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Abstract. We study decompositions of Nakano type varying-exponent Lebesgue norms and

spaces. These function spaces are represented here in a natural way as tractable varying-exponent

ℓp sums of projection bands. The main results involve embedding the variable Lebesgue spaces

to such sums, as well as the corresponding isomorphism constants. The main tool applied here is

an equivalent variable Lebesgue norm which is defined by a suitable ordinary differential equation

introduced recently by the author. We also analyze the effect of transformations changing the

ordering of the unit interval on the values of the ODE-determined norm.

1. Introduction

In this paper we analyze Nakano type varying-exponent Lp norms and their
decompositions. Alternatively, we study embedding results of the above Nakano
spaces to some more tractable Banach spaces which arise as varying ℓp summands of
classical Lp spaces. We approach this topic via an alternative equivalent norm on the
Nakano space defined by the means of weak solutions to suitable ordinary differential
equations (ODE). These can be easily analyzed by studying the properties of the
corresponding ODEs and thus by virtue of equivalence of the norms we obtain strong
estimates for Nakano type variable Lebesgue norms.

Motivated by Nakano’s work [Nak50], we call the following special case of Lux-
emburg [Lux55] norm on a Musielak–Orlicz space [Mus83], cf. [BO31], a Nakano
norm:

|||f |||pp¨q :“ inf tλ ą 0: ρpf{λq ď 1u

where

ρpgq :“

ż

1

pptq
|gptq|pptq dt.

See [Mal11] for a historical account.
The Luxemburg norm clearly arises as an application of the Minkowski functional.

It is not that easy to analyze the Luxemburg norms, even the numerical value of the
norm of a constant function cannot be calculated immediately based on the definition
of the norm. Here we consider an alternative approach to variable Lebesgue norms
which is rather recursive than global.

The above weight wptq “ 1
pptq

, appearing in Nakano’s work, catches the eye

(see also discussion in [DHHR11, Sect. 3.1]). In a sense it involves the continuity
properties of the mapping λ ÞÑ ρpf{λq. In Section 5.2 we provide further motivation
and discussion. This weight also has a special role in our ODEs studied. These
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provide a novel approach to the varying-exponent Lebesgue spaces which do not

involve the Minkowski functional at all.
There is a vast literature involving inequalitites and embeddings on the variable

Lebesgue spaces. For an important paper initiating the investigation of varying-
exponent Sobolev spaces, see [KR91]. Different kinds of inequalities are in the
core of the study of Lebesgue and Sobolev spaces. These are essential for instance
in classical integral operators, harmonic analysis and spaces of analytic functions.
These spaces involve for instance the Poincaré-like inequalities carrying the names
of Morrey, Nash and Gagliardo–Nirenberg–Sobolev. The norms of a Riesz opera-
tor and a potential are related by the Hardy–Littlewood–Sobolev lemma. We refere
to [CF07, CFMP06, CWD17, MSS16] for samples of papers concentrating on these
and other important inequalities. See also [CFN03, DR03, DHH09, Ho15, RS09] for
works which rely on techniques with central inequalities. All the mentioned inequal-
ities deal with Lp structures which is a very particular case in the realm of Banach
spaces. The exponent p may additionally vary locally but nevertheless these struc-
tures are detectable. Apart from the typical applications in mathematical analysis,
the variable Lebesgue spaces have been recently an object of study in mathematical
logic, see e.g. [Yaa09].

The main purpose of this paper is to provide natural tools for treating the Lp

structure of variable Lebesgue spaces and to demonstrate the usefulness of ODE-
techniques in this connection.

Because of the way Nakano norms, and, more generally, Luxemburg norms are
defined, it is not so easy to identify a priori the ’contribution’ of different parts of the
function to the norm; that is, how the restriction of the support of the function affects
the norm. Namely, if f P Lpp¨qr0, 1s (with any weight) and ∆ Ă r0, 1s is measurable,
possibly disjoint from the support of f , it is not easy in general to evaluate efficiently
the relationship between |||f |||pp¨q and |||f ` 1∆|||pp¨q quantitatively.

It seems reasonable to ask how the Nakano norm can be decomposed in a natural
way. For instance, if pp¨q has constant values, say, p1, . . . , pn, on some sets of positive
measure, one might ask what is the quantitative relationship between the following
Nakano norms:

|||f |||pp¨q and |||1pp¨q‰p1,...,pnf |||pp¨q, |||1pp¨q“p1f |||pp¨q, . . . , |||1pp¨q“pnf |||pp¨q?

If the correspondence is natural enough, it should not depend on n, since the measure
space is atomless. The relationship should be somehow formalized mathematically
and the simplest way is stating

|||f |||pp¨q „ |||1pp¨q‰p1,...,pnf |||pp¨q ` |||1pp¨q“p1f |||pp¨q ` . . .` |||1pp¨q“pnf |||pp¨q,

which, unfortunately, turns out to be the wrong approach after a short reflection,
unless pp¨q “ 1. A reasonable approach is replacing above the addition operations by
suitable operations corresponding to ℓp-summands applying the respective values of
pi. It may be instructive to observe that

}f}p “
`

}1∆f}pp ` }1r0,1sz∆f}pp
˘

1
p

for any f P Lpr0, 1s, 1 ď p ă 8, and a measurable subset ∆ Ă r0, 1s. Thus the
correct operation in this simple case appears to be

a‘p b :“ pap ` bpq
1
p , a, b ě 0,
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instead of the ` operation. This leads to the relationship

|||f |||pp¨q „ p. . . pp|||1pp¨q‰p1,...,pnf |||pp¨q ‘p1 |||1pp¨q“p1f |||pp¨qq ‘p2 . . .

. . .‘pn´1
|||1pp¨q“pn´1

f |||pp¨qq ‘pn |||1pp¨q“pnf |||pp¨q.

We will prove in this paper several inequalities which substantiate the above equiv-
alence as a simple case of a more general natural principle (see Theorem 4.1). The
obtained isomorphism constants do not depend on n. We also analyze the effect of
changing the order in taking the operations above.

