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Abstract. The field of moduli of a rational map is an invariant under conjugation by Möbius

transformations. Silverman proved that a rational map, either of even degree or equivalent to a

polynomial, is definable over its field of moduli and he also provided examples of rational maps

of odd degree for which such a property fails. We introduce the notion for a rational map to

have odd signature and prove that this condition ensures for the field of moduli to be a field of

definition. Rational maps being either of even degree or equivalent to polynomials are examples of

odd signature ones.

1. Introduction

Two rational maps R1, R2 ∈ C(z) are equivalent (R1 ∼ R2) if one is obtained

from the other by a holomorphic change of variable on the Riemann sphere Ĉ, that
is, if there is some Möbius transformation T ∈ PSL2(C) so that R2 = T ◦ R1 ◦ T

−1.
The complex dynamics of equivalent rational maps is the “same”, but they may have
different arithmetical properties. In this paper we are interested on (minimal) fields
of definition of rational maps. A subfield K of C is called a field of definition of a
rational map if there exists an equivalent rational map whose coefficients belong to
K. An interesting situation is when K = Q (arithmetical rational maps) as they are
related to genus zero dessins d’enfants introduced by Grothendieck in his Esquisse
[4].

If R is a rational map, a natural question is to determine if a given subfield K of
C is or not a field of definition of R and, in the affirmative case, to find a K-model of
it. An obstruction to the first part of the previous question can be stated in terms of
certain co-boundaries. If AutK(C) is the group of field automorphisms of C, acting
as the identity on K, then a co-cycle of R with respect to K is a map

χ : AutK(C) → PSL2(C) : σ 7→ Tσ

such that, ∀σ, τ ∈ AutK(C) the following equalities hold

Rσ = Tσ ◦R ◦ T−1
σ , Tστ = T σ

τ ◦ Tσ,

where Rσ is the rational map obtained by applying σ to the coefficients of R. The
collection {Tσ} is called a Weil’s datum for R with respect to the extension C/K.
Let us observe that the existence of a co-cycle for R with respect to K is not clear
in general.
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By Weil’s descent theorem [12] (see also Theorem 16.37 in page 233 in [8]), the
existence of the co-cycle χ for R with respect to K ensures the existence of a non-
singular complex projective algebraic curve of genus zero X, defined over K, and a

biregular isomorphism ϕ : Ĉ → X, defined over K (the algebraic closure of K inside
C), such that ϕ = ϕσ◦Tσ, for every σ ∈ AutK(C). It can be seen that Ψ = ϕ◦R◦ϕ−1

is also defined over K. Now, if there is some isomorphism L : X → Ĉ, defined over
K, then P = L ◦ ϕ ∈ PSL2(C) and P ◦R ◦ P−1 is defined over K. As a consequence
of Riemann–Roch’s theorem, in order to have the existence of such an L, we only
need to check the existence of some K-rational point in X. In terms of the co-cycle
χ, this is equivalent to being a co-boundary, that is, χ(σ) = (T σ)−1 ◦ T for a suitable
Möbius transformation T ∈ PSL2(C). Summarizing the above, the rational map R
can be defined over the subfield K if it admits a co-boundary with respect to K.

Now, we may wonder about a “minimal field of definition” of a rational map
R. In order to make sense of this, we have to define certain “minimal” subfield
associated to R, this being the field of moduli MR of R; the fixed field of the group
ΓR := {σ ∈ AutQ(C) : Rσ ∼ R}. Note from the definition that, if R1 ∼ R2, then
ΓR1

= ΓR2
; so MR1

= MR2
. The “minimal” property of MR is that it is contained

in every field of definition of R. In fact, if K is a field of definition of R, then (up
to equivalence) we may assume that R is already defined over it; so if σ ∈ AutK(C),
then Rσ = R and σ ∈ ΓR. Following Koizumi’s arguments in [7] it can be checked
that MR coincides with the intersection of all fields of definition of R.

