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Abstract. Following Semmes [16] and Zinsmeister [20], we continue the study of Carleson

measures and their invariance under pull-back and push-forward operators. We also study the

analogous statements for vanishing Carleson measures. As an application, we show that some

quotient space of the space of chord-arc curves has a natural complex structure.

1. Introduction

A positive measure µ defined in a simply connected domain Ω is called a Carleson
measure (see [8]) if

(1) ‖µ‖∗ = sup

{
µ(Ω ∩D(z, r))

r
: z ∈ ∂Ω, 0 < r < diameter(∂Ω)

}
<∞,

where D(z, r) is the disk with center z and radius r. A Carleson measure µ is called
a vanishing Carleson measure if limr→0 µ(Ω ∩ D(z, r))/r = 0 uniformly for z ∈ ∂Ω.
We denote by CM(Ω) and CM0(Ω) the set of all Carleson measures and vanishing
Carleson measures on Ω, respectively. It is easy to see that CM(Ω) is a Banach space
with the Carleson norm ‖ · ‖∗.

Let ϕ be a conformal mapping from the unit disk ∆ onto a simply connected
domain Ω. For any µ ∈ CM(Ω), the pull-back of µ is the measure defined on ∆ by

ϕ∗ dµ = |ϕ
′

|−1 d(µ ◦ ϕ).

For a Carleson measure ν on ∆ we define similarly the push-forward of ν as being
the measure on Ω defined by

(ϕ−1)∗ dν = |(ϕ−1)
′

|−1 d(ν ◦ ϕ−1).

If Ω = ∆, these two operators are isomorphisms of CM(∆) (one being the recip-
rocal of the other): this is another way of stating the conformally invariant character
of Carleson measures on ∆ as in [8, p.231].

In 1989, Zinsmeister [20] proved the following:

Theorem 1.1. Let ϕ be a conformal mapping from the unit disk ∆ onto a simply
connected domain Ω. Then the following two statements hold:

(Z1) logϕ
′

∈ BMOA(∆) if and only if the pull-back operator ϕ∗ is bounded from
CM(Ω) to CM(∆);

https://doi.org/10.5186/aasfm.2018.4341
2010 Mathematics Subject Classification: Primary 30C62, 30F60, 30H35.
Key words: Carleson measures, vanishing Carleson measures, chord-arc curves, Bers

embedding.
Research supported by the National Natural Science Foundation of China (Grant Nos.

11501259, 11671175).



670 Huaying Wei and Michel Zinsmeister

(Z2) If ∂Ω is Ahlfors-regular, then the push-forward operator (ϕ−1)∗ is bounded
from CM(∆) to CM(Ω).

Recall that a curve Γ ⊂ C is Ahlfors-regular if, Λ1 denoting the Hausdorff linear
measure,

∃C1 > 0; ∀z ∈ C, ∀r > 0, Λ1(Γ ∩D(z, r)) 6 C1r.

It should be pointed out that if µ ∈ CM(Ω) is absolutely continuous (with respect
to Lebesgue measure), that is, if there exists a function λ ∈ L1 such that

dµ(z) = λ(z) dx dy,

then, writing dν = ϕ∗ dµ,

dν(ζ) = λ ◦ ϕ(ζ)|ϕ
′

(ζ)| dξ dη.

In 1988, Semmes [16] proved the following:

Theorem 1.2. Let ϕ be a quasiconformal mapping of ∆ onto ∆ that satisfies

(S1) ϕ is bi-Lipschitz continuous under the Poincaré metric,
(S2) ϕ|S is a strongly quasisymmetric homeomorphism.

If λ(z) dx dy ∈ CM(∆), then λ ◦ ϕ(ζ)|∂ϕ| dξ dη ∈ CM(∆), with norm dominated by
the norm of λ(z) dx dy.

Furthermore, in [18] it is shown that λ◦ϕ(ζ)|∂ϕ| dξ dη ∈ CM0(∆) if λ(z) dx dy ∈
CM0(∆).

In Section 3, following Semmes [16] and Zinsmeister [20], we continue the study
of Carleson measures and their invariance under pull-back and push-forward opera-
tors. We also study the analogous statements for vanishing Carleson measures. In
Section 4, as an application of Carleson measure theory, we study further the space
of chord-arc curves in the framework of the theory of BMO-Teichmüller spaces: in
particular, we show that some quotient space of the space of chord-arc curves has a
natural complex structure. Before stating these results, we recall the standard theory
of Teichmüller spaces in Section 2.

2. Teichmüller theory

In our case, it is convenient to consider the universal Teichmüller space T ,
which is identified with the group QS of quasisymmetric automorphisms of the
unit circle S modulo post-composition of Möbius transformations Möb(S), namely,
T = Möb(S)\QS. Here a sense preserving self-homeomorphism h of the unit circle
S is quasisymmetric if there exists some M > 0 such that

1

M
6

|h(ei(θ+t))− h(eiθ)|

|h(eiθ)− h(ei(θ−t))|
6 M

for all θ and t > 0. Let B(∆∗) denote the Banach space of functions φ holomorphic
in the exterior of the unit disk ∆∗ with norm

‖φ‖B = sup
z∈∆∗

(|z|2 − 1)2|φ(z)|.

B0(∆
∗) is the subspace of B(∆∗) consisting of all functions φ such that (|z|2 −

1)2|φ(z)| → 0 as |z| → 1+.
The Bers embedding Φ of T is a homeomorphism of T onto a bounded domain

in B(∆∗). The full definition of Φ involves several steps, which we list here:

1. Select a representative h of an element [h] in T = Möb(S)\QS (h is a qua-
sisymmetric homeomorphism of S),
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2. take any quasiconformal self-map h̃ of ∆ such that h̃ is an extension of h,
3. form the Beltrami coefficient µ of h̃, namely, µ(z) = h̃z̄/h̃z,
4. let µ̃(z) = µ(z) for z ∈ ∆ and µ̃(z) = 0 for z ∈ ∆∗ and solve for f in the

Beltrami equation

fz̄(z) = µ(z)fz(z)

to obtain a quasiconformal homeomorphism of Ĉ holomorphic in ∆∗,
5. take the Schwarzian derivative S(f) of f in ∆∗.

