂Dn ⊂ ∂B(x, rn), it follows that for all n = 1, 2, . . . ,

distH1
(En, En+1) ≥ rn − rn+1 > 0.

As a consequence Mod4(En+1, En,Ω) < ∞ for all n. Finally, let F ⊂ Ω be any
continuum. Then for any n we have that

Mod4(En, F,Ω) ≤ Mod4(∂B(x, rn), F,Ω) → 0 as n → ∞.

Hence, limn→∞Mod4(En, F,Ω) = 0 and, thus, conditions (a) and (b) of Definition 3.3
are satisfied for {En}∞n=1 and [En] defines a prime end in Ω.

Since En = (Dn \ Dn) ∩ Ω for n = 1, 2, . . ., then En ⊂ Ω ∩ B(x, rn) for all n.
Hence,

diamH1
En ≤ diamH1

Ω ∩B(x, rn) → 0 for n → ∞
by assumptions. Thus, I[En] ⊂ ∂Ω and I[En] is a singleton prime end. In fact
I[En] = {x}, as x ∈ Dn for all n completing the proof of Observation 5.2. �

Recall the following notion of cluster sets.

Definition 5.2. Let Ω ⊂ H1 be a domain, f : Ω → H1 be a mapping and
x ∈ ∂Ω. We define the cluster set of f at x as follows:

C(f, x) :=
⋂

U

f(U ∩ Ω),

where the intersection ranges over all neighborhoods of x in H1.

Cluster sets can be further generalized to capture the behavior of a mapping
along a curve in a more subtle way.

Definition 5.3. Let Ω ⊂ H1 be a domain, f : Ω → H1 be a mapping and
x ∈ ∂Ω. We say that a sequence of points {xn}∞n=1 in Ω converges along an end-cut
γ at x if there exists a sequence {tn}∞n=1 with 0 < tn < 1 and limn→∞ tn = 1 such
that xn = γ(tn) and

lim
n→∞

dH1
(xn, x) = 0.

We say that a point x′ ∈ H1 belongs to the cluster set of f at x along an end-cut γ
from x, denoted by Cγ(f, x), if there exists a sequence of points {xn}∞n=1 converging
along an end-cut γ at x, such that

lim
n→∞

dH1
(f(xn), x

′) = 0.

If Cγ(f, x) = {y}, then y is called an arcwise limit (asymptotic value) of f at x.

In other words, y is an asymptotic value of f at x ∈ Ω, if there exists a curve
γ : [0, 1) → Ω such that γ(t) → x and f(γ(t)) → y for t → 1.

The Koebe theorem. In 1915 Koebe [44] proved that a conformal mapping
between a simply-connected planar domain Ω onto the unit disc has arcwise limits
along all end-cuts of Ω. Theorem 1.3 extends Koebe’s theorem and Theorem 7.2 in
Näkki [57] to the setting of quasiconformal mappings in H1. Moreover, we study
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more general end-cuts than in [57] and more general assumptions on the underlying
domains.

Proof of Theorem 1.3. We follow the idea of the proof of [57, Theorem 7.2].
Since Ω is finitely connected at every boundary point x ∈ ∂Ω, then Observation 5.1
implies that all x ∈ ∂Ω are accessible. Let γ be an end-cut in Ω from x ∈ ∂Ω. Let
K ⊂ Ω be a continuum and let Uk be neighborhoods of x such that

∞
⋂

k=1

Uk = {x} and γk := Uk ∩ Ω ∩ γ

are connected sets for all k ≥ k0 and some k0. Since diamH1
Uk → 0 for k → ∞ and

γk ⊂ Uk, it follows that

lim
k→∞

Mod4(K, γk,Ω) ≤ lim
k→∞

Mod4(K,Uk,Ω) = 0.

In order to see the latter equality, let us assume that R > 0 is sufficiently small and
such that B(x,R) ⊂ H1 \K. By the decay property of diameters for the sets Uk as
k → ∞ we have that, passing to a subsequence if necessary, Uk ⊂ B(x, 1/k)∩Ω for all
k ≥ k0. Since H1 is a path-connected metric measure space with doubling measure,
Theorem 3.1 in [3] (see also Korányi–Reimann [47, Proposition 10]) together with
arguments involving minorized families of curves (cf. Lemma A.1(5)) and the fact
that the modulus of curve families is an outer measure, imply that for k large enough
so that B(x, 1/k) ⊂ B(x,R), it holds that

Mod4(Uk, K,Ω) ≤ Mod4(B(x, 1/k) ∩ Ω, K,Ω)

≤ Mod4(B(x, 1/k),H1 \B(x,R),H1)

≤ Mod4(B(x, 1/k),H1 \B(x,R), B(x,R))

≤ C(R)

(

log
R

1/k

)−3

→ 0, for k → ∞.