Let d be the degree of the rational map R. If d ≤ 1, then it is not difficult to
see that MR is a field of definition of R. If d ≥ 2, then the situation changes. For
instance, Silverman [10] observed that, for d ≥ 3 odd, each of the rational maps

R(z) = i

(
z − 1

z + 1

)d

cannot be defined over its field of moduli; which happens to be Q. These are defined
over the quadratic extension Q(i) and they cannot be defined over the reals (as there
is no circle on the Riemann sphere invariant under R). In this example, Q(i) is a
minimal field of definition. In the same paper, Silverman proved that every rational
map, either of even degree or being equivalent to a polynomial, can be defined over
its field of moduli. In [5] the author proved that every rational map can be defined
over a suitable quadratic extension of its field of moduli. We do believe that if a
rational map is definable over two different quadratic extensions of the same field,
then it is definable over it. If this is true, then a rational map has a unique minimal
field of definition.

In Section 2 we propose the definition for a rational map to be of “odd signature”
and we state and prove our main result: a rational map of odd signature can be defined

over its field of moduli (Theorem 1). Examples of rational maps of odd signature are
those of even degree and those equivalent to polynomials. In Section 3 we provide
some examples of rational maps of odd degree which have odd signature. These
rational maps are given by König’s rational maps KP,n of order n ≥ 2, associated
to a given polynomial P . These provide numerical algorithms to find the roots of P
(n = 2 corresponds to Newton’s algorithm) [2, 3, 9, 11]. We first observe that MKP,n

is independent of n (Proposition 1) and that KP,2 is definable over its field of moduli
(Corollary 2). For P of odd degree, KP,n has odd signature (generically it also has
odd degree); so, by Theorem 1, it is definable over its field of moduli (Corollary 1).
We conjecture that, for P of even degree and n ≥ 3, KP,n is definable over its field
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of moduli. Neverless, for the even degree situation, we provide sufficient conditions
for KP,n to be definable over its field of moduli (Corollary 3).

2. Rational maps of odd signature

In this section we recall the definition of multipliers of periodic points of rational
maps, we provide the definition of odd signature and state and prove our main result.

2.1. Fixed points and multipliers. Let R be a rational map and let p ∈ Ĉ

be a fixed point of R, that is, R(p) = p.

2.1.1. The multiplier. If p 6= ∞, then the multiplier of R at p is λp = R′(p).
If p = ∞, then the multiplier λ∞ of R at ∞ is defined as the multiplier of 1/R(1/z)
at its fixed point 0. If |λp| < 1, then we say that p is an attracting fixed point (when
λp = 0, the fixed point p is called super-attracting). If |λp| > 1, then p is called a
repelling fixed point and if |λp| = 1, then it is called an indifferent fixed point.

2.1.2. The multiplicity. If T ∈ PSL2(C), then T (p) is a fixed point of S =
T ◦ R ◦ T−1 with the same multiplier. If T (p) = 0, then S(z) = zmpQ(z), where
Q(0) 6= 0 and mp ≥ 1 is some integer; called the multiplicity of p (this does not
depend on the choice of T ). If mp = 1, then λp = Q(0) 6= 0 and, if mp ≥ 2, then
λp = 0 (i.e., p is a super-attracting fixed point).

Remark 1. Let {λ1, . . . , λr} be the collection of all non-zero multipliers of fixed
points of R and let p be a super-attracting fixed point of multiplicity m ≥ 2. If
σ ∈ ΓR, then as Rσ ∼ R, one has that {σ(λ1), . . . , σ(λr)} = {λ1, . . . , λr} and σ(p) is
a super-attracting fixed point of Rσ with multiplicity m.

2.2. Rational maps of odd signature. We say that the rational map R has
odd signature if there is some integer k ≥ 1 so that one of the following properties
holds (see also Remark 1).

(OS1) There exists an odd number of fixed points of Rk (the k-iterate of R), each
one being not super-attracting, so that the set formed by their multipliers
is ΓR-invariant, and every another fixed point of Rk has multiplier different
from these.

(OS2) There is some integer m ≥ 2 so that the number of supper-attracting fixed
points of Rk with multiplicity equal to m is odd.

The rational map R has simple odd signature if in the above definition we may
assume k = 1. Next, we state our main result.

Theorem 1. A rational map of odd signature is definable over its field of moduli.

Remark 2. (Silverman’s result) Let us observe that if Rk has an odd number of
fixed points, then R has odd signature (see Remark 1). If R has even degree, then
it has an odd number of fixed points (counting multiplicities), so it has simple odd
signature. If R is a polynomial of degree d ≥ 2, then ∞ is a super-attracting fixed
point with multiplicity d. Either this is the only super-attracting fixed point (so it
has simple odd signature) or R is conjugated to z 7→ zd (which is defined over its
field of moduli). In this way, Silverman’s result [10] also follows from Theorem 1.