The Bers embedding is the map [h] 7→ Φ(h) = S(f) (see [11]).
Via the Bers embedding, T carries a natural complex Banach manifold structure

modeled on the Banach space B(∆∗). Recall that the small Teichmüller space, T0 =
Möb(S)\ Sym, as an important subspace of the universal Teichmüller space, has been
introduced and well studied by Gardiner and Sullivan [10] in 1992. Here the subgroup
Sym ⊂ QS consists of symmetric automorphisms of S. Recall that a quasisymmetric
automorphism h is said to be symmetric if

lim
t→0+

|h(ei(θ+t))− h(eiθ)|

|h(eiθ)− h(ei(θ−t))|
= 1

uniformly for all θ. The mapping Φ described above applied to T0 has image in
B0(∆

∗). The Bers embedding also provides a natural way to make T0 into complex
manifold modeled on the Banach space B0(∆

∗).

Furthermore, let Φ̂ induced by the Bers embedding Φ be the map from Sym \QS

into B0\B. Φ̂ is defined in exactly the same way as Φ with the exception that Φ̂ is
viewed as defined on the right cosets of Sym in QS with image in B0\B.

In 1992, Gardiner and Sullivan [10] proved that the map Φ̂ from Sym \QS into
B0\B is well-defined and locally one-to-one. We have the commutative diagram:

Möb(S)\QS B

Sym \QS B0\B

Φ

π

Φ̂

p

Thus, the map Φ̂ yields local coordinates for Sym \QS in the Banach quotient
space B0\B, and then the coset space Sym \QS becomes a complex manifold modeled
in the Banach space B0\B. The following result [9, Section 16.8], which implies that

Φ̂ is a global coordinate, was first observed by Kahn.

Theorem 2.1. The map Φ̂ from Sym \QS into B0\B is an isomorphism.

Let Ω be a simply connected domain in Ĉ bounded by a Jordan curve Γ. Ω and
the complement Ω∗ of Ω∪ Γ are called complementary Jordan domains. The confor-
mal maps f and g mapping ∆∗ onto Ω∗ and Ω onto ∆ extend continuously to Γ, and
thus the composition g ◦ f restricted to the unit circle S is a homeomorphism h. We
call h the welding homeomorphism corresponding to Γ. We denote by SQS the set of
strongly quasisymmetric homeomorphisms h on the unit circle S which are welding
homeomorphisms corresponding to the quasicircles satisfying the Bishop–Jones con-
dition (called BJ quasicircles) (see [3]). In other words, h is strongly quasisymmetric
if and only if it is absolutely continuous with density h

′

belonging to the class of
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weights A∞ (see [8]) introduced by Muckenhoupt, in particular, log h
′

∈ BMO(S)
and

d([h1], [h2]) = ‖ log h
′

2 − log h
′

1‖BMO, [h1], [h2] ∈ Möb(S)\SQS

defines a topology in Möb(S)\SQS. Let LQS consist of welding homeomorphisms
corresponding to chord-arc curves.

Definition 2.1. We call a curve Γ is a chord-arc curve (also called Lavrentiev
curve) with constant C2, if

Λ1(ζ̃z) 6 C2|ζ − z|

for the smaller subarc ζ̃z of Γ joining any two finite points z and ζ of Γ. A domain
bounded by a chord-arc curve with constant C2 is called a C2-chord-arc domain.

Let SS be the set of strongly symmetric homeomorphisms h on S which are
absolutely continuous, with log h

′

∈ VMO(S). In other words, SS is the set of
welding homeomorphisms corresponding to asymptotically smooth curves in the sense
of Pommerenke [15, p.172], which satisfy

Λ1(ζ̃z)/|ζ − z| → 1, as |ζ − z| → 0, ζ, z ∈ Γ.

It is clear that we have the increasing scale of sets SS ⊂ LQS ⊂ SQS.
We denote by B(∆∗) the Banach space of functions φ holomorphic in ∆∗ each of

which induces a Carleson measure λφ by dλφ(z) = |φ(z)|2(|z|2−1)3 dx dy ∈ CM(∆∗).
The norm on B(∆∗) is

‖φ‖B = ‖λφ‖∗.

[17, Lemma 4.1] implies B(∆∗) ⊂ B(∆∗), and the inclusion map is continuous. We
denote by B0(∆

∗) the subspace of B(∆∗) consisting of all functions φ such that
λφ ∈ CM0(∆

∗). Then B0(∆
∗) ⊂ B0(∆

∗).
We claim that all above properties of the coset space Sym \QS carry over if one

view Φ̂ as a mapping from the space SS\LQS into the Banach quotient space B0\B.

For more information about the map Φ̂, we refer the readers to [12].

Theorem 2.2. The map Φ̂ from SS\LQS onto its image in B0\B is well-defined
and globally one-to-one. Consequently, the coset space SS\LQS becomes a complex
manifold modeled on the Banach space B0\B.

We hope that this complex analytic theory could find applications to some other
problems in the study of chord-arc curves. In Section 4, we will give the proof of
Theorem 2.2.

3. On Carleson measures

The following result by Bishop and Jones [3] gives a geometric characterization
of BMOA domain.

Lemma 3.1. Let ϕ be conformal on ∆. Then logϕ
′

∈ BMOA(∆) if and only if
the domain Ω = ϕ(∆) satisfies the following Bishop–Jones (BJ) condition: For any
z ∈ Ω there exists a k(Ω)-chord-arc domain Ωz ⊂ Ω containing z, whose diameter is
uniformly comparable to dist(z, ∂Ω), and such that

Λ1(∂Ω ∩ ∂Ωz) ≥ c(Ω) dist(z, ∂Ω),

where k(Ω) > 1 and c(Ω) > 0 depend only on Ω.
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We next state a well-known corollary of Koebe distortion theorem (see [15, p.9]).
For a conformal map of ∆, define

df(z) = dist(f(z), ∂f(∆)) for z ∈ ∆.

Lemma 3.2. If f maps ∆ conformally into C, then

1

4
(1− |z|2)|f

′

(z)| 6 df(z) 6 (1− |z|2)|f
′

(z)| for z ∈ ∆.

Now we prove the analogous statement of (Z1) for vanishing Carleson measures.

Theorem 3.1. Let ϕ be conformal on ∆ and Ω = ϕ(∆) be a BJ quasidisk. Then
the pull-back operator

ϕ∗ : CM0(Ω) → CM0(∆)

is well-defined and bounded.