(12)

To obtain the second estimate we use that Mod4 is an outer measure and Γ(B(x, 1/k)∩
Ω, K,Ω) ⊂ Γ(B(x, 1/k),H1 \B(x,R),H1). Moreover, the fourth inequality relies on

the fact that the family of curves Γ(B(x, 1/k),H1 \ B(x,R),H1) is minorized by

Γ(B(x, 1/k),H1 \B(x,R), B(x,R)), see Section A.2.
The quasiconformality of f implies that

lim
k→∞

Mod4(f(K), f(Uk), f(Ω)) = 0.

Since Ω0 is a mod-uniform domain, Definition 4.1 gives us that limk→∞ diam(f(γk)) =
0 and thus the cluster set Cγ(f, x) is a singleton meaning that f has an arcwise limit
along γ. �

The Lindelöf theorem. A bounded analytic function of the unit disc having a
limit y0 along an end-cut at a boundary point x0 has angular limit y0 according to
the classical theorem of Lindelöf. By an angular limit we mean that the limit is y0
along any “angular” end-cut at x0, that is an end-cut contained in some fixed cone
in the unit disc with apex at x0.

In [31, Theorem 6], Gehring proved a Lindelöf type theorem for quasiconformal
mappings on balls in R

3 which Näkki generalized to R
n in [57, Theorem 7.4]. In this

context the theorem is stated in terms of angular end-cuts and principal points.
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Definition 5.4. Let [Ek] be a prime end in a domain Ω ⊂ H1 and x ∈ I[Ek]. We
say that x is a principal point relative to the prime end [Ek], if every neighborhood
of x contains a cross-set of a chain in [Ek], i.e., x is a limit of a convergent chain in
[Ek]. The set of principal points of a prime end [Ek] is denoted by Π(Ek). A point
in I[Ek] which is not principal is called a subsidiary point.

For the main ideas and definitions of principal (and subsidiary points, see below),
we refer to Collingwood–Lohwater [25, Chapter 9.7] and Näkki [57, Section 7]. The
importance of such notions in the classification of prime ends in R

n is described e.g.
in [57, Section 8]. See also Carmona–Pommerenke [23, 24] for results regarding the
theory of continua and principal points.

The proof of our Lindelöf type theorem proceeds in the same way as the Euclidean
proof in [57], where the setting is transformed to the upper half space by the extended
stereographic projection sending x0 to the origin and then employing the fact that
a cone in R

n with apex at 0 is invariant under Euclidean dilation. The geometry of
H1 imposes some obstacles in following this approach. Although we can transform a
ball to the upper half space using left translation and the mapping defined at (6), we
do not have the luxury of choosing the destination of x0. Secondly, the notion of a
dilation invariant cone with apex at x0 is complicated by the fact that the invariance
is with respect to dilations centered at x0, that is maps of the form

gr = τx0
◦ δr ◦ τ−1

x0
.

To begin the construction of our cones we first consider how dilations behave
when they are centered at a boundary point x0 ∈ ∂B, in particular we address the
complications arising from the fact that the boundary of B is not preserved by such
maps. Using left translation and the mapping defined at (6), we can consider the
normalized situation where B is the upper half space and the image of x0 is a point
w0 = u0 + iv0 ∈ C. It follows that if gr is a dilation centered at (w0, 0), then

gr(x+ iy, t)

=
(

u0 + r(x− u0) + i(v0 + r(y − v0)), r
(

rt+ 2(1− r)(xv0 − u0y)
))

.
(13)

Hence if t > 0, then gr(x + iy, t) is a point in the upper half space for all r ∈ (0, 1]
provided that xv0 − u0y > 0. Let Kx0

denote the subset of B which corresponds to

K(w0,0) = {(x+ iy, t) : xv0 − u0y > 0, t > 0}
under the stereographic projection. Then

gr(Kx0
) ⊂ Kx0

when gr is a dilation centered at x0 and r ∈ [0, 1]. Indeed, let (x+ iy, t) ∈ K(w0,0) and
gr be a dilation centered at (w0, 0) with r ∈ [0, 1]. It follows that if (xr + iyr, tr) =
gr(x+ iy, t), then xrv0 − u0yr = r(xv0 − u0y).

We define a cone C(w0,0) ⊂ K(w0,0) with apex at w0 as follows: let

Σw0
= {(a+ ib, c) ∈ S(0, 1) ∩ τ(w0,0)−1(K(w0,0)) :

τ(w0,0) ◦ δs(a + ib, c) ∈ K(w0,0) for all s ∈ (0,∞)}
and set

C(w0,0) = {τ(w0,0) ◦ δs(a+ ib, c) : (a+ ib, c) ∈ Σw0
, s ∈ (0,∞)}.