2.3. Proof of Theorem 1. Let R be a rational map of degree d ≥ 2 of odd
signature. So, there exists a collection of fixed points of Rk, say z1, . . . , zn, where
n ≥ 1 is odd, for which one of the conditions (OS1) or (OS2) holds. The proof of the
following fact will be provided in Section 2.5.
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Lemma 1. R admits a Weil’s datum {Tσ}σ∈ΓR
.

As observed in the introduction, both Lemma 1 and Weil’s descent theorem [12]
ensure the existence of a genus zero smooth complex curve X, defined over K, and

an isomorphism ϕ : Ĉ → X so that, for every σ ∈ ΓR it holds that ϕ = ϕσ ◦ Tσ. If
Ψ = ϕ ◦R ◦ ϕ−1 : X → X, then for σ ∈ ΓR

Ψσ = ϕσ ◦Rσ ◦ (ϕσ)−1 = ϕσ ◦ Tσ ◦R ◦ T−1
σ ◦ (ϕσ)−1 = ϕ ◦R ◦ ϕ−1 = Ψ.

Lemma 2. The divisor D = [ϕ(z1)] + · · ·+ [ϕ(zn)] in X is MR-rational.

Proof. Let us first assume we are in condition (OS1) and let λj 6= 0 be the mul-
tiplier of zj, for j = 1, . . . , n. So, if σ ∈ ΓR, then {λ1, . . . , λn} = {σ(λ1), . . . , σ(λn)}.
If z is a fixed point of Rk with multiplier λ, then Tσ(z) is a fixed point of (Rk)σ

with same multiplier λ. It follows that {Tσ(z1), . . . , Tσ(zn)} are the fixed points of
(Rk)σ with multipliers in the set {λ1, . . . , λn}. Also, as σ(zj) is a fixed point of (Rk)σ

with multiplier σ(λj), the set {σ(z1), . . . , σ(zn)} also consists of all the fixed points of
(Rk)σ with multipliers in the set {λ1, . . . , λn}. It follows that {Tσ(z1), . . . , Tσ(zn)} =
{σ(z1), . . . , σ(zn)} and, in particular, σ induces a permutation θσ ∈ Sn so that
Tσ(zj) = σ(zθσ(j)). In this way,

ϕ(zj) = ϕσ(Tσ(zj)) = ϕσ(σ(zθσ(j))) = σ(ϕ(zθσ(j))).

The above ensures that the set {ϕ(z1), . . . , ϕ(zn)} is ΓR-invariant and the result
follows in this case. In the case (OS2), that is, the collection {z1, . . . , zn} are the
supper-attracting fixed points with the same multiplicity, the argument is similar as
above as the multiplicity will not change under Tσ nor under σ. �

By Lemma 3 below, there is an isomorphism η : X → Ĉ defined over MR; so
the rational map S = η ◦Ψ ◦ η−1 satisfies that Sσ = S, for every σ ∈ ΓR. It follows
that S is defined over MR. In fact, let us write S(z) = U(z)/V (z), where U and
V are relatively prime polynomials, and the leading coefficient of V is equal to 1.
The condition Sσ = S, for σ ∈ ΓR, ensures the existence of a non-zero complex
number a(σ) such that Uσ = a(σ)U and V σ = a(σ)V . Our normalization asserts
that a(σ) = 1, that is, U and V (so S) are defined over MR as claimed. Now,

T = η ◦ ϕ : Ĉ → Ĉ is a Möbius transformation (i.e., an element of PSL2(C)) with
T ◦R ◦ T−1 = S; we have proved the theorem.

2.4. An auxiliary Lemma.

Lemma 3. [6] Let B be a curve of genus zero defined over a subfield K of C. If
there is a K-rational divisor D of odd degree in B, then there exists an isomorphism

η : B → Ĉ defined over K and, in particular, B has (infinitely many) K-rational
points.