Proof. Suppose ϕ be conformal from ∆ onto BJ quasidisk Ω. Then ϕ can be
extended to a quasiconformal homeomorphism in Ĉ (still denoted by ϕ). Thus, ϕ is
bi-Hölder in ∆. That is,

(2) C1|z1 − z2|
1/α 6 |ϕ(z1)− ϕ(z2)| 6 C2|z1 − z2|

α, z1, z2 ∈ ∆,

here the constants C1, C2 and α depend only on the conformal mapping ϕ. Let
µ ∈ CM0(Ω) and dν = ϕ∗ dµ = |ϕ

′

|−1 d(µ ◦ ϕ). Then for any ǫ > 0, there exists a
constant r0 > 0 such that 1

r
µ(D(w, r)∩Ω) 6 ǫ uniformly for w ∈ Γ when 0 < r 6 r0.

Denote by ϕ−1(w) = z. It follows from (2) that there exists a constant λ0 > 0 such
that

(3) ϕ(D(z, λ0) ∩∆) ⊂ D(w, r0) ∩ Ω.

Let dµ
′

= d(µχD(w,r0)∩Ω) and dν
′

= ϕ∗ dµ
′

= |ϕ
′

|−1 d(µ
′

◦ ϕ) . Here χD(w,r0)∩Ω

denotes the characteristic function of the intersection D(w, r0) ∩Ω. Then ‖µ
′

‖∗ 6 ǫ.
We conclude from Lemma 3.1 and (Z1) that ν

′

is a Carleson measure with norm
dominated by ǫ. By means of (3) we have dν̃ = |ϕ

′

|−1 d(µ ◦ϕχD(z,λ0)∩∆) 6 dν
′

. Then
ν̃ is a Carleson measure with norm dominated by ǫ. Thus, ν ∈ CM0(∆). �

Let Ω be a domain bounded by the Ahlfors-regular curve Γ with constant C1. For
any small constant r > 0, let Ωr = {z ∈ Ω: dist(z,Γ) > r}. Denote by ∂Ωr = Γr.

Lemma 3.3. µ ∈ CM(Ω) is a vanishing Carleson measure in Ω if and only if
‖µ−µr‖∗ → 0 as r → 0+. Here dµr = d(µχΩr

) and χΩr
is the characteristic function

of the domain Ωr.

Proof. Suppose ‖µ − µr‖∗ → 0 as r → 0+. Then for any ǫ > 0, there exists
a constant r0 > 0 such that ‖µ − µr0‖∗ < ǫ. We conclude that when 0 < h <
diameter(∂Ω), for any z ∈ Γ, we have (µ−µr0)(Ω∩D(z, h)) < ǫh which implies that

µ(Ω ∩D(z, h)) = (µ− µr0)(Ω ∩D(z, h)) < ǫh

uniformly for z ∈ Γ when 0 < h < r0. Thus, µ ∈ CM0(Ω).
Conversely, suppose µ ∈ CM0(Ω). For any ǫ > 0, there exists a constant h0 > 0

such that µ(Ω ∩ D(z, h)) < ǫh uniformly for z ∈ Γ when 0 < h 6 h0. We choose
r0 =

1
2
h0. Then when 0 < h 6 h0,

(4) (µ− µr0)(Ω ∩D(z, h)) 6 µ(Ω ∩D(z, h)) < ǫh,

uniformly for z ∈ Γ. It remains to show that (µ− µr0)(Ω ∩D(z, h)) < ǫh uniformly
for z ∈ Γ as h0 < h < diameter(∂Ω). For any z ∈ Γ, assume ζ, w be respectively the
first and the last (for an orientation of the curve) points of Γ ∩ ∂D(z, h). Suppose
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ζ0 = z, ζ1, ζ2, · · · , ζn−1 ∈ ζ̃z and ζn ∈ Γ satisfy |ζ̃nz| > |ζ̃z| and |ζi+1ζi| = h0, i =
0, 1, · · ·, n− 1. Similarly, suppose w0 = z, w1, w2, · · · , wm−1 ∈ z̃w and wm ∈ Γ satisfy
|z̃wm| > |z̃w| and |wjwj+1| = h0, j = 0, 1, · · ·, m− 1. Then

(µ− µr0)(Ω ∩D(z, h)) 6

n∑

i=0

µ(Ω ∩D(ζi, h0)) +

m∑

j=0

µ(Ω ∩D(wj, h0))

6 (n+ 1)h0ǫ+ (m+ 1)h0ǫ 6 4h0ǫ+ |ζ̃w|ǫ

6 4h0ǫ+ C1hǫ < (4 + C1)hǫ.

(5)

Combining (4) and (5), we conclude that for 0 < r 6 r0,

(µ− µr)(Ω ∩D(z, h)) 6 (µ− µr0)(Ω ∩D(z, h)) < (4 + C1)hǫ

uniformly for z ∈ Γ when 0 < h < diameter(∂Ω). Consequently, ‖µ − µr‖∗ → 0 as
r → 0+. �

Based on Lemma 3.3 , we show the analogous statement of (Z2) for vanishing
Carleson measures is still valid.

Theorem 3.2. Let Ω be an Ahlfors-regular domain and ϕ map ∆ conformally
onto Ω. Then the push-forward operator

(ϕ−1)∗ : CM0(∆) → CM0(Ω)

is well-defined and bounded.

Remark 3.1. With the same hypothesis the pull-back operator

ϕ∗ : CM0(Ω) → CM0(∆)

is also well-defined and bounded; the (similar) proof is left to the reader.

Remark 3.2. For the convenience, the measure and its density will be identified
in the following arguments.