We note that curves of the form s → δes(z, t), s ∈ R, are integral curves of the
vector field V (z, t) = (z, 2t) and so our cone is an open simply connected subset of

H1. More precisely, if (a + ib, c) satisfies av0 − bu0 > 0 and c =
√

1− (a2 + b2)2,
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then (a + ib, c) ∈ Σw0
, and so C(w0,0) 6= ∅. In geometric terms, Σw0

is the upper
quarter hemisphere of S(0, 1) lying on the same side of vertical plane containing the
Euclidean ray xv0 − u0y = 0 as K(w0,0).

By definition, if gr is a dilation centered at (w0, 0) then gr(C(w0,0)) = C(w0,0).
Moreover, we define

Cx0
:= τ−1

x0
(C(w0,0)),

and then Cx0
⊂ Kx0

becomes invariant under dilations centered at x0.
We note that unless c = 0, the curves τ(w0,0)◦δs(a+ib, c) are not horizontal. How-

ever, the tangent to such a curve at (w0, 0) is (a, b, 2(av0− bu0)), which is horizontal.
Our discussion leads to the following notion used in Theorem 1.4.

Definition 5.5. Let γ be an end-cut of a ball B ⊂ H1 from a point x0 ∈ ∂B. We
say that γ is angular if there is a cone Cx0

such that γ|[1−ǫ,1) ⊂ Cx0
for all sufficiently

small ǫ ∈ (0, 1).

Remark 5. The H1-rays (see (19)) which join the origin to points ∂B(0, 1) \
(0,±1) are angular. If (z0, t0) ∈ ∂B(0, 1), then it can be shown, that if γ(s) =
(x(s), y(s), t(s)) is the image of the H1-ray φ(1− s, (z0, t0)) under the stereographic
projection of B(0, 1) onto the upper half space, then

x(s)y(0)− x(0)y(s) = s
(1− t0) + sA(s)

(1− t0)2 + sB(s)
> 0,

where A and B are continuous at s = 0 and s is sufficiently small. The assumptions
imply that t0 6= 1 and so we have strictly greater than 0 in the inequality above.

Theorem 1.4 is an analog of the Lindelöf theorem and corresponds to Theorem 6
in Gehring [31] and Theorem 7.4 in Näkki [57]. See also Vuorinen [74] for related
studies in the context of angular limits for quasiregular mappings in R

n and Näkki [58]
for further relations between angular end-cuts and various types of cluster sets.

In the proof of Theorem 1.4 we will need the following auxiliary result. Recall
that if x is any boundary point of a collared domain, then we can associate with x a
so-called canonical prime end, cf. the discussion following (9).

Observation 5.3. Let Ω ⊂ H1 be a collared domain and f be a quasiconformal
embedding of Ω into H1. For any x ∈ ∂Ω and a canonical prime end [Ex

k ] with
impression x, it follows that [f(Ex

k )] is a prime end in f(Ω).

Proof. It is an immediate consequence of the topological properties of the home-
omorphism f , that Ek = f(Ex

k ) is a cross-set for k = 1, 2, . . . as in Definition 3.1.
In order to show that Ek is a prime chain, and thus a prime end in f(Ω), we need
to verify conditions (a) and (b) of Definition 3.3. By quasiconformality of f it holds
that

Mod4(f(Ek+1), f(Ek), f(Ω)) ≤ KMod4(Ek+1, Ek,Ω) < ∞.

Similarly, if F ⊂ Ω is any continuum we have that

lim
k→∞

Mod4(f(Ek), f(F ), f(Ω)) ≤ K lim
k→∞

Mod4(Ek, F,Ω) = 0.

Hence, [Ek] satisfies Definition 3.3. �

Note that by applying Observation 5.3 to a ball B we obtain that, if f is quasi-
conformal, then a chain {f(Ex

k )}∞k=1 defines a prime end.
Recall that by Cγ(f, x) we denote the cluster set of a map f along an end-cut γ

from x (cf. Definition 5.3) and Π(Ek) stands for a set of principal points of a prime
end [Ek] (cf. Definition 5.4).
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Although we already stated the Lindelöf theorem in Section 1, see Theorem 1.4,
for the sake of clarity and readers’ convenience we recall its formulation:

Let f be a bounded quasiconformal mapping of a ball B ⊂ H1 onto a domain
Ω0 ⊂ H1 with the property that

lim
r→0

diamH1

(

f(∂B(x0, r) ∩ B)
)

= 0 for all x0 ∈ ∂B.

Then for all x0 ∈ ∂B it holds that for every angular end-cut γ of B from x0 we have

Cγ(f, x0) = Π(f(Ex0

k )).