Proof. Let us assume the degree of D is 2m+1, for a suitable non-negative integer
m. As B has genus zero and is defined over K, there is a canonical divisor KB of B,
defined over K. As KB has degree −2, the K-rational divisor U = D + mKB has
degree 1. By Riemann–Roch’s theorem, the Riemann–Roch’s space

L(U) = {f : B → Ĉ : (f) + U ≥ 0} ∪ {0}

has dimension 2. Since U is K-rational, we may find some f ∈ L(U)− {0} which is
defined over K. So the K-rational divisor U + (f) is an effective divisor of degree 1,
that is, a K-rational point q on B. As the dimension of the Riemann–Roch’s space

L(q) is 2, it follows that there is an isomorphism η : B → Ĉ defined over K. As Ĉ
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has infinitely many K-rational points, and η is defined over K, the same holds with
B. �

2.5. The proof of Lemma 1. Let Aut(R) be the group of automorphisms of
R, that is, the group of Möbius transformations T ∈ PSL2(C) satisfying the equality
T ◦R = R ◦ T . As the degree of R is at least two, this group is known to be finite (a
Möbius transformation is uniquely determined by its action on three different points).
Since the finite groups of PSL2(C) are either (i) the trivial group, (ii) cyclic groups,
(iii) dihedral groups, (iv) the alternating group A4, (v) the alternating group A5 and
(vi) the symmetric group S4 (see, for instance, [1]), the group Aut(R) is either one
of the above.

2.5.1. Assume Aut(R) is the trivial group. For each σ ∈ ΓR there is some
Tσ ∈ PSL2(C) so that Rσ = Tσ ◦ R ◦ T−1

σ . As Aut(R) is trivial, Tσ is unique with
such property. Clearly, {Tσ}σ∈ΓR

is a Weil’s datum for R with respect to the extension
C/MR.

2.5.2. Assume Aut(R) is either dihedral, alternating or the symmetric group.

In this case, there is a branched regular cover π : Ĉ → Ĉ with Aut(R) as deck group
and branch values being the points ∞, 0 and 1. Next, for each σ ∈ ΓR we take
some Möbius transformation Lσ ∈ PSL2(C) so that Rσ = Lσ ◦ R ◦ L−1

σ . As Lσ

conjugates Aut(R) onto Aut(Rσ), then there is a Möbius transformation Nσ so that
Nσ ◦ π = πσ ◦ Lσ. The map Nσ only depends on σ and not on the choice for Lσ. In
fact, if L ∈ PSL2(C) satisfies that Rσ = L ◦ R ◦ L−1, then H = L−1 ◦ Lσ ∈ Aut(R).
In this way, πσ ◦L = πσ ◦Lσ ◦H

−1 = Nσ ◦π◦H
−1 = Nσ ◦π. The uniqueness property

on the maps Nσ ensures that {Nσ}σ∈ΓR
satisfies, for each τ, σ ∈ ΓR, the equality

Nστ = Nσ
τ ◦ Nσ. It now follows from Weil’s descent theorem [12] the existence

of a smooth curve B, defined over MR, and an isomorphism τ : Ĉ → B so that
τ = τσ ◦ Nσ, for every σ ∈ ΓR. As the divisor D = [τ(∞)] + [τ(0)] + [τ(1)] is
MR-rational, Lemma 3 asserts the existence of a MR-rational point in B. As B has
genus zero, it follows that B has infinitely many MR-rational points. Take one of

these points, say q, outside the branch values of τ ◦ π. Choose a point p ∈ Ĉ so that
τ ◦ π(p) = q; so it is not fixed by any non-trivial element of Aut(R). If σ ∈ ΓR, then

(τ ◦ π)σ(σ(p)) = σ(τ(π(p))) = σ(q) = q = τ ◦ π(p) = τσ ◦Nσ ◦ π(p)

= τσ ◦ πσ(Lσ(p)) = (τ ◦ π)σ(Lσ(p)),

that is, there is some Mσ ∈ Aut(Rσ) so that (Mσ ◦Lσ)(p) = σ(p). We claim that Mσ

is unique. In fact, if there is some Dσ ∈ Aut(Rσ) satisfying that (Dσ ◦Lσ)(p) = σ(p),
then D−1

σ ◦ Mσ fixes Lσ(p). Since we know that p is not fixed by any non-trivial
element of Aut(R), the same holds for Lσ(p) and Aut(Rσ). It follows that D−1

σ ◦Mσ

is the identity, i.e., Dσ = Mσ. Now, the collection {Tσ = Mσ ◦ Lσ}σ∈ΓR
turns out to

be a Weil’s datum for R with respect to the extension C/MR.