Proof. Suppose ν ∈ CM0(∆). Then for any ǫ > 0, there exists r0 ∈ (0, 1) such
that ‖ν−νχ∆r0

‖∗ < ǫ. We conclude by Lemma 3.2 that there exists a small constant

r
′

0 such that ϕ(∆r0) ⊂ Ωr
′

0

which implies (νχ∆r0
) ◦ ϕ−1(A) 6 ν ◦ (ϕ−1χΩ

r

′

0

)(A) for

any A ⊂ Ω. Combining the last inequality and (Z2), we obtain

‖(ϕ−1)∗ν − (ϕ−1)∗νχΩ
r
′
‖∗ 6 ‖(ϕ−1)∗ν − (ϕ−1)∗νχΩ

r

′

0

‖∗

6 ‖(ϕ−1)∗ν − (ϕ−1)∗(νχ∆r0
)‖∗ 6 C‖ν − νχ∆r0

‖∗ < Cǫ

when 0 < r
′

6 r
′

0. Here the constant C is the norm of the operator (ϕ−1)∗. Conse-
quently, (ϕ−1)∗ν ∈ CM0(Ω). �

Definition 3.1 (see [15] p.168). Let ω(z) > 0 be locally integrable on the unit
circle S. Set ω(E) =

´

E
ω(z)|dz|. Denote by |E| the Lebesgue measure of E. We say

that ω satisfies the Coifman–Fefferman (A∞) condition if one of the following two
equivalent conditions holds:

(1a) there exist C1 > 0, C2 > 0 such that

ω(E)

ω(I)
6 C2

( |E|
|I|

)C1

for all subarcs I ⊂ S and measurable sets E ⊂ I.
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(2a) There exists β > 0 such that for all subarcs I ⊂ S and measurable sets E ⊂ I,

ω(E)

ω(I)
< β =⇒

|E|

|I|
< 1/2.

The following Lemma [15, p. 169] states an important property of chord-arc do-
mains:

Lemma 3.4. Let f map ∆ conformally onto Ω. If Ω is a chord-arc domain, then
|f

′

| satisfies the (A∞) condition.

Definition 3.2. [16] Suppose γ(z) maps S homeomorphically onto Γ. We say
that γ(z) is a strongly quasisymmetric homeomorphism, if

(1b) it is locally absolutely continuous,
(2b) Γ is a chord-arc curve,
(3b) |γ

′

(z)| ∈ A∞.

Now we give the invariance of Carleson measures and vanishing Carleson mea-
sures under pull-back and push-forward operators induced by quasiconformal map-
pings satisfying certain conditions which generalizes Semmes’ result (see Theorem 1.2).

Theorem 3.3. Let Ω be a chord-arc domain. If ϕ is a quasiconformal mapping
of ∆ onto Ω that satisfies

(S1) ϕ is bi-Lipschitz continuous under the Poincaré metric,
(S2) ϕ|S is a strongly quasisymmetric homeomorphism,

then λ ◦ ϕ−1(z)|∂ϕ−1| dx dy ∈ CM(Ω) when λ(z) dx dy ∈ CM(∆). Furthermore,
λ ◦ ϕ−1(z)|∂ϕ−1| dx dy ∈ CM0(Ω) when λ(z) dx dy ∈ CM0(∆).

Proof. Let f : Ω → ∆ be conformal and the map ψ : ∆ → ∆ satisfy ψ ◦ f = ϕ−1.
That is, ψ = ϕ−1 ◦ f−1.

Denote by ρΩ the Poincaré metric in Ω, that is, ρΩ(z)|dz| = |df(z)|/(1− |f(z)|2)
for z ∈ Ω. The condition (S1) implies there exists a constant C > 1 such that

1

C

|dz|

1− |z|2
6 ρΩ(ϕ(z))| dϕ(z)| 6 C

|dz|

1− |z|2
.

We conclude that

1

C

|dz|

1− |z|2
6

|d(f ◦ ϕ(z))|

1− |f ◦ ϕ(z)|2
6 C

|dz|

1− |z|2
.

Consequently,
1

C

|dz|

1− |z|2
6

|dψ−1(z)|

1− |ψ−1(z)|2
6 C

|dz|

1− |z|2

from which we obtain ψ is bi-Lipschitz under the Poincaré metric.
Combining (2a) and (S2), there exists ǫ > 0 such that for all subarcs I ⊂ S and

measurable sets E ⊂ I,
|ϕ(E)|

|ϕ(I)|
< ǫ =⇒

|E|

|I|
< 1/2.

On the other hand, By (1a) and Lemma 3.4, we conclude that for above ǫ > 0, there
exists β > 0 such that

|f ◦ ϕ(E)|

|f ◦ ϕ(I)|
< β =⇒

|f−1 ◦ (f ◦ ϕ(E))|

|f−1 ◦ (f ◦ ϕ(I))|
=

|ϕ(E)|

|ϕ(I)|
< ǫ.
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We conclude that
|ψ−1(E)|

|ψ−1(I)|
< β =⇒

|E|

|I|
< 1/2.

Thus by means of (2a) we have (ψ−1)
′

∈ A∞ which implies ψ
′

∈ A∞. Then ψ is a
strongly quasisymmetric homeomorphism.

By Semmes’ result, λ ◦ ψ(z)|∂ψ| dx dy ∈ CM(∆) when λ(z) dx dy ∈ CM(∆). It
follows from (Z2) that

λ ◦ ϕ−1(z)|∂ϕ−1| dx dy = λ ◦ (ψ ◦ f)(z)|∂(ψ ◦ f)| dx dy

= (λ ◦ ψ|∂ψ|) ◦ f(z)|f
′

| dx dy ∈ CM(Ω).

Furthermore, by Theorem 3.2, λ ◦ ϕ−1(z)|∂ϕ−1| dx dy ∈ CM0(Ω) when λ(z) dx dy ∈
CM0(∆). �

Theorem 3.4. Let Ω be a chord-arc domain. If ϕ is a quasiconformal mapping
of ∆ onto Ω that satisfies

(S1) ϕ is bi-Lipschitz continuous under the Poincaré metric,
(S2) ϕ|S is a strongly quasisymmetric homeomorphism,

then α ◦ ϕ(z)|∂ϕ|dxdy ∈ CM(∆) when α(z)dxdy ∈ CM(Ω). Furthermore, α ◦
ϕ(z)|∂ϕ|dxdy ∈ CM0(∆) when α(z)dxdy ∈ CM0(Ω).

Proof. Let f : ∆ → Ω be conformal and ψ = f−1 ◦ ϕ. The proof of Theo-
rem 3.3 implies ψ is bi-Lipschitz continuous under the Poincaré metric and ψ|S is
a strongly quasisymmetric homeomorphism. By (Z1), α ◦ f(z)|f

′

| dx dy ∈ CM(∆)
when α(z) dx dy ∈ CM(Ω). On the other hand, By Semmes’ result,

α ◦ ϕ(z)|∂ϕ| dx dy = α ◦ (f ◦ ψ)(z)|∂(f ◦ ψ)| dx dy

= (α ◦ f |f
′

|) ◦ ψ(z)|∂ψ| dx dy ∈ CM(∆).