The main tool is an equivalent ODE-determined Lebesgue norm introduced by
the author in [Tal17], extending the class of classical Lp norms. This construction
can be seen as a continuous version of a recursively constructed varying-exponent
ℓp norm. It appeared in [Sob41] as a remark and was later studied in [Tal11], cf.
[ACK98, Kal07]. Unlike the Luxemburg style variable Lebesgue norm, the ODE-
determined norm satisfies properly the Hölder inequality and the dualities are neat.
The norm determining ODE is rather simple:

ϕf p0q “ 0, ϕ1
f ptq “

|fptq|pptq

pptq
ϕfptq1´pptq for almost every t P r0, 1s.

It turns out that in some cases arguing by means of the above differential equation
makes the analysis of the norms tractable.

Representing the variable Lebesgue norms by using projection bands is useful in
the analysis of operators on these spaces. Recall that a projection band is a subspace
of functions supported on a given measurable subset, cf. [LT13]. For instance, the
p-convexifications or ℓp-type sums of functions are instrumental in [DHH09] and
[MSS16]. We obtain natural decompositions of Lebesgue spaces which yield upper
and lower norm estimates for variable Lebesgue norms. This likely simplifies the
analysis of the various operators acting on these spaces and otherwise reduces norm
estimates to a combination of well-understood ‘blocks’ with classical Lp norms.

2. On variable Lebesgue spaces

We rely heavily on the properties and the theoretical framework of ODE-deter-
mined norms appearing in [Tal17]. See [CL55, DHHR11, FHHMPZ01, Mal11, Mus83,
RR91] for other suitable background information.

In what follows f, p P L0r0, 1s, i.e. f, p : r0, 1s Ñ R are measurable functions,
and pp¨q ě 1. We denote by p “ ess sup pp¨q if pp¨q is essentially bounded. Denote
a‘8 b “ maxpa, bq for a, b ě 0.

We will study a special type of variable Lesbesgue norm, namely the Nakano
norm:

|||f |||pp¨q :“ inf

"

λ ą 0:

ż 1

0

1

pptq

|gptq|pptq

λpptq
dt ď 1

*

.

In the literature the variable Lebesgue spaces are considered over n-dimensional
space, say, expressed in a rather high degree of generality, spaces of the type Lpp¨qpRn,

BorpRnq, mn, ωq where pRn,BorpRnq, mnq is a standard measure space involving the
Lebesgue measure and the Borel σ-algebra on R

n, ω : Rn Ñ r0,8q is a measurable
‘weight’ function (possibly restricting the essential domain) and the modular is given
by

ρpgq :“

ż

Rn

ωptq|gptq|pptq dmnptq.
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Alternatively, one could apply in the integral a measure µ : BorpRnq Ñ R defined by

µpAq “

ż

A

ωptq dmnptq, A P BorpRnq.

Note that this defines a σ-finite measure. We refer to [Fre00] for advanced measure
theory. Our methodology in this paper, being an application of ODEs, requires
totally ordered measure spaces, essentially the case n “ 1. This feature appears to
narrow down the applicability of these ODE-defined spaces.

Unexpectedly, it turns out that this is not the case, at least in what comes to the
order-isometric structure of these spaces, which is the topic here.

Corollary 2.1. The dimension n in Lpp¨qpRn,BorpRnq, mn, ωq is isometrically
order-isomorphically redundant due to suitable rearrangements of the underlying
measure spaces. More precisely, there exists an isometric isomorphism

T : Lpp¨qpRn,BorpRnq, mn, ωq Ñ Lrp¨qpr0, 1s,Borpr0, 1sq, m1, ω
1q

having the form
pTfqrhpxqs “ apxqf rxs for µ-a.e. x P R

n

where
rphpxqq “ ppxq and ω1phpxqq “ ωpxq for µ-a.e. x P R

n,

a : supppµq Ñ p0,8q is a measurable function, and h : supppµq Ñ r0, 1s a bijection.

This follows form the results given in the final remarks (Section 5.1) where we
also provide a comprehensive description of the functions above.

2.1. ODE-determined norms. The main tool in analyzing the Nakano norms
here is passing to a tractable norm, defined by means of an ODE, such that the new
norm } ¨ }

L
pp¨q
ODE

is equivalent to the Nakano norm:

|||f |||pp¨q ď } ¨ }
L
pp¨q
ODE

ď 2|||f |||pp¨q,

see [Tal17, Proposition 3.3]. The ODE-determined varying-exponent Lebesgue class

L
pp¨q
ODEr0, 1s can in principle be defined for any measurable p : r0, 1s Ñ r1,8q. However,

if pp¨q is essentially unbounded it may happen that the class fails to be a linear space.
Therefore, for the purposes in this paper, we may restrict to the case where pp¨q
is essentially bounded, since the corresponding Nakano norms can in any case be
approximated pointwise by suitably truncating supports.

The strategy in [Tal17] is to design the ODE in such a way that its solution
ϕf,pp¨q, corresponding to the function and the exponent, models the accumulation of
the norm as follows:

ϕf,pp¨qptq “ }1r0,tsf}pp¨q,

so that in particular ϕf,pp¨qp0q “ 0 and ϕf,pp¨qp1q becomes the definition for the new
norm “ }f}pp¨q. The ODE which defines the non-decreasing absolutely continous
solution is

(2.1) ϕfp0q “ 0`, ϕ1
fptq “

|fptq|pptq

pptq
ϕfptq1´pptq for almost every t P r0, 1s.

These are weak solutions in the sense of Carathéodory with a minor modification;
the asymptotic initial condition is to provide the uniqueness of the solution and it is
useful in other ways as well. These solutions are further discussed in [Tal17].

The ODE-determined variable Lebesgue class is defined as

L
pp¨q
ODEr0, 1s “

 

f P L0r0, 1s : ϕf exists
(
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where the solution to (2.1) exists in the required sense.
Recall from [Tal17] that the ϕfptq1´pptq part in the ODE makes it very stable, so

that for positive initial values x0 ą 0 the solutions are unique. The 0` initial value
solution in (2.1) means that we take first all positive-inital-value-solutions, provided
that they exist, and then take their limit pointwise as x0 Œ 0. This leads to a rather
natural unique solution which solves (2.1) for 0 initial value. For a positive inital
value x0 ą 0 and an essentially bounded exponent pp¨q we have

ϕ1
x0,f

ptq ď
|fptq|pptq

pptq
px0q1´p

from which we can deduce the existence of the solution if
ż 1

0

|fptq|pptq

pptq
dmptq ă 8.