2.5.3. Assume Aut(R) is a non-trivial cyclic group of order b ≥ 2, say generated
by the transformation E ∈ PSL2(C). Let us consider a branched regular cover

π : Ĉ → Ĉ, with Aut(R) as deck group, whose branch values are the points ∞
and 0. Proceeding as in 2.5.2, we obtain a collection {Nσ}σ∈ΓR

(such that for each
τ, σ ∈ ΓR, the equality Nστ = Nσ

τ ◦Nσ holds), a smooth curve B, defined over MR,

and an isomorphism τ : Ĉ → B so that τ = τσ ◦Nσ, for every σ ∈ ΓR. The elliptic
transformation E must keep the set F = {z1, . . . , zn} invariant. Assume that b is
even. In this case, exactly one of the points in F should be fixed point of E. We may
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assume, without lost of generality, that this point is z1 and that π(z1) = ∞. Now
we may proceed similarly as done in 2.5.2 by considering the MR-rational divisor
D = [τ(∞)] to obtain the desired Weil’s datum. Now, assume that b is odd. In
this case, as n is odd, it follows that the projection under π of F is a set of odd
cardinality, say given by the points a1, . . . , at (t odd). We now proceed as in 2.5.2 by
considering the MR-rational divisor D = [τ(a1)] + · · ·+ [τ(at)] to obtain the desired
Weil’s datum.

Example 1. Silverman’s rational map R(z) = i
(
z−1
z+1

)3
has exactly 4 fixed

points, these being z1 = −3.04757... + i 2.12615..., z2 = −0.28211... − i 1.58405...,
z3 = 0.10897... + i 0.61188... and z4 = 0.22070... − i 0.15397..., with corresponding
multipliers λz4 = λz1 = −1.2859...−i 1.0372... and λz3 = λz2 = −0.2141...+i 2.7154...
If σ ∈ ΓR, then σ(i) = ±i; so the ΓR-equivalent sets of multipliers are {λz1, λz4},
{λz2, λz3} and {λz1, λz4, λz2, λz3}. In particular, R does not have simple odd signa-
ture. As a consequence of Theorem 1, and the fact that it cannot be defined over its
field of moduli [10], it neither has odd signature.

3. Examples: König’s rational maps

If P (z) ∈ C[z] is a polynomial of degree d ≥ 2 and n ≥ 2 is an integer, then its
König’s rational map of order n is defined as

KP,n(z) = z + (n− 1)
(1/P )(n−2) (z)

(1/P )(n−1) (z)
,

where R(k) denotes the k-derivative of R [9]; it has degree at most (n− 1)(d− 1)+1.
A characterization and study of the dynamics of König’s rational maps has been
given in [2]. The rational map KP,2(z) = z − P (z)/P ′(z) is Newton’s rational map
associated to P and KP,3 provides the so-called Halley’s method to find roots of

P [11] (choose a point z0 ∈ C and define z1 ∈ Ĉ the unique zero of the Möbius
transformation that better “osculate” P in the point z0). The fixed points of KP,n

are given by:

(1) the zeroes of P ; these being the (super) attracting fixed points of KP,n;
(2) the zeroes of (1/P )(n−2) and the point ∞; these being the repelling fixed

points of KP,n.

Remark 3. The field of moduli of a polynomial P and the field of moduli of its
König’s rational map KP,n may not coincide. For instance, if Pc(z) = z2 + c, where
c ∈ C− {0}, then KPc,n is conjugated to R(z) = zn (see Section 2.2. in [2]); so it is
definable over its field of moduli Q. On the other hand, MPc

= Q(c).

3.1. Invariance of the field of moduli of König’s rational maps. It is not
difficult to see that KP,n = KQ,n if and only if Q = µP , where µ 6= 0. In particular, if
we assume our polynomials to be monic, then the above ensures µ = 1. On the other
hand, Lemma 9 in [2] states that KP,n ∼ KQ,n if and only if there exist a, b, µ ∈ C

with aµ 6= 0 so that Q(z) = µP (az + b). This permits to prove the following fact.

Proposition 1. If n ≥ 2, then MKP,n
is independent of n.