Remark 6. The assumption that diamH1
(f(∂B(x0, r)∩B)) → 0 as r → 0 is not

needed in the Euclidean case, since it can be shown that diam(f(∂B(x0, r) ∩B)) →
0 in the spherical metric, see [57, Theorem 7.4] and Theorem 6 and Lemma 9 in
[31]. In particular, see equation (33) on page 20 in [31], where Lemma 9 is applied.
The proof of the aforementioned lemma relies on [32, Lemma 1] and does not carry
over trivially to the setting of the Heisenberg group, since it relies on features of
Euclidean geometry which are not obviously surmountable. However such a result
in the Heisenberg setting seems plausible, for instance [8, Lemma 3.9] appears to be
applicable, but as yet we do not have a precise analogue.

Proof of Theorem 1.4. Let us begin by noting that there is no loss of generality
if we assume B = B(0, 1) and f(0) = 0.

Let y ∈ Π(f(Ex0

k )) and let γ be an end cut in B from x0, not necessarily angular.
Since B is collared, there exists an end-cut from every point x0 ∈ ∂B. We want to
show that there exists a sequence tk ∈ (0, 1) such that tk → 1, and f(γ(tk)) → y, i.e.,
y ∈ Cγ(f, x0). Since γ intersects Ex0

k for each k, it follows that f ◦γ intersects f(Ex0

k )
at some point yk for each k. By the definition of a principal point, for each j ∈ N,
the set B(y, 1/j) ∩ Ω0 contains f(Ex0

k ) for all k sufficiently large and so yk → y in
dH1

. By definition, each point xk = f−1(yk) lies in the intersection of γ and Ex0

k

and so xk = γ(tk) for some tk ∈ (0, 1). Moreover, since I[Ex0

k ] = x0, it follows that
xk → x0 and we conclude that y ∈ Cγ(f, x0).

Now we show that Cγ(f, x0) ⊂ Π(f(Ex0

k )) for every angular end cut from x0. Let
y ∈ Cγ(f, x0), i.e., there exists a sequence tn → 1 such that

sn := dH1
(γ(tn), x0) → 0, as n → ∞.

Let Ex0

sn = S(x0, sn)∩B for n = 1, 2, . . . be a chain. As in the proof of Observation 5.2
we conclude that [Ex0

sn ] is a prime end in B and thus [f(Ex0

sn )] is a prime end in Ω0,
since f is quasiconformal. We want to show that y is a principal point of [f(Ex0

sn )],
i.e., every neighborhood of y contains f(Ex0

sn ) for some n. More precisely, we will
show that for every ǫ > 0, we have f(Ex0

sn ) ⊂ B(y, ǫ) ∩ f(B) for n sufficiently large.
Define a sequence of mappings on Kx0

by

fn = f ◦ gsn for n = 1, 2, . . . ,

where

gsn = τx0
◦ δsn ◦ τ−1

x0
.

Since f is bounded and f(0) = 0, it follows that all fn avoid the values 0 and ∞, if
we consider f as a mapping f : B(0, 1) → H1 ∪ {∞}. By pg. 321 in [46] we have
that fn|Kx0

correspond conformally to a sequence of Kf -quasiconformal mappings

f̂n : K̂x0
→ S3, where Kf is the distortion of f , S3 = ∂B̂(0, 1) ⊂ C

2 and K̂x0
⊂ S3 is
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the image of Kx0
. The ball B̂(0, 1) and the conformality are considered with respect

to the spherical metric

dS(u, w)
2 = 2|1− (u, w)| = ||u− w|2 − 2iIm (u, w)|,

where (u, w) = u1w1+u2w2. Moreover, every f̂n avoids the values in S3 corresponding
with 0 and ∞ by a fixed positive distance for all n. By Theorem F in [47], the sequence

(f̂n) is normal. Hence, there exists a subsequence (fnj
) which converges uniformly

on compact subsets of Kx0
to a Kf -quasiconformal mapping h or a constant.

So as not to burden the notation with more subscripts, we assume that the
sequence (sn) is chosen so that the mappings fn converge uniformly on compact
subsets of Kx0

.
Since γ is angular, there exists a cone Cx0

⊂ Kx0
such that γ|[1−ǫ,1) ∩ Cx0

6= ∅ for

all sufficiently small ǫ > 0. Set Ar := B(x0, r) \B(x0, r/2), then

γ(tn) ⊂ Asn ∩ Cx0
= gsn(A1 ∩ Cx0

)

which implies that

f ◦ γ(tn) ⊂ fn(A1 ∩ Cx0
).(14)