The solutions can be constructed and approximated by using simple semi-norms
[Tal17] which are motivated by variable ℓp spaces, see [Tal11], cf. [Tal15]. The simple
semi-norms here have a role analogous to the simple functions in the construction of
the Lebesgue integral.

The absolute continuity of the solutions implies that ϕf p1q ă 8. In some cases,
for instance if pp¨q is essentially bounded, this class becomes automatically a linear
space. Then the solutions define a complete norm, see [Tal17]:

}f}pp¨q :“ }f}
L
pp¨q
ODE

:“ ϕfp1q, f P L
pp¨q
ODEr0, 1s.

For a constant exponent case, pp¨q “ p P r1,8q, the above ODE (2.1) becomes a

separable one and solving it yields the classical Lpr0, 1s norm: pϕfp1qqp “
ş1

0
|fptq|p dt.

It is worth noting that unlike the usual Luxemburg type variable Lebesgue norms, the
ODE-determined norms satisfy properly the Hölder inequality. The dualities work
nicely as well, see [Tal18].

2.2. Some useful estimates. Let a « 1.76 be the solution to aa “ e. This
number satisfies that bx

x
is increasing on x ě 1 for all b ě a. Namely, the constant a

satisfies that d
da
ax|x“1 “ 1. Let us recall the following useful fact from [Tal17]:

Proposition 2.2. Let f, p P L0 where 1 ď pp¨q and r P p1,8q. The following
inequalities hold whenever defined:

(1) 1
1`a

}1pp¨qěrf}r ď }1pp¨qěrf}pp¨q,

(2) 1
1`ae

}1p1p¨qďp2p¨qf}p1p¨q ď }1p1p¨qďp2p¨qf}p2p¨q,
(3) }f}pp¨q ă e}f}8.

Although we are here mainly insterested in the relationship between Nakano and
ODE-determined type variable Lebesgue norms, the results have also some bearing
on the most typical Luxemburg type variable Lebesgue norms given by

|||f |||
MO,pp¨q :“ inf

"

λ ą 0:

ż 1

0

|gptq|pptq

λpptq
dt ď 1

*

,

denoted here after Musielak and Orlicz. Indeed, despite the weight in the Nakano
norm, it is equivalent to the MO norm. This is known (see e.g. [DHHR11, (3.2.2)])
and below we provide a better isomorphism constant.

Proposition 2.3. Given a measurable p : r0, 1s Ñ r1,8q then f P Lpp¨q in the
sense of Nakano norm if and only if the same holds in the sense of the above MO
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norm. Moreover, in these equivalent cases with f P Lpp¨q we have

1

a
|||f |||

MO,pp¨q ď |||f |||pp¨q ď |||f |||
MO,pp¨q.

Proof. We apply the following inequalities
ż 1

0

|fptq|pptq

paλqpptq
dt ď

ż 1

0

1

pptq

|fptq|pptq

λpptq
dt ď

ż 1

0

|fptq|pptq

λpptq
dt

where the left inequality follows from the above property of the constant a. �

Below we consider a constant bp depending on p defined as follows: b1 “ 1, b8 “ 2

and bp for 1 ă p ă 8 is the unique solution to

b` b´p “ 2, 1 ă b ă 2.

Below we will apply the norm notation without distinguishing whether the L
pp¨q
ODE class

is a linear space or not. The following result improves some estimates in [Tal17].

Proposition 2.4. Let f P L
pp¨q
ODE. Then

|||f |||pp¨q ď }f}pp¨q ď bp|||f |||pp¨q.

Proof. Let f P L
pp¨q
ODE. These inequalities were proved in [Tal17], except that a

weaker version of the right-hand side was shown with 2 in place of bp.
To check the latter inequality, we may assume without loss of generality that

|||f |||pp¨q “ 1. By using the Monotone Convergence Theorem we see that
ż 1

0

1

pptq
|fptq|pptq dt “ 1.

Let b ď 2 be the best constant for the latter inequality. Suppose that }f}pp¨q :“
ϕfp1q ą 1 and that t0 P p0, 1q is such that ϕfpt0q “ 1. We will apply the well-known
fact (see [DHHR11]) that

|||f |||pp¨q ď

ˆ
ż 1

0

1

pptq
|fptq|pptq dt

˙

1
p

for every f P Lpp¨q (Nakano space), so that

|||1r0,t0sf |||pp¨q ď

ˆ
ż t0

0

1

pptq
|fptq|pptq dt

˙
1
p

.

Since }1r0,t0sf}pp¨q “ 1 we obtain by the choice of b that

b´1 ď |||1r0,t0sf |||pp¨q,

thus

b´p ď

ż t0

0

1

pptq
|fptq|pptq dt.

Hence
ż 1

t0

1

pptq
|fptq|pptq dt ď 1 ´ b´p.

Note that ϕ
1´pptq
f ptq ď 1 for t P rt0, 1s. Thus

ϕfp1q “

ż 1

0

ϕ1
f dt ď 1 `

ż 1

t0

1

pptq
|fptq|pptq dt ď 2 ´ b´p.
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Since |||f |||pp¨q “ 1 and b is the best constant, this implies b ď 2 ´ b´p. Thus b is
dominated by the solution to

bp ` b
´p
p “ 2, 1 ă bp ă 2. �

Proposition 2.5. Suppose that pp¨q is essentially bounded or non-decreasing.
Then the corresponding Lpp¨q classes, in the ODE, Nakano and MO sense coincide
and the norms are mutually equivalent.

Proof. In the case with essentially bounded exponent f P L
pp¨q
ODEr0, 1s if and only

if
ż 1

0

1

pptq
|fptq|pptq dt ă 8

see [Tal17, Prop. 3.8.]. Combining this fact with Proposition 2.3 yields that the Lpp¨q

classes coincide. The equivalence of the norms then follows from Proposition 2.3 and
Proposition 2.4.

The case with non-decreasing exponent becomes an easy adaptation of the above
argument, since in each proper initial segment of the unit interval the exponent is
bounded. �

For paiq P ℓppNq, 1 ď p ă 8, with ai ě 0 for all i, we define
p
ð

iPN

ai “ }paiq}ℓp.