Furthermore, by Theorem 3.1, α ◦ ϕ(z)|∂ϕ| dx dy ∈ CM0(∆) when α(z) dx dy ∈
CM0(Ω). �

Remark 3.3. In Theorem 3.3 and Theorem 3.4, the unit disk ∆ can be replaced
by the chord-arc domain. We omit the detail here.

4. The quotient space of chord-arc curves

Let M(∆) denote the open unit ball of the Banach space L∞(∆) of essentially
bounded measurable functions on ∆. We denote by L(∆) the Banach space of all
essentially bounded measurable functions µ on ∆ each of which induces a Carleson
measure λµ ∈ CM(∆) by dλµ(z) = |µ(z)|2/(1 − |z|2) dx dy. The norm on L(∆) is
defined as

‖µ‖c = ‖µ‖∞ + ‖λµ‖∗.

L0(∆) is the subspace of L(∆) consisting of all elements µ such that λµ ∈ CM0(∆).
Set M(∆) =M(∆) ∩ L(∆) and M0(∆) =M(∆) ∩ L0(∆).

Let Ω be a simply connected domain in Ĉ bounded by a quasicircle Γ. The
conformal maps f and g mapping ∆∗ onto Ω∗ and Ω onto ∆ extend continuously
to Γ and h = g ◦ f is the quasisymmetric welding homeomorphism. By results of
Astala–Zinsmeister [2], Bishop–Jones [3] and Fefferman–Kenig–Pipher [7], the follow-

ing three conditions are equivalent: (B1)f has a quasiconformal extension to Ĉ whose
complex dilatation µ ∈ M(∆) (for instance the Douady–Earle extension, see [4]);
(B2)h ∈ SQS; (B3)S(f) ∈ B(∆∗). Furthermore, Pommerenke [14] and Shen–Wei [17]
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obtained: The following statements are equivalent: (V1)f has a quasiconformal ex-

tension to Ĉ whose complex dilatation µ ∈ M0(∆); (V2)h ∈ SS; (V3)S(f) ∈ B0(∆
∗).

We first note that the implication relations B1 ⇒ B3 and V1 ⇒ V3 are still valid for
the chord-arc domain.

Lemma 4.1. Let Ω be a chord-arc domain. Let s be a quasiconformal mapping
of Ĉ with complex dilatation equal to ν in Ω, conformal in Ω∗. If |ν|2ρΩ(z) dx dy ∈
CM(Ω), then |S(s)|2ρ−3

Ω∗ (z) dx dy ∈ CM(Ω∗). While |S(s)|2ρ−3
Ω∗ (z) dx dy ∈ CM0(Ω

∗)
if |ν|2ρΩ(z) dx dy ∈ CM0(Ω).

Proof. Let g : ∆ → Ω and f : ∆∗ → Ω∗ be the two conformal mappings of a
chord-arc domain. Let h = g−1 ◦ f be conformal welding with respect to Γ = ∂Ω.
Then h ∈ LQS.

Let ϕ = E(h) be the Douady–Earle extension of h. Douady–Earle [5] says ϕ
is bi-Lipschitz under the Poincaré metric. It follows from Cui–Zinsmeister [4] that

|µ(z)|2/(1− |z|2) dx dy ∈ CM(∆), where µ = ∂ϕ/∂ϕ. Denote by f̃ = g ◦ ϕ. Then f̃

is a quasiconformal extension of f to the unit disk ∆ satisfying that f̃ is bi-Lipschitz
continuous under the Poincaré metric and

|µ(f̃)|2

1− |z|2
dx dy =

|µ(z)|2

1− |z|2
dx dy ∈ CM(∆).

Since Ω is a chord-arc domain, by Lemma 3.4 g|S is a strongly quasisymmetric home-
omorphism. We also have ϕ|S = h ∈ LQS ⊂ SQS, from which we deduce that

f̃ |S is a strongly quasisymmetric homeomorphism by means of the similar proof as
Theorem 3.3.

It follows from the formula for the dilatation of a composition,

µ(s ◦ f̃) =
µ(f̃) + (ν ◦ f̃)τ

1 + µ(f̃)(ν ◦ f̃)τ
, τ =

(f̃)z

(f̃)z

that

|µ(s ◦ f̃)|2

1− |z|2
6 C1

(
|µ(f̃)|2

1− |z|2
+

|ν ◦ f̃ |2

1− |z|2

)
.

Noting that f̃ = g ◦ ϕ, we see that

|ν ◦ f̃ |2

1− |z|2
6 C2

|(ν ◦ g) ◦ ϕ|2

1− |ϕ(z)|2
|∂ϕ| = C2

( |ν ◦ g|2
1− |z|2

)
◦ ϕ|∂ϕ|

= C2(|ν ◦ g|
2ρΩ ◦ g|g

′

|) ◦ ϕ|∂ϕ| = C2((|ν|
2ρΩ) ◦ g|g

′

|) ◦ ϕ|∂ϕ|

= C2(|ν|
2ρΩ) ◦ f̃ |∂f̃ |,

which implies that |ν ◦ f̃ |2/(1 − |z|2) dx dy ∈ CM(∆) by Theorem 3.4. Thus, |µ(s ◦

f̃)|2/(1− |z|2) dx dy ∈ CM(∆). We conclude by B1 ⇒ B3 that

|S(s ◦ f)|2(|z|2 − 1)3 dx dy ∈ CM(∆∗).

Since Ω∗ is a chord-arc domain, we also have

|S(f)|2(|z|2 − 1)3 dx dy ∈ CM(∆∗).
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By simple computation,

(|S(s)|2ρ−3
Ω∗ ) ◦ f |f

′

| = |S(s) ◦ f |2|f
′

|4(ρΩ∗ ◦ f |f
′

|)−3

= |S(s) ◦ f |2|f
′

|4(|z|2 − 1)3

6 4|S(s ◦ f)|2(|z|2 − 1)3 + 4|S(f)|2(|z|2 − 1)3.