By the above discussion fn converges uniformly on A1∩Cx0
to h or a constant. Since

fn(A1 ∩ Cx0
) ⊂ f(D(Ex0

sn )) and Ex0

sn = ∂B(x0, sn) ∩B, it follows by assumption that

diamH1
(fn(A1 ∩ Cx0

)) → 0

and so (fn) converges to constant value which by (14) must be y. Moreover, the
sets f(Ex0

sn ) satisfy the requirements that qualify y as a principal point relative to
the prime end [f(Ex0

sn )]. Since [Ex0

k ] = [Ex0

sn ], it follows that [f(Ex0

k )] = [f(Ex0

sn )], and
hence we have Cγ(f, x0) ⊂ Π(f(Ex0

k )). �

The Tsuji theorem. Our next goal is to show the quasiconformal counterpart
of the Tsuji theorem in H1. A theorem due to F. and M. Riesz states that if a
planar bounded analytic function in the unit disk B2 has the same radial limit in
a set of positive Lebesgue measure in ∂B2, then the function is constant, see e.g.
Theorem 2.5 in Collingwood–Lohwater [25, Chapter 2]. The celebrated example
due to Carleson [22] shows that the weaker version of that result, with radial limits
existing in a boundary set of a positive logarithmic capacity, is false. However,
Tsuji proved that the set of boundary points with the same radial limit α is of zero
logarithmic capacity, provided that α is an ordinary point of the analytic function,
see Theorem 5 in Tsuji [65] for details and Villamor [71] for further studies of Tsuji’s
result. In [65, Theorem 6] Tsuji also proved the following result: consider a conformal
map between B2 and a planar simply-connected domain Ω with the set A of accessible
points in ∂Ω of zero capacity. Then the set of points in ∂B2 corresponding to A has
zero capacity as well. This result was extended to the setting of quasiconformal
mappings in Rn by Näkki [57, Theorem 7.12]. The following theorem generalizes
Näkki’s result in H1.

In the statement of Theorem 1.5 we use the notion of arcwise limit, cf. Defini-
tion 5.3. Furthermore, the Tsuji theorem in H1 relies on two notions which we now
define: an arcwise extension of a quasiconformal mapping and the Sobolev capacity.

Let Ω ⊂ H1 be a collared domain and f be a quasiconformal homeomorphism of
Ω. Denote by Af ⊂ ∂f(Ω) a set of arcwise limits of f at ∂Ω. Similarly, denote by A
a set of points in ∂Ω where f has an arcwise limit.
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An arcwise extension of f , is the map F : Ω∪A → f(Ω)∪Af defined as follows:

F (x) =

{

f(x), x ∈ Ω,

Cγ(f, x) ⊂ ∂f(Ω), x ∈ A.

The map F is well-defined, i.e. for every x ∈ A it holds that Cγ(f, x) = {y}
for some y ∈ Af along any end-cut γ at x. Indeed, by Observation 3.2 and Obser-
vation 5.1, we have that every x ∈ ∂Ω is accessible, accessible through some prime
end [Ex

k ] and there exists an end-cut of Ω from x. Furthermore, Theorem 1.2 shows
that C(f, x) = I[f(Ex

k )]. This observation, combined with the immediate fact that
Cγ(f, x) ⊂ C(f, x) for any end-cut γ at x, gives us that Cγ(f, x) ⊂ I[f(Ex

k )] for every
x and its every end-cut. By Lemma 4.1 we know that I[Ex

k ] = {x}. The argument
will be completed once we show that I[f(Ex

k )] is a singleton. By the definition of
Cγ(f, x), we have that for each x ∈ A there is a sequence of the form {f(xn)}∞n=1 from
which we can construct a curve γ′ by connecting consecutive points in the sequence.
By the constructions in Observations 5.1 and 5.2, we obtain a prime end denoted
[Eγ′ ], whose impression satisfies

(15) Cγ′(f, x) ⊂ I[Eγ′ ] ⊂ I[f(Ex
k )].

If a different end-cut γ1 at x satisfies Cγ1(f, x) 6= Cγ′(f, x), then we obtain a different
prime end, denoted [Eγ1 ], satisfying inclusions similar to (15). Therefore, both [Eγ′ ]
and [Eγ1 ] divide [f(Ex

k )], cf. Definition 3.4. This observation contradicts the fact that
[f(Ex

k )] is a prime end. Indeed, if otherwise, then we would obtain that [f−1(Eγ1)]
and [f−1(Eγ′)] are prime ends in Ω which divide the singleton prime end [Ex

k ], and
thus are equivalent to it. As a consequence, [Eγ′ ] and [Eγ1 ] would also be equivalent,
contradicting their definitions. Hence, Cγ(f, x) is the same singleton set for all end-
cuts γ at x, and so is I[f(Ex

k )].
Thus, Cγ(f, x) is a single point (asymptotic value) independent of the choice of

end-cut γ and F is well-defined for every x ∈ ∂A.
Finally, we recall the notions of the Sobolev capacity and the condenser capacity

specialized to the case of the Heisenberg group H1.
The Sobolev 4-capacity of a set E ⊂ H1 is defined as follows:

(16) C4(E) := inf ‖u‖4N1,4(H1)
,

where the infimum is taken over all Newtonian functions u ∈ N1,4(H1) such that
u ≥ 1 on E (see e.g. [39] for definitions and properties of Newtonian spaces). If
Ω ⊂ H1 and E ⊂ Ω, then in an analogous way we define C ′

4(E), the Sobolev 4-
capacity of a set with respect to Ω (instead of H1), see the discussion in Chapter 2.5
in [11]. We further note that C ′

4(E) ≤ C4(E).
The following result relates the modulus of curve families to the condenser ca-

pacity, see Definition 1.4 and Remark 1.9 in Vuorinen [73], also Ziemer [77]; see
Markina [49] for a discussion in Carnot groups.