By inductively applying Proposition 2.1 in [Tal18] we see the following fact.

Proposition 2.6. If 1 ď r ď s ă 8 and txNuNPNn`2 is a family of non-negative
numbers, then

pn
ð

in`2PN

. . .

pk`1
ð

ik`3PN

s
ð

ik`2PN

r
ð

ik`1PN

pk
ð

ikPN

. . .
p1
ð

i1PN

xN

ď
pn
ð

in`2PN

. . .

pk`1
ð

ik`3PN

r
ð

ik`1PN

s
ð

ik`2PN

pk
ð

ikPN

. . .
p1
ð

i1PN

xN

where we consider N “ pi1, i2, . . . , in`2q. l

3. Rearrangements

In the Nakano space a simultaneous measure-preserving permutation of the ex-
ponent pp¨q and the function f does not affect the value of the norm. This is not the
case in an ODE-determined variable Lp space, since the order of the arrangement
affects the accumulation of the solutions ϕf .

It is easy to see that

a ‘8 pb ‘1 cq ď pa‘8 bq ‘1 c

for all a, b, c ě 0, and, more generally,

a‘r pb ‘p cq ď pa‘r bq ‘p c

holds for all 1 ď p ď r ă 8 and a, b, c ě 0. This inequality generalizes considerably,
as we saw in Proposition 2.6.

It appears natural to ask whether a similar conclusion holds for ODE-determined
variable Lebesgue spaces. Namely, if we have a simultaneous rearrangement of the
exponent and the function, does the increasing (resp. decreasing) arrangement yield
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the minimal (resp. the maximal) value of the norm? If so, is the ratio of the maximal
value and the minimal value bounded and by what constant?

3.1. Heuristic motivation via an auxiliary transformation. We will be-
gin with a useful transformation. Suppose that p : r0, 1s Ñ r1,8q is a measurable
function and f P Lpp¨q

ODE
. It follows from the equivalence of the ODE-determined norm

} ¨ }pp¨q and the corresponding Nakano norm ||| ¨ |||pp¨q that

ż 1

0

|fptq|pptq

pptq
dt ă 8.

Let us assume that f ‰ 0 a.e. We denote by ϕf the norm-determining weak
solution with initial value 0`. Let us define an absolutely continuous increasing
bijective transform T : r0, 1s Ñ r0, αs as follows

T ptq “

ż t

0

|fpsq|ppsq

ppsq
ds, 0 ď t ď 1

where α “ T p1q.
Define ϕ̂ : r0, αs Ñ r0,8q and p̂ : r0, αs Ñ r1,8q by ϕ̂ptq :“ ϕf pT´1ptqq and

p̂ptq :“ ppT´1ptqq. Observe that

ϕ̂1ptq “
d

dt
ϕfpT´1ptqq “

ˆ

d

dt
T´1ptq

˙

ϕ1
f pT´1ptqq

“

˜

|fpT´1ptqq|ppT´1ptqq

ppT´1ptqq

¸´1

|fpT´1ptqq|ppT´1ptqq

ppT´1ptqq
ϕ
1´ppT´1ptqq
f pT´1ptqq “ ϕ̂1´p̂ptqptq.

This explains heuristically why decreasing (resp. increasing) arrangement of the
exponent yields the greatest (resp. the least) norm. Compare this to the Hardy–
Littlewood inequality. Namely, due to the exponent 1 ´ p̂ptq ď 0 on the right-hand
side, we obtain large values for ϕ̂1 when:

‚ p̂ is large for small values of ϕ̂,
‚ p̂ is small for large values of ϕ̂.

3.2. Quantitative estimates for rearranged norms. By a measure-preser-
ving transform on the unit interval we mean a bijection π : r0, 1s Ñ r0, 1s such that
for each Lebesgue measurable subset E Ă r0, 1s the preimage π´1pEq is Lebesgue
measurable and mpπ´1pEqq “ mpEq. See [Fre00, Vol III] for discussion on represen-
tations of measure algebra isomorphims.

Theorem 3.1. Let p : r0, 1s Ñ r1,8q be a measurable function. Let π : r0, 1s Ñ

r0, 1s be a measure-preserving transform. Suppose that f P L
pp¨q
ODE and f˝π´1 P Lp˝π´1

ODE .
Then

1

bp
}f}pp¨q ď }f ˝ π´1}p˝π´1 ď bp}f}pp¨q.

Moreover, if π1 and π2, as above, are chosen such that p ˝ π´1
1 (resp. p ˝ π´1

2 ) is an
increasing (resp. decreasing) rearrangement of p, then

}f ˝ π´1
1 }p˝π´1

1
ď }f}pp¨q ď }f ˝ π´1

2 }p˝π´1
2
.

We note that the constant b8 “ 2 above is the optimal one for the essentially
unbounded pp¨q case. This is seen by studying the norms of the constant function
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1 considered in the natural way in Lpp0, 1
log p

q ‘1 L
1p 1

log p
, 1q, and, alternatively, in

L1p0, 1
log p

q ‘p L
pp 1

log p
, 1q. Then

}1}Lpp0, 1
log p

q‘1L1p 1
log p

,1q Ñ 2 and }1}L1p0, 1
log p

q‘pLpp 1
log p

,1q Ñ 1 as p Õ 8.

The latter equation line in Theorem 3.1 tells us that the value of the norm of 1 is
between 1 and 2 for any rearrangement of the above simple functions pp¨q.

Proposition 3.2. If pp¨q is increasing then }1}pp¨q ď 1 and if pp¨q is decreasing
then }1}pp¨q ě 1. Moreover, if pp¨q is additionally (essentially) a non-constant function
then the inequalities hold strictly. In particular, if pp¨q is monotone and }1}pp¨q “ 1

then pp¨q is a constant function.

Proof. Suppose that 1 ď p1 ď p2 ď . . . ď pn and 0 ă a1, a2, . . . , an ă 1 such that
a1 ` . . .` an ď 1. Then

pa
1
p1

1 ‘p2 a
1
p2

2 q ‘p3 a
1
p3

3 “ ppa
p2
p1

1 ` a2q
p3
p2 ` a3q

1
p3 ď pa1 ` a2 ` a3q

1
p3 .