Proof. Since Kσ
P,n = KPσ,n, one has that σ ∈ ΓKP,n

if and only if KPσ,n ∼ KP,n,
which is equivalent to P σ(z) = µP (az + b), for suitable a, b, µ ∈ C with aµ 6= 0. But
the last condition is independent of n, so ΓKP,n

= ΓKP,2
. It follows that the field of

moduli of KP,n is equal to the field of moduli of KP,2. �
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3.2. König’s rational maps of odd degree polynomials. As the (super)
attracting fixed points of KP,n are given by the zeroes of P , if the degree of P is odd,
then KP,n will be of odd signature; so, by Theorem 1, we have the following.

Corollary 1. If P is a polynomial of odd degree, then KP,n is definable over its
field of moduli, for every integer n ≥ 2.

Let us note that KP,n will have (generally) odd degree (n− 1)(d− 1) + 1, so the
above result is not a consequence of Silverman’s results in [10].

3.3. An example. Let us consider the degree three polynomial

P (z) = (z − 1)(z − a)(z + a + 1), a ∈ C− {−2,−1/2, 1}.

By Corollary 1, KP,n is definable over its field of moduli (which is, by Proposition
1, independent of n ≥ 2). If a ∈ Q, then KP,n is already defined over Q. If a = i,
then the field of moduli of KP,n is again Q, and for T (z) = (1 − i)z one has that
T ◦KP,n ◦ T

−1(z) is defined over Q.

3.4. Newton’s rational map.

Corollary 2. If P is a polynomial of degree d ≥ 2, then Newton’s rational map
KP,2 is definable over its field of moduli.

Proof. Let P (z) ∈ C[z] be a polynomial of degree d ≥ 2. If d is odd, then the
result follows from Corollary 1. We now assume d ≥ 2 even. If P (z) = a(z/d + b)d,
then KP,2(z) = (d− 1)z/d− b has degree 1, so it is definable over its field of moduli.
If P (z) 6= a(z/d+ b)d, then KP,2 is a rational map of degree d. As d is even, KP,2 is
definable over its field of moduli by Silverman’s results [10]. �

3.5. König’s rational maps of even degree polynomials. Proposition 3 in
[2] states that for a generic polynomial P of degree d its König’s rational map KP,n

has (n − 2)(d − 1) repelling fixed points in C and their multipliers are all equal to
n. So, if d ≥ 3, then 1 + (n − 1)/(d − 1) 6= n and, in particular, ∞ is the unique
repelling fixed point with multiplier 1+ (n− 1)/(d− 1). So Theorem 1 ensures that,
for generic P of even degree d ≥ 2, the rational map KP,n can be defined over its
field of moduli.

Conjecture 1. If P is a polynomial of even degree d ≥ 2 and n ≥ 3 is an integer,
then König’s rational map KP,n can be defined over its field of moduli.

Remark 4. In Remark in page 10 of [2] it was noticed that, for each polynomial
P (z) = µ(z − 1)zd and each integer n ≥ 2, there is a polynomial Q, of degree n, so
that KP,n = Q ◦ T , where T (z) = 1/(z − 1). Since polynomials are definable over
their field of moduli (and T is already defined over Q), we expect the same to be
true for KP,n (recall that we know this is the case if d is odd).

The fixed point ∞ of KP,n has multiplier 1 + (n− 1)/(d − 1) and, if p ∈ C is a
zero of (1/P )(n−2) with multiplicity m, then its multiplier for KP,n is 1 + (n− 1)/m;
see Lemma 3 in [3, 2]. As these multipliers are rational numbers, so they are fixed
points of the elements of ΓKP,n

, to check if KP,n has simple odd signature is easy; just
count how many fixed points of KP,n have the same multiplier. This is summarized
in the following.

Lemma 4. KP,n has simple odd signature (so it is definable over its field of
moduli) if and only if it has an odd number of fixed points with a given multiplier.
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Corollary 3. Let P be a polynomial of even degree d ≥ 2 and let n ≥ 3 be an
integer. Then König’s rational map KP,n can be defined over its field of moduli if
each zero of (1/P )(n−2) has multiplicity different from d− 1.

Proof. In this case, the point ∞ is the only repelling fixed point of KP,n with
multiplier equal to 1 + (n − 1)/(d − 1). Now the result follows from Lemma 4 and
Theorem 1. �
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