Lemma 5.1. (cf. Lemma A.1 in [2] and Theorem in [49]) For any choice of
disjoint non-empty compact subsets E, F in the closure of a ball BR ⊂ H1 we have
that

(17) Mod4(E, F,BR) = cap4(E, F,BR),
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where cap4(E, F,BR) denotes the 4-capacity of the condenser (E, F,BR) and is de-
fined by

(18) cap4(E, F,BR) := inf
u

ˆ

BR

g4u dλ,

where gu stands for a 4-weak upper gradient of u and the infimum is taken over all
u ∈ N1,4(BR) satisfying 0 ≤ u ≤ 1 in BR, u = 1 on E and u = 0 on F .

Let us comment that the equality between the 4-modulus and the 4-capacity
for disjoint sets E, F ⊂ BR is a consequence of [2, Lemma A.1], while the case
when E, F are allowed to be subsets of BR is proven in [49]. In order to relate
Definition 1.2 in [49] to the above definition of the condenser capacity, let us notice
that by Proposition 11.6 and Theorem 11.7 in [33] the minimal 4-weak upper gradient
of a Lipschitz function coincides almost everywhere with the norm of the horizontal
gradient (cf. discussion in Chapter 14.2 in [39]). Moreover, Theorem 5.47 in [11]
ensures the density of locally Lipschitz functions in N1,4(BR).

Remark 7. The assumptions of Theorem 1.5 simplify if f is a global quasi-
conformal map f : H1 → H1. Then, since B is a uniform domain, by Lemma 3.2,
also f(B) is uniform, by Proposition 4.2 and Theorem 4.4 in [19]. Thus, f(B) is
mod-uniform by Observation 4.1.

Proof of Theorem 1.5. The main idea of the proof is similar to the one of
Theorem 7.12 in [57]. However, we need to adjust several tools and auxiliary results
to the Heisenberg setting. Moreover, we use techniques developed in recent years.

Let E ⊂ f(B) be a closed set. Denote by Γ(E,Af , f(B)) the family of (horizon-
tal) curves γ in f(B) with one endpoint in E, the other in Af , and γ\(E∪Af) ⊂ f(B).
By applying Proposition 1.48 in Björn–Björn [11] in the setting of H1, we have that
C4(Af) = 0 implies Mod4(ΓAf

) = 0. Here, ΓAf
denotes the family of all nonconstant

(horizontal) curves in H1 passing through Af . Since Γ(E,Af , f(B)) ⊂ ΓAf
it holds

that

Mod4(E,Af , f(B)) ≤ Mod4(ΓAf
) = 0.

We set ∆′ := f−1Γ(E,Af , f(B)) and use the quasiconformality of f to conclude that
Mod4(∆

′) = 0. Since B is collared and f(B) is mod-uniform, then by the Koebe
theorem, Theorem 1.3, we conclude that all curves in ∆′ have the property that one
of their ends belongs to E ′ = F−1(E) while the other one belongs to A = F−1(Af).
Let us define ∆′′ by

∆′′ := Γ(E ′, A, B) \∆′

with a restriction that we consider open paths only. By the definition of A, we have
that F (A) = Af , and consequently all curves γ′′ in f(∆′′) are such that f does not
have an asymptotic value along them. It follows that all γ′′ are nonrectifiable and
Corollary A.1 implies that Mod4(f(∆

′′)) = 0. We again apply quasiconformality of
f and obtain that Mod4(∆

′′) = 0. Lemma A.2 and the subadditivity of the modulus
result in the following observation:

Mod4(E
′, A, B) = Mod4(∆

′ ∪∆′′) ≤ Mod4(∆
′) + Mod4(∆

′′) = 0.