Similarly

p. . . pa
1
p1

1 ‘p2 a
1
p1

2 q ‘p3 . . .q ‘pn a
1
pn
n ď pa1 ` . . .` anq

1
pn ď 1.

An approximation argument with semi-norms (recall in [Tal17]) then yields that if
pp¨q is increasing then }1}pp¨q ď 1. Similarly we see the other direction.

To check the strict inequality, let ϕ and ψ be the solutions corresponding to
decreasing and increasing rearrangements of p. Suppose that ϕp1q ď ψp1q and let
t0 ă 1 be the smallest number such that ϕptq ď ψptq for t0 ď t ď 1. Then ϕ1ptq ě
ψ1ptq for t0 ď t ď 1 and the inequality is strict in some segment rs, 1s if p is non-
constant. �

Sketch of proof of Theorem 3.1. To justify the first inequality line, it suffices
to prove the right hand inequality, as the other estimate then follows. We apply
the equivalence of ODE-determined norms and Nakano norms together with the
rearrangement invariance of the Nakano norms. That is, one may rearrange the
function and the exponent in a similar fashion without affecting the norm. Thus we
obtain

}f ˝ π´1}p˝π´1 ď bp|||f ˝ π´1|||p˝π´1 “ bp|||f |||p ď bp}f}p.

Towards the second claim, it follows as a special case from Proposition 2.6 that

pa‘p bq ‘r c ď pa‘r cq ‘p b, for all a, b, c ą 0, 1 ď p ď r.

We may apply the above fact recursively for simple semi-norms, changing the places
of 2 successive summands, 1 pair at a time, in checking the following claim:

|p0, fj2, fj3, . . . , fjnq|pLp1 pµ1q‘pj2
L
pj2 pµj2

qq‘pj3
...‘pjn

L
pjn pµjn q

ď |p0, f2, . . . , fnq|pLp1 pµ1q‘p2
Lp2pµ2qq‘p3

...‘pnL
pnpµnq

ď |p0, fk2, fk3 , . . . , fknq|pLp1 pµ1q‘pk2
L
pk2 pµk2

qq‘pk3
...‘pkn

L
pkn pµkn q

where we assume µ1pr0, 1sq “ 0 for technical reasons and tpjiu
n
i“2 (resp. tpkiu

n
i“2) is

increasing (resp. decreasing) permutation of tpiu
n
i“2.

To extend the above observation to the general setting, with decreasing exponent
and maximal norm, we approximate pp¨q by simple seminorms Nn such that p̃Nn

Õ
pp¨q in measure. It is known that then also Nnpfq Ñ }f}pp¨q for any f P Lpp¨q. It
suffices to consider essentially bounded p and f .
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Let πn be simple measurable measure-preserving transformations such that p̃Nn
˝

π´1
n become decreasing. Let ψn be the corresponding solutions. Note that by the

above observations regarding the arrangements of the simple semi-norms, we have
Nnpfq ď ψnp1q.

Suppose, as in the assumptions, that π is a measurable measure-preserving trans-
form such that p ˝π´1 is decreasing. Let ϕ0 be the corresponding solution and recall
that the solution ϕ0 is (absolutely) continuous.

Then for any p1 ă p2 and ε ą 0 we see by using the essential boundedness of f
and pp¨q that for sufficiently large n we have

(3.1)

ż

tt : p1ăp˝π´1
n ptqăp2u

ψ1
n dt ď

ż

tt : p1ăp˝π´1ptqăp2u

ϕ1
0 dt` ε

(3.2) if ψnpt0q ě ϕ0pt0q for t0 “ ess inftt : p1 ă p ˝ π´1ptq ă p2u.

Indeed, by considering the distribution function s ÞÑ mptt : pptq ě suq we obtain
that

ess inftt : p1 ă p ˝ π´1
n ptq ă p2u Ñ ess inftt : p1 ă p ˝ π´1ptq ă p2u,

ess suptt : p1 ă p ˝ π´1
n ptq ă p2u Ñ ess suptt : p1 ă p ˝ π´1ptq ă p2u

as n Ñ 8. It follows that
ż

tt : p1ăp˝π´1ptqăp2u

ˇ

ˇ

ˇ

ˇ

ˇ

|f ˝ π´1
n ptq|p˝π´1

n ptq

p ˝ π´1
n ptq

´
|f ˝ π´1ptq|p˝π´1ptq

p ˝ π´1ptq

ˇ

ˇ

ˇ

ˇ

ˇ

dt Ñ 0

as n Ñ 8 by Lusin’s theorem. Then (3.1) follows by including the respective terms

ψ1´p˝π´1
n

n and ϕ1´p˝π´1

0 according to (3.2) (roughly ψ1´p1
n ď ϕ

1´p1
0 in the subset under

consideration). Then

lim sup
nÑ8

ψnp1q “ lim sup
nÑ8

ż 1

0

|f ˝ π´1
n ptq|p˝π´1

n ptq

p ˝ π´1
n ptq

ψ1´p˝π´1
n

n dt

ď

ż 1

0

|f ˝ π´1ptq|p˝π´1ptq

p ˝ π´1ptq
ϕ
1´p˝π´1

0 dt “ ϕ0p1q.

We conclude that

}f}pp¨q “ lim
nÑ8

Nnpfq ď ϕ0p1q. �

4. Decompositions

Next we arrive to the main topic of this paper which involves representing Nakano
spaces in a natural tractable way as summands of their projection bands. We will
apply the observations from the previous section.

The decompositions of classical Lp spaces provide some insight on what to expect,
albeit, in some ways, too simplistic a view in variable Lebesgue space setting. For
instance, in the classical setting we have

Lpr0, 1s “ Lpr0, 1{2s ‘p L
pr1{2, 1s

and

}f}p ď }f}r, p ď r,

therefore

}1r0, 1
2

sf}p ‘r }1r 1
2
,1sf}r ď }f}r.
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However, only a quasi-version of the above inequality holds in the variable Lebesgue
space setting, and, in fact, the norm is not monotone with respect to the exponents
pp¨q.