Thus, (|S(s)|2ρ−3
Ω∗ ) ◦ f(z)|f

′

| dx dy ∈ CM(∆∗). Now |S(s)|2ρ−3
Ω∗ (z) dx dy ∈ CM(Ω∗)

follows from Theorem 3.3.
Examining the above proof, we may obtain that |S(s)|2ρ−3

Ω∗(z) dx dy ∈ CM0(Ω
∗)

if |ν|2ρΩ(z) dx dy ∈ CM0(Ω). �

Shen–Wei [17] proved Φ from Möb(S)\SQS onto its image in B(∆∗) is a home-
omorphism if we think of Möb(S)\SQS as having the BMO topology and B(∆∗)
as having the topology induced by the Carleson norm. In [19] it is proved that
Möb(S)\LQS is an open subset of Möb(S)\SQS. We conclude that Φ from Möb(S)\
LQS onto its image in B(∆∗) is also a homeomorphism. Thus, the map Φ yields
a global coordinate for Möb(S)\LQS in the Banach space B(∆∗), and then the
coset space Möb(S)\LQS becomes a complex manifold modeled in the Banach space
B(∆∗).

In the rest part of this paper, we prove Φ̂ described in Section 2 from SS\LQS
onto its image in B0\B is well-defined and globally one-to-one, and then SS\LQS is
a complex manifold.

In the first step, we claim Φ̂ is well-defined. Since an element h ∈ LQS is
determined by the complex dilatation µ ∈ M(∆) of the quasiconformal extension of
h to ∆, we can write Φ(µ) instead of Φ(h).

Let ∂Ω1 = ∂Ω∗
1 = Γ be a chord-arc curve passing through three points 1, i and

−1. Let f0 be a conformal map of ∆∗ to Ω∗
1, g0 be a conformal map of Ω1 to ∆, and

g0 ◦ f0 restricted to S be equal to h0. Suppose all three maps are normalized to fix
1, i and −1. Let fλ = DE(h0) be the Douady–Earle extension of h0 with Beltrami
coefficient equal to λ in ∆. Denote by fλ = g−1

0 ◦ fλ in ∆, and fλ = f0 in ∆∗. Then

fλ is a quasiconformal homeomorphism of Ĉ with Beltrami coefficient equal to λ in
∆ and equal to 0 in ∆∗.

In order to prove the claim, we just need to show: for any µ ∈ M0(∆), Φ(µ ∗
λ)− Φ(λ) ∈ B0(∆

∗).
Let sµ be a quasiconformal mapping of ∆ onto ∆ with Beltrami coefficient µ. Let

s̃ be the quasiconformal homeomorphism of Ĉ with the property that s̃ ◦ fλ has the
same Beltrami coefficient as sµ◦fλ in ∆ and s̃◦fλ has Beltrami coefficient identically
equal to zero in ∆∗. If r is the conformal mapping of s̃ ◦ fλ(∆) onto ∆, then

sµ ◦ fλ = r ◦ s̃ ◦ fλ = r ◦ s̃ ◦ g−1
0 ◦ g0 ◦ fλ = r ◦ s̃ ◦ g−1

0 ◦ fλ.

Cancelling fλ from the right and left side of this equation, we find that

sµ ◦ g0 = r ◦ s̃.

Thus, we conclude that the Beltrami coefficient of s̃ is

ν̃(z) = µ ◦ g0(z)
g

′

0(z)

g
′

0(z)
.

Now, suppose µ ∈ M0(∆). Then

dλµ(z) =
|µ(z)|2

1− |z|2
dx dy ∈ CM0(∆).
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Since Ω1 is a chord-arc domain, we conclude by Theorem 3.2 that

|ν̃(z)|2ρΩ1
(z) dx dy =

|µ ◦ g0(z)|
2

1− |g0(z)|2
|g

′

0(z)| dx dy = λµ ◦ g0(z)|g
′

0(z)| dx dy ∈ CM0(Ω1).

It follows from Lemma 4.1 that

|S(s̃)|2ρ−3
Ω∗

1
(z) dx dy ∈ CM0(Ω

∗

1).

By means of Theorem 3.1 we have

|S(s̃) ◦ fλ(z)|
2ρ−3

Ω∗

1
(fλ(z))|f

′

λ| dx dy ∈ CM0(∆
∗).

The cocycle identity for the Schwarzian derivative implies

Φ(µ ∗ λ)− Φ(λ) = S(s̃ ◦ fλ)− S(fλ) = S(s̃) ◦ fλ(f
′

λ)
2.

On the other hand,

|S(s̃) ◦ fλ(f
′

λ)
2|2(|z|2 − 1)3 dx dy = (|S(s̃)|2ρ−3

Ω∗

1
) ◦ fλ|f

′

λ| dx dy ∈ CM0(∆
∗).

Consequently, Φ(µ ∗ λ)− Φ(λ) ∈ B0(∆
∗).

Thus, the claim is proved. We have the commutative diagram:

Möb(S)\LQS B

SS\LQS B0\B

Φ

π

Φ̂

p

In the second step, we prove Φ̂ is locally one-to-one. Assume h be a fixed point
in LQS. Pick a small neighborhood of h in LQS which by π is mapped onto a neigh-
borhood of π(h) in SS\LQS. Let h0 and h1 be two functions in this neighborhood,
and h0 = g0 ◦ f0, h1 = g1 ◦ f1 be the Riemann factorizations of these two mappings.
Suppose all these maps are normalized to fix 1, i and −1. In order to prove Φ̂ is
locally one-to-one, we need to show, if S(f1)−S(f0) ∈ B0, then there exists a s ∈ SS
such that s ◦ h0 = h1.

According to the assumption that two functions h0 and h1 are in a small neigh-
borhood of h in LQS, there is a small constant ǫ > 0 such that ‖S(f1)−S(f0)‖B < ǫ.
Since the inclusion map i : B(∆∗) → B(∆∗) is continuous, ‖S(f1) − S(f0)‖B < Cǫ.
Let f = f1 ◦ f

−1
0 be the conformal map of Ω∗

1 = f0(∆
∗). Denote by ρΩ∗

1
and ρ∆∗ the

hyperbolic metric in Ω∗
1 and ∆∗, respectively, that is, ρΩ∗

1
= ρ∆∗ ◦ f−1

0 |(f−1
0 )

′

|. The
cocycle identity for the Schwarzian derivative implies

|S(f)|ρ−2
Ω∗

1
= |(S(f1)− S(f0)) ◦ f

−1
0 (f−1

0 )
′2|(ρ∆∗ ◦ f−1

0 |(f−1
0 )

′

|)−2

= (|S(f1)− S(f0)|ρ
−2
∆∗) ◦ f−1

0 .