This implies that for the family Γ′ consisting of nonconstant curves lying in B
which have non-empty intersection with A ⊂ ∂B, the 4-modulus is zero, i.e.,

Mod4({γ ∈ Γ(B) : |γ| ∩ A 6= ∅}) = 0.
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Indeed, suppose on the contrary that there exists a subfamily Γ1 ⊂ Γ′ such that
0 < Mod4(Γ1) < ∞. Next, let us choose a sphere centered at the origin with radius
r, contained in B, such that this sphere intersects curves in a subfamily of Γ1 with
positive 4-modulus, for large enough r (we denote this subfamily again by Γ1). Upon
taking the appropriate part of that sphere we obtain a continuum, denoted E ′ ⊂ B,
intersecting all curves in Γ1. Consider Γ2, a family of curves starting at intersection
points of curves in Γ1 with E ′ and ending at A. Clearly, Γ1 is minorized by Γ2 and,
therefore, it holds that

0 = Mod4(E
′, A, B) ≥ Mod4(Γ2) ≥ Mod4(Γ1) > 0

leading to a contradiction with the assumption on the positivity of Mod4(Γ1). Then,
Proposition 1.48 in [11] applied to B and A gives us the assertion of the theorem. �

Appendix A. Appendix

In the section we provide some auxiliary results in the geometry of the Heisenberg
group and the modulus of curve families in H1.

A.1. Polar coordinates. For each (z, t) ∈ H1, z 6= 0, the curve γ(z,t)(s) =
φ(s, (z, t)), where

φ(s, (z, t)) = δs

(

exp

(

−it
log(s)

|z|2
)

z, t

)

,(19)

is a horizontal curve joining 0 to (z, t) which we refer to as an H1-ray. In particular,
the parametrization (19) has the following properties (see Balogh–Tyson [8]):

(1) φ(s, (z, 0)) = sz,
(2) ‖φ(s, (z, t))‖ = ‖γ(z,t)(s)‖ = s‖(z, t)‖,
(3) If Φs(z, t) := φ(s, (z, t)), then detDΦs(z, t) = s4 for s > 0 and (z, t) ∈ Z :=

{(z, t) ∈ H1 : z 6= 0}.
By Theorem 3.7 in [8], there exists a unique Radon measure σ on S \ Z (for the

unit sphere S = S(0, 1)), such that for u ∈ L1(H1),
ˆ

H1

u(z, t) dλ(z, t) =

ˆ

S\Z

ˆ ∞

0

u(φ(s, v)) s3 ds dσ(v).(20)

Furthermore, by Proposition 2.18 in [8] we have λ(Z) = 0,

(21) S \ Z = {(√cosαeiθ, sinα) : α ∈ (−π/2, π/2), θ ∈ [0, 2π)},
and it follows that dσ = dα dθ (see Example 3.11 in [8]).

A.2. Modulus of curve families in H1. The notion of the modulus of curve
families is fundamental in the studies of geometry of metric spaces and mappings
between domains in metric spaces. Since the modulus is a vital quantity throughout
the text, we briefly discuss some of it’s properties.

We now follow the standard way to define the modulus of curve families, see e.g.
Chapter 6 in Väisälä [68]. Let Γ be a family of curves in a domain Ω ⊂ H1. We say
that a nonnegative Borel function ̺ : H1 → [0,∞] is admissible for Γ if

ˆ

γ

̺ dl ≥ 1,

for every locally rectifiable γ ∈ Γ. We denote the set of admissible functions by F (Γ).
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Let 1 ≤ p < ∞. Then the p-modulus of curve family Γ is defined as follows:

ModpΓ := inf
̺∈F (Γ)

ˆ

H1

̺p dλ,

where λ is 3-dimensional Lebesgue measure on H1 = R
3. If F (Γ) is empty, then by

convention we define ModpΓ = ∞. If γ ∈ Γ is a constant curve, then the condition
´

γ
ρ dl ≥ 1 is not satisfied and the set of admissible functions F (Γ) is empty.

From the point of view of relating the p-modulus to other geometric data we often
consider curve families joining subsets of a given domain. If Ω ⊆ H

1 is a domain
such that E and F are subsets of Ω, then Γ(E, F,Ω) denotes the family of closed
rectifiable curves γ in Ω which join E and F , i.e. one of the endpoints of γ belongs
to E, the other to F and γ \ (E ∪ F ) ⊂ Ω. If f is a homeomorphism of Ω, then we
define fΓ(E, F,Ω) = Γ(f(E), f(F ), f(Ω)).

The fundamental properties of the p-modulus that we require are summarized in
the following lemma (see [37] section 2.3).

Lemma A.1. The following properties hold for the p-modulus:

(1) The p-modulus of all curves that are not locally rectifiable is zero.
(2) Modp ∅ = 0.
(3) If Γ ⊂ Γ′, then ModpΓ ≤ ModpΓ

′.
(4) If Γ =

⋃∞
j=1 Γj , then ModpΓ ≤ ∑∞

j=1ModpΓj .

(5) If every curve in Γ′ contains a subcurve in Γ, then we say that Γ′ is minorized
by Γ and write Γ < Γ′. Then, it holds that ModpΓ

′ ≤ ModpΓ.