Theorem 4.1. Let pp¨q be essentially bounded and f P L
pp¨q
ODE. Let 1 “ r1 ă

r2 ă . . . ă rn “ p. Then

1

2p1 ` aeq
p|||1p´1prn´1,rnsf |||rn´1

‘rn´2
|||1p´1prn´2,rn´1sf |||rn´2

q ‘rn´3
. . .‘r1 |||1p´1rr1,r2sf |||r1

ď |||f |||pp¨q ď2p1`aeqp|||1p´1rr1,r2qf |||r2 ‘r3 |||1p´1rr2,r3qf |||r3q ‘r4 . . .‘rn |||1p´1rrn´1,rnsf |||rn .

More generally, if ∆i, i “ 1, . . . , n, form a measurable decomposition of r0, 1s, and
ri “ ess inf∆i

p, si “ ess sup∆i
p, then

1

2p1 ` aeq
p|||1∆1

f |||r1 ‘r2 |||1∆2
f |||r2q ‘r3 . . .‘rn |||1∆n

f |||rn ď |||f |||pp¨q

ď 2p1 ` aeqp|||1∆1
f |||s1 ‘s2 |||1∆2

f |||s2q ‘s3 . . .‘sn |||1∆n
f |||sn.

Moreover,

1

bp
p}1∆1

f} ‘s2 }1∆2
f}q ‘s3 . . .‘sn }1∆n

f} ď }f}pp¨q

ď bpp}1∆1
f} ‘r2 }1∆2

f}q ‘r3 . . .‘rn }1∆n
f}

and
1

bp
p|||1∆1

f ||| ‘s2 |||1∆2
f |||q ‘s3 . . .‘sn |||1∆n

f ||| ď |||f |||pp¨q

ď bpp|||1∆1
f ||| ‘r2 |||1∆2

f |||q ‘r3 . . .‘rn |||1∆n
f |||.

Admittedly, the formulas appear complicated in the general case with n fixed
constant exponents. The point here is that the multiplicative constants above do not
depend on n. Note that in view of Theorem 3.1 the ordering of ri in the first part
of the statement is chosen to be ’the worst possible’, so that the given multiplicative
constants apply to all possible orderings. The illustrate the first claim, we have

1

12

`

|||1pp¨qěrf |||r ` |||1pp¨qărf |||1
˘

ď |||f |||pp¨q ď 12
´

|||1pp¨qărf |||r ‘p |||1pp¨qěrf |||p

¯

.

Proof of Theorem 4.1. To prove the first inequality, we may apply a measure-
preserving rearrangement of the unit interval such that p becomes decreasing under
the new ordering. Indeed, by an approximation argument employing Lusin’s theorem
we may reduce to the case where pp¨q is continuous and apply methods similar to the
proof of Theorem 3.1.

The Nakano norm is invariant under simultaneous measure-preserving rearrange-
ments of the function and the exponent, that is,

|||f ˝ h|||p˝h “ |||f |||p

based on the change of variable
ż 1

0

1

pptq

|fptq|pptq

λpptq
dmptq “

ż 1

0

1

pphptqq

|fphptqq|pphptqq

λpphptqq
dmptq.

Here h : r0, 1s Ñ r0, 1s is a mapping such that hpAq is measurable if and only if A
is measurable and mphpAqq “ mpAq for each measurable A. The Radon–Nikodym

derivative satisfies dpm˝hq
dm

” 1 due to the measure-preserving property and hence can
be disregarded.
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Therefore, we may, without loss of generality, assume that p is decreasing. Let
us choose a varying-exponent p̃ corresponding to the space

pLrn´1pp´1prn´1, rnsq ‘rn´2
Lrn´2pp´1prn´2, rn´1sqq ‘rn´3

. . .‘r1 L
r1pp´1rr1, r2sq.

Recall Propositions 2.2 and 2.4. Then

p|||1p´1prn´1,rnsf |||rn´1
‘rn´2

|||1p´1prn´2,rn´1sf |||rn´2
q ‘rn´3

. . .‘r1 |||1p´1rr1,r2sf |||r1
ď p}1p´1prn´1,rnsf}rn´1

‘rn´2
}1p´1prn´2,rn´1sf}rn´2

q ‘rn´3
. . .‘r1 }1p´1rr1,r2sf}r1

“ }f}p̃p¨q ď p1 ` aeq}f}pp¨q ď 2p1 ` aeq|||f |||pp¨q.

The right-hand inequality is seen in a similar manner.
The second part of the statement is also seen in a similar way by first rearranging

the unit interval such that the images of ∆i become successive.
The third claim follows inductively by considering first the case with 2 summands

only:
}1∆1

f} ‘r }1∆2
f} ě }1∆1Y∆2

f}

for the right-hand side. The argument uses approximating simple semi-norms and
the following observations, where r ď mink pk:

p. . . pa1 ‘p1 a2q ‘p2 . . .‘pk akq ‘pk`1
ak`1q ‘pk`2

ak`2 . . .

ď p. . . pa1 ‘p1 a2q ‘p2 . . .‘pk akq ‘r ak`1q ‘pk`2
ak`2 . . .

ď p. . . pa1 ‘p1 a2q ‘p2 . . .‘pk akq ‘r pak`1 ‘pk`2
ak`2 . . .q

Indeed, the last inequality follows from Proposition 2.6 by putting

x1,1,1,1,1,... “ a1, x2,1,1,1,1,... “ a2, x1,2,1,1,1,... “ a3, x1,1,2,1,1,... “ a4,

x1,1,1,2,1,... “ a5, . . . , x1,1,1,...,1,2,1,1,... “ ak,

x1,1,1,...,1,2,2,1,1,... “ ak`1, x1,1,1,...,1,2,1,2,1,1,... “ ak`2, x1,1,1,...,1,2,1,1,2,1,... “ ak`3, . . .

and 0 for other entries. The
Ð

r operation can be inductively moved to be the first
operation on the left, thus producing the required inequality.

If the intervals are successive, then we are done, otherwise we apply Theorem 3.1
which involves the constant bp. The left-hand inequality is seen similarly.

The last claim is verified by using the previous claim with successive intervals
and the invariance property of the Nakano norm together with the inequality

|||f |||pp¨q ď }f}pp¨q ď bp|||f |||pp¨q

from Proposition 2.4. �

5. Final remarks

5.1. Reduction to the n “ 1 case. Next we will give two results which yield
Corollary 2.1 in the beginning of the paper. We use the same notations.