Thus, supz∈Ω∗

1
|S(f)|ρ−2

Ω∗

1
= ‖S(f1)− S(f0)‖B < Cǫ.

Let f ν = DE(h0) be Douady–Earle extension of h0 with complex dilatation

equal to ν in ∆. Then fν = g−1
0 ◦ f ν is a quasiconformal extension of f0 to Ĉ. The

Earle–Nag reflection [9, p. 263] associated with the curve Γ1 = ∂Ω1 is given by the
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formula

γ(z) =





f0 ◦ j ◦ f
−1
ν (z) = f0 ◦ j ◦DE(g0 ◦ f0)

−1 ◦ g0, z ∈ Ω1,

z, z ∈ Γ1,

γ−1(z), z ∈ Ω∗
1,

where j(z) = 1/z̄, and [9, p. 265] says

(6) C−1
1 (‖ν‖∞) 6 |γ(z)− z|2ρ−2

Ω∗

1
(γ(z))|∂̄γ(z)| 6 C1(‖ν‖∞).

Under the condition that supz∈Ω∗

1
|S(f)|ρ−2

Ω∗

1
is sufficiently small, Ahlfors [1], Earle–

Nag [6] (see also [9, p. 266]) proved that f can be extended to a quasiconformal
mapping fµ in Ω1 whose complex dilatation µ satisfies

µ(z) =
S(f)(γ(z))(γ(z)− z)2∂̄γ(z)

2 + S(f)(γ(z))(γ(z) − z)2∂γ(z)
, z ∈ Ω1.

Then by means of (6) we have

|µ(z)| 6 C2(‖ν‖∞)|S(f)(γ(z))|ρ−2
Ω∗

1
(γ(z)), z ∈ Ω1.

Note that on the unit circle h1 ◦ h
−1
0 = (g1 ◦ f1) ◦ (g0 ◦ f0)

−1 = g1 ◦ f ◦ g
−1
0 and in

the unit disk g1 ◦ fµ ◦ g
−1
0 is an extension of h1 ◦ h

−1
0 , whose complex dilatation has

the form

µ ◦ g−1
0

(g−1
0 )′

(g−1
0 )′

.

To prove h1 ◦ h
−1
0 ∈ SS, it is sufficiently to show that

|µ ◦ g−1
0 (z)|2

1− |z|2
dx dy ∈ CM0(∆).

By simple computation,

|µ ◦ g−1
0 | 6 C2(‖ν‖∞)|S(f)(f0 ◦ j ◦ f

−1
ν ◦ g−1

0 )|ρ−2
Ω∗

1
(f0 ◦ j ◦ f

−1
ν ◦ g−1

0 )

= C2(‖ν‖∞)|S(f)(f0 ◦ j ◦ (f
ν)−1)|ρ−2

Ω∗

1
(f0 ◦ j ◦ (f

ν)−1).

Then,

|µ ◦ g−1
0 ◦ f ν | 6 C2(‖ν‖∞)|S(f)(f0 ◦ j)|ρ

−2
Ω∗

1
(f0 ◦ j)

= C2(‖ν‖∞)|(S(f1)− S(f0))(j(z))((f
′

0)(j(z)))
−2|(|j(z)|2 − 1)2|(f

′

0)(j(z))|
2

= C2(‖ν‖∞)|(S(f1)− S(f0))(j(z))|(|j(z)|
2 − 1)2.

Consequently, by S(f1)− S(f0) ∈ B0 again and
(
|µ ◦ g−1

0 ◦ f ν(t̄)|2

1− |t̄|2

)
◦
1

w

1

|w|2
=

|µ ◦ g−1
0 ◦ f ν( 1

w̄
)|2

|w|2 − 1
=

|µ ◦ g−1
0 ◦ f ν |2

1− |z|2

6 C2
2 (‖ν‖∞)|(S(f1)− S(f0))(w)|

2(|w|2 − 1)3,

where w = 1
z̄
∈ ∆∗, we have

|µ ◦ g−1
0 ◦ f ν(z)|2

1− |z|2
dx dy ∈ CM0(∆).
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It follows from bi-Lipschitz continuity of the Douady–Earle extension f ν under the
Poincaré metric that

|µ ◦ g−1
0 (z)|2

1− |z|2
dx dy 6 C3(‖ν‖∞)

|µ ◦ g−1
0 |2

1− |z|2
1− |z|2

1− |(f ν)−1|2
|∂((f ν)−1)| dx dy

= C3(‖ν‖∞)

(
|µ ◦ g−1

0 ◦ f ν |2

1− |z|2

)
◦ (f ν)−1|∂((f ν)−1)| dx dy ∈ CM0(∆).

We conclude that h1 ◦ h
−1
0 ∈ SS.

Finally, we claim that the local injectivity can be improved as in [9, p.320] to be
globally injective. Here is an outline of the proof following the idea of Kahn used for
the analogous statement in [9].

For convenience we switch to the half-plane. The setting is then two pairs of
normalized welding maps fj , gj for a normalized elements of SQS, hj = gj ◦ fj ,
with g−1

j and fj mapping respectively the upper and lower half-plane to the two
complementary components of a chord-arc curve Γj. We assume that S(f1) − S(f0)
leads to a small Carleson measure and we want to prove that it follows that logh′ ∈
VMO(R), where h = h1 ◦h

−1
0 . Let R0 be a square in the lower half-plane whose base

is a small interval I of the real axis. Its image R by f0 is a chord-arc domain and
the restriction on R of the Schwarzian derivative of f = f1 ◦ f

−1
0 leads, via the Bers

embedding, to a Carleson measure with small norm. Therefore, using Earle–Nag
reflection, it can be shown that f = f1 ◦ f

−1
0 extends to a global quasiconformal map

F whose dilatation leads to a Carleson measure with small norm wrt the complement
of R. Pulling back this information via f0 one then finds that h = h1 ◦ h

−1
0 extends

to a quasiconformal mapping G of a domain of the form Ω0 = R0 ∪R
∗
0 where R

∗
0 is a

chord-arc domain included in the upper-half-plane, sending Ω0∪R into R, such that
∂Ω0 ∩ R = ∂R0 ∩R, and whose dilatation leads to a Carleson measure with small
norm.