In the case p = 4 we can show that 4-modulus depends only on rectifiable curves.
The following observations are analogues of Corollary 6.11 and Theorem 7.10 in [68]
and are used in the proof of the Tsuji theorem 1.5 in Section 5. Since these results
do not appear in the literature we provide their proof.

Given a curve family Γ, we denote by Fr(Γ), the family of all nonnegative Borel
functions ̺ : H1 → R such that

´

γ
̺ dl ≥ 1 for every rectifiable γ ∈ Γ. Note that

F (Γ) ⊆ Fr(Γ) with equality when Γ consists entirely of closed paths.

Theorem A.1. If Γ is a curve family in H1, then

Mod4Γ = inf
̺∈Fr(Γ)

ˆ

H1

̺4 dλ.

Proof. Since F (Γ) ⊆ Fr(Γ) we have inf̺∈Fr(Γ)

´

H1
̺4 dλ ≤ Mod4Γ. Let

̺1(z, t) =

{

1
‖(z,t)‖ log ‖(z,t)‖

if ‖(z, t)‖ ≥ 2,

1 if ‖(z, t)‖ < 2,

then by (20) we have
ˆ

H1

̺1(z, t)
4 dλ(z, t) = 2π2

(

24

4
+

1

3(log 2)3

)

.

Assume γ ∈ Γ is locally rectifiable. If γ is bounded, then we have ̺1(g) ≥ a > 0
for some a and so

ˆ

γ

̺1 dl = ∞.

If γ is unbounded, then there exists an increasing sequence {rn}∞n=0 ⊂ R such
that ‖γ(r0)‖ ≥ 2, ‖γ(rn)‖ ≤ ‖γ(rn+1)‖ and ‖γ(rn)‖ → ∞ as n → ∞. For each n > 0,
let γn = γ|[r0,rn] and let γ̄n denote the arc length parameterization of γn. Applying
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the triangle inequality to dH1
we have |‖pq‖ − ‖p‖| ≤ ‖q‖. Using this observation in

(2) with p = γ̄n(si) and q = γ̄n(si)
−1γ̄n(si+1) we see that t → ‖γ̄n(t)‖, t ∈ [r0, rn], is

rectifiable and by Theorem 5.7 in [68] it holds that
ˆ

γ̄n

̺1 dl ≥
ˆ

‖γ̄n‖

̺0 |ds| ≥ log log ‖γ(rn)‖ − log log ‖γ(r0)‖,

where

̺0(s) =

{

1
s log s

if s ≥ 2,

1 if s < 2.

It follows that we again have that
´

γ
̺1 dl = ∞.

Let ̺ ∈ Fr(Γ) and set ̺ǫ = (̺4 + ǫ4̺41)
1/4, then ̺ǫ > ̺ and

ˆ

γ

̺ǫ dl ≥
ˆ

γ

̺ dl ≥ 1

for every rectifiable γ ∈ Γ. If γ ∈ Γ is not rectifiable, then
ˆ

γ

̺ǫ dl ≥ ǫ

ˆ

γ

̺1 dl = ∞.

It follows that ̺ǫ ∈ F (Γ) and

Mod4Γ ≤
ˆ

H1

̺4ǫ dλ =

ˆ

H1

̺4 dλ+ ǫ4
ˆ

H1

̺41 dλ.

Since ǫ > 0 and ̺ are arbitrary, we conclude that Mod4Γ ≤ inf̺∈Fr(Γ)

´

H1
̺4dλ. �

Corollary A.1. If Γr is the family of all rectifiable curves in Γ, then Mod4Γ =
Mod4Γr. In particular, the family of all non-rectifiable curves in H1 has zero 4-
modulus.

Lemma A.2. Let Γ0 = Γ0(E, F,Ω) denote the family of all curves γ in Ω with
the property that the closure of the trace of γ has nonempty intersection with both
E and F . If Γ = Γ(E, F,Ω), then

Mod4(Γ0) = Mod4(Γ).

Proof. Since Γ is minorized by Γ0, we have Mod4Γ ≤ Mod4Γ0. In order to prove
the reverse inequality it suffices to prove that F (Γ) ⊂ Fr(Γ0).

Assume that ̺ ∈ F (Γ) and that γ is a rectifiable path in Γ0. If γ∗ denotes the
closed extension of γ given by Theorem 2.1, then the locus of γ∗ meets both E and
F . In particular, we may assume there exists t1 ≤ t2 such that γ∗(t1) ∈ E and
γ∗(t2) ∈ F . It follows that the curve β = γ∗|[t1,t2] belongs to Γ and

ˆ

γ

̺ dl =

ˆ

γ∗

̺ dl ≥
ˆ

β

̺ dl ≥ 1.

We conclude that ̺ ∈ Fr(Γ0). �
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