Theorem 5.1. Consider the setting of Corollary 2.1 with µpRnq ą 0. Then
there is a bijection h : supppµq Ñ I, where I “ r0, µpRnqq, such that

pTfqrhpxqs “ f rxs for µ-a.e. x P R
n

defines an isometric isomorphism

T : Lpp¨qpRn,BorpRnq, mn, ωq Ñ Lrp¨qpI,Bor pIq , m1, ω
1q

where
rphpxqq “ ppxq and ω1phpxqq “ ωpxq for µ-a.e. x P R

n.
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Proof. Let us consider completed versions of both the measure spaces, pRn,Σ, µq
and pI,Σ1, mq. The heart of the argument is Maharam’s celebrated classification of
measure algebras and their representation theory. The topic of measure algebras is
rather involved and it cannot be covered here in a self-contained fashion, thus we
refer to [Fre00, Vol. III] for a detailed discussion. Measure algebras pA, νq can be
realized (via Stone spaces) as quotients of suitable measure spaces pΩ,F , νq,

A “ F{Nullpνq,

where Nullpνq is the sub-σ-ring of F consisting of sets A such that νpAq “ 0. Then
A becomes a σ-complete Boolean algebra in a natural way and a σ-additive mapping
ν : A Ñ r0,8s is canonically defined by νprAsq “ µpAq. Note that Ω above has hardly
any role in the measure algebras. However, when it does play a significant role, this
tends to be subtle.

Consider the probability spaces pr0, 1sn,Borpr0, 1snq, mnq and let A and B be the
corresponding measure algebras with n “ 3 and n “ 1, respectively. These measure
algebras are so-called Maharam homogenous and Maharam’s classification states that
they are Boolean isomorphic to

t0, 1uω

normal form measure algebra where ω is the least infinite cardinal. This particular
measure algebra is the classification of the above measure algebras and is generally
known as the measure algebra. More generally, the number n P N does not affect the
Maharam classification and this is crucial here. The measure algebra corresponds
to the standard probability space; the notation is instructive in this regard in the
sense that it can be modeled by an i.i.d. sequence of tosses of fair coins. Considering
dydadic decompositions of, say, the unit square, and using it to model a sequence of
independent coins gives some insight, why, modulo null sets, n is irrelevant.

Taking a quotient with respect to the null sets loses lots of information and this
is the very reason why a general and elegent classification of measure algebras is
possible, that is, with infinite cardinals κ in place of ω in the homogenous case.
Here we require a full isomorphism between measure spaces, rather than an induced
Boolean isomorphism between the corresponding measure algebras.

Measure spaces pX,F1, ν1q and pY,F2, ν2q are said to be isomorphic if there is a
bijection h : X Ñ Y such that fpAq P F2 if and only if A P F1 and then ν2phpAqq “
ν1pAq holds.

We will apply the following isomorphism result (see [Fre00, Vol. III, Thm. 344I]):
Let pX,F1, ν1q and pY,F2, ν2q be atomless, perfect, complete, strictly localizable,
countably separated measure spaces of the same non-zero magnitude. Then they are
isomorphic.

This of course implies that their measure algebras are isomorphic by a Boolean
isomorphism induced by the measure space isomorphism. Let us comment on these
notions:

(1) A measure space pX,F , νq is atomless if for each A P F , νpAq ą 0, there are
disjoint B,C P F with B Y C “ A and νpBq ą 0 and νpCq ą 0.

(2) Given a topological space X, a Borel measure space pX,F , νq is perfect if for
each A P F there are Borel sets A1, A2 Ă X such that A1 Ă A Ă A2 and
µpA2zA1q “ 0.

(3) A measure space is pX,F , νq is σ-finite if there are An P F , n P N, with
µpAnq ă 8 and X “

Ť

nAn. This property implies strict localizability.
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(4) A measure space pX,F , νq is complete if A Ă B P F with νpBq “ 0 implies
A P F .

(5) A measure space pX,F , νq is countably separated if there is a countable set
A Ă F separating the points of X in the sense that for any distinct x, y P X
there is an E P A containing one but not the other. (Of course this is a
property of the structure pX,Fq rather than of pX,F , νq.)

(6) Two measure spaces have the same magnitude (e.g.) if they have the same
total measure or if they both have infinite total measure and are σ-finite.

It is well-known that a completed Lebesgue measure space has these properties
(regardless of the dimension n). Then it is easy to see from the construction of the
spaces pRn,Σ, µq and pI,Σ1, mq with µpRnq “ mpIq that they satisfy these conditions
as well. Thus, according to the above measure space isomorphism result,

pRn,Σ, µq » pI,Σ1, mq

holds in the above sense and let h : Rn Ñ I be the bijection involved in the isomor-
phism. Now, if pp¨q, ωp¨q and f P Lpp¨qpRn,BorpRnq, mn, ωq are given, then

rptq “ pph´1ptqq, ω1ptq “ ωph´1ptqq, pTfqrts “ f rh´1ptqs

become measurable functions since h´1 maps the sets in Σ1 to sets in Σ. By using the
fact that h is µ-m-measure-preserving, we obtain by a change of variable for every
λ ą 0 that

ż

Rn

ωpxq

ˇ

ˇ

ˇ

ˇ

fpxq

λ

ˇ

ˇ

ˇ

ˇ

ppxq

dµpxq “

ż

I

ωph´1ptqq

ˇ

ˇ

ˇ

ˇ

fph´1ptqq

λ

ˇ

ˇ

ˇ

ˇ

pph´1ptqq

dmptq

“

ż

I

ω1ptq

ˇ

ˇ

ˇ

ˇ

pTfqrts

λ

ˇ

ˇ

ˇ

ˇ

rptq

dmptq

(possibly infinite) holds, where the Radon-Nikodym derivative dpµ˝h´1q
dm

” 1 can be

disregarded. Thus it is easy to see that the above T is a linear isometry Lpp¨qpRn,

BorpRnq, mn, ωq Ñ Lrp¨qpI,Bor pIq , ω1q. In fact this is an isomorphism, surjectivity
is easiest to check by noting that T has an inverse given by the formula

T´1pgqrxs “ grhpxqs. �

Moreover, with a similar reasoning as above, any Musielak–Orlicz space on pRn,

BorpRnq, mnq allows a dimension reduction to the real line. Next we will reduce the
measure space of our function space to the unit interval. We will consider the more
complicated case with µpRnq “ 8, if µ is finite then a similar fact holds.