Such a map can easily be extended to a quasiconformal self-mapping of the upper
half plane whose dilatation leads to a Carleson measure with small norm. We then
invoke [7]: log(G′)|I| = log h′ has a small BMO norm which is controlled by ǫ(|I|)
with ǫ(t) → 0 as t → 0. We conclude that log h′ must be in VMO, the fact we
intended to prove.

5. Appendix: another proof of global injectivity

After finishing all above sections, we find, following the idea of Matsuzaki in [13],

the global injectivity of the map Φ̂ from SS\LQS into B0\B can be obtained in a
totally different way. The strategy is simple and can be explained as follows. Assume
we have an asymptotically conformal homeomorphism f in the situation we consider,
then we can decompose f into two quasiconformal homeomorphisms. One is within
the neighborhood where the local injectivity can be applied (the local injectivity has
been proved before), and the other is asymptotically conformal whose support of the
complex dilatation is contained in a compact subset. We easily see that the latter
mapping comes from the trivial coset. The argument for the rigorous proof is as
follows.

Let h0 = g0 ◦ f0 and h1 = g1 ◦ f1 be welding homeomorphisms corresponding
to chord-arc curves Γ = ∂Ω = ∂Ω∗ and Γ1 = ∂Ω1 = ∂Ω∗

1, respectively. Suppose all
these maps are normalized to fix 1, i and −1. We will show, if S(f1) − S(f0) ∈ B0

then h1 ◦ h
−1
0 ∈ SS.
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We adopt the same notations as before. Let fλ = DE(h0) be the Douady–Earle
extension of h0 with complex dilatation equal to λ in ∆. Then fλ = g−1

0 ◦ fλ is

an extension of f0 to Ĉ. Suppose S(f1) − S(f0) = ϕ ∈ B0 ⊂ B0. Let the subset
M0(∆) of M(∆) consist of all Beltrami coefficients vanishing at the boundary. It
follows from Theorem 2.1 (see also [12, Theorem 3.6]) that there exists a Beltrami
coefficient µ ∈M0(∆) such that Φ(µ ∗ λ) = S(f1), which says fµ ◦ fλ is an extension
of h1 to the unit disk ∆. Thus g−1

1 ◦ fµ ◦ fλ is a quasiconformal extension of f1
to Ĉ. Let f̂ be a quasiconformal homeomorphism of the whole plane Ĉ equal to
g−1
1 ◦ fµ ◦ fλ ◦ f−1

λ = g−1
1 ◦ fµ ◦ g0 in Ω and equal to f1 ◦ f

−1
0 in Ω∗. Then the complex

dilatation µ̂ of f̂ vanishes at the boundary Γ. In particular, for any ǫ > 0, we can
choose a compact subset Ω0 ⊂ Ω such that

12‖µ̂|Ω−Ω0
‖∞ 6 ǫ.

We decompose f̂ into f̂0◦f̂1 as follows. The quasiconformal homeomorphism f̂1 : Ĉ →
Ĉ is chosen so that its complex dilatation coincides with µ̂ on Ω − Ω0 and zero

elsewhere. Then f̂0 is defined to be f̂ ◦ f̂1
−1

. Thus the complex dilatation µ(f̂0) of

f̂0 is zero in Ω2 − f̂1(Ω0). Here Ω2 = f̂1(Ω). So µ(f̂0) induces a vanishing Carleson

measure in Ω2. It follows from Lemma 4.1 that |S(f̂0)|
2ρ−3

Ω∗

2
dx dy ∈ CM0(Ω

∗
2), and

then

|S(f̂0) ◦ (f̂1 ◦ f0)(f̂1 ◦ f0)
′2|2ρ−3

∆∗ dx dy = (|S(f̂0)|
2ρ−3

Ω∗

2
) ◦ (f̂1 ◦ f0)|(f̂1 ◦ f0)

′

| dx dy

∈ CM0(∆
∗),

which implies S(f̂0) ◦ (f̂1 ◦ f0)(f̂1 ◦ f0)
′2 ∈ B0(∆

∗). Thus, we have

S(f̂1 ◦ f0)− S(f0) = S(f̂0 ◦ f̂1 ◦ f0)− S(f0)− S(f̂0) ◦ (f̂1 ◦ f0)(f̂1 ◦ f0)
′2

= S(f1)− S(f0)− S(f̂0) ◦ (f̂1 ◦ f0)(f̂1 ◦ f0)
′2 ∈ B0(∆

∗).
(7)

Let ĝ1 : Ω2 → ∆ be conformal and ĥ1 = ĝ1◦f̂1◦f0 be the welding homeomorphism
corresponding to the chord-arc curve Γ2 = ∂Ω2. Then we have

h1 = g1 ◦ f1 = g1 ◦ f̂ ◦ f0 = g1 ◦ f̂0 ◦ f̂1 ◦ f0

= g1 ◦ f̂0 ◦ ĝ1
−1 ◦ ĝ1 ◦ f̂1 ◦ f0 = g1 ◦ f̂0 ◦ ĝ1

−1 ◦ ĥ1.

The complex dilatation of g1 ◦ f̂0 ◦ ĝ1
−1 induces a vanishing Carleson measure in the

unit disk ∆. Then we have g1 ◦ f̂0 ◦ ĝ1
−1 ∈ SS in the unit circle S. Thus, in order to

prove h1 ◦ h
−1
0 ∈ SS, we just need to show ĥ1 ◦ h

−1
0 ∈ SS.

By simple computation, |S(f̂1 ◦ f0)(z) − S(f0)(z)|ρ
−2
∆∗(z) = |S(f̂1)(ζ)|ρ

−2
Ω∗(ζ) for

ζ = f0(z) and this is bounded by 12‖µ̂Ω−Ω0
‖∞ (see [11, p.72]). Then

(8) ‖S(f̂1 ◦ f0)− S(f0)‖B 6 ǫ.

Combining (7), (8) and the local injectivity claim of the map Φ̂, we obtain ĥ1 ◦h
−1
0 ∈

SS and then the global injectivity of Φ̂ from SS\LQS into B0\B.
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