Proposition 5.2. Let Lrp¨qpr0,8q,Bor pr0,8qq , ω1q be as above and h : r0,8q Ñ
r0, 1q, hptq “ 1 ´ 1

1`t
. Then

pSfqrhptqs “ p1 ` tq
2

rptqf rts for m-a.e. t P r0,8q

defines an isometric isomorphism

T : Lrp¨qpr0,8q,Bor pr0,8qq , m, ω1q Ñ Lqp¨qpr0, 1s,Bor pr0, 1sq , m, wq

where

qphptqq “ rptq and wphptqq “ ω1ptq for m-a.e. t P r0,8q.
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We mainly omit the proof, just note that after taking the qphptqq “ rptq power
in the target space the weight becomes p1 ` tq2, this is the inverse of the Radon–
Nikodym derivative of the measure transformation (plainly |h1ptq|) which is required
as a ’compensator’ in the change of variable.

Next we comment on the weight appearing in the Nakano norm. On one hand,
this weight corresponds to a special state in our ODE of interest, where the value of
the solution ϕptq “ 1 has a ’neutral’ effect on its own growth. On the other hand,
some form of weight compensation is required for the continuity of the modular.

5.2. Continuity of the modulars. Note that the map

λ ÞÑ

ż 1

0

ˇ

ˇ

ˇ

ˇ

fptq

λ

ˇ

ˇ

ˇ

ˇ

p

dt, λ ą 0

in the MO norm expressing the classical Lp norm is in fact continuous with respect
to λ. This appears more generally a reasonable requirement on the modulars, say, at
least for bounded functions f .

Proposition 5.3. We investigate below measurable functions f : r0, 1s Ñ R,
p : r0, 1s Ñ r1,8q, w : r0, 1s Ñ p0,8q and reals λ ą 0. Consider the following
conditions:

(1) There exists c ą 1 and C ą 0 such that

wptq ď
C

cpptq
for a.e. t.

(2) For each f such that
ş1

0
|fptq|pptq dt ď 1 the mapping

λ ÞÑ

ż 1

0

wptq
|fptq|pptq

λpptq
dt

is continuous at λ “ 1.
(3) There exists D ą 0 such that

wptq ď
D

pptq
for a.e. t.

Then p1q ùñ p2q ùñ p3q. Moreover, if p is essentially bounded and
ş1

0
|fptq|pptq dt “

1, then
d

dλ

ż 1

0

1

pptq

|fptq|pptq

λpptq
dt

ˇ

ˇ

ˇ

ˇ

λ“1

“ ´1.

The latter observation above does not fully motivate by itself the use of the
weight w, since we made the ad hoc assumption that

ş1

0
|fptq|pptq dt ď 1. However,

continuing our heuristic line of reasoning, the constant functions should be canonical
enough a test bed for assessing the behavior of weight functions. We note that the
continuity of

λ ÞÑ

ż 1

0

wptq
1

λpptq
dt

at λ “ 1 implies
ż 1

0

pptqwptq dt ă 8.

Here the value λ “ 1 is plausible,
ż 1

0

wptq
1

λpptq
dt ą 1 ðñ λ ă 1,
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for instance, if
C

ppptqqα
ď wptq ď 1

for some constants C, α ą 0 and p tends to 8 suitably slowly.

5.3. Connections between the ODE-determined norm and the modu-

lar. We may express the ODE-determined norm in a manner similar to the Lux-
emburg norm. Admittedly, this involves choosing the weight in a very liberal way,
somewhat in the same style as in Proposition 5.3. We may write

}f}pp¨q “ ϕfp1q “ inf

"

λ ą 0:
1

λ
ϕfp1q ď 1

*

“ inf

"

λ ą 0:
1

λ

ż 1

0

|fptq|pptq

pptq
ϕ
1´pptq
f ptq dt ď 1

*

“ inf

"

λ ą 0:

ż 1

0

pϕfptq{λq1´pptq

pptq
p|fptq|{λqpptq dt ď 1

*

“ inf

"

λ ą 0:

ż 1

0

1

pptqpϕf{λptqqpptq´1
p|fptq|{λqpptq dt ď 1

*

.

Here

d

dλ

ż

1

pptqpϕf{λptqqpptq´1
p|fptq|{λqpptq dt “ ´

1

λ2

ż

|fptq|pptq

pptq
ϕ
1´pptq
f ptq dt

and for λ “ }f}pp¨q the above reads “ ´ 1
}f}pp¨q

. So, in this case the modular does

not merely define the norm by means of a level set, but it actually behaves locally
according to the required norm.

Approaching the connection between ODE-determined norms and Luxemburg
norms from another direction, suppose that for some weight function wptq ą 0 and
scalar λ ą 0 we have

ż 1

0

wptq
|fptq|pptq

λpptq
dt “ 1.

This can be rewritten as
ż 1

0

wptq |fptq|pptq λ1´pptq dt “ λ.

Replacing f with 1r0,tsf , 0 ď t ď 1, leads to separate respective solutions λt with

λt “

ż t

0

wpsq |fpsq|ppsq pλtq
1´ppsq ds.

Heuristically speaking, the scalars λt may be considered some kind of averages of
more localized constants or a function with a similar role. Let us further localize
these scalars by defining ’a varying lambda’ function λptq as the solution to

λptq “

ż t

0

wpsq |fpsq|ppsq pλpsqq1´ppsq ds,

if such a weak solution exists, thus with a weak formulation

(5.1) λ1ptq “ wptq |fptq|pptq pλptqq1´pptq a.e.

Let us see what happens if pptq “ p is a constant and we choose wptq “ 1
p
. Then

p pλptqqp´1 λ1ptq “ |fptq|pptq a.e.
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This yields
ż t

0

p pλpsqqp´1 λ1psq ds “

ż t

0

|fpsq|p ds,

pλptqqp “

ż t

0

|fpsq|p ds,

λptq “ }1r0,tsf}p.

This is compatible with the philosophy of how the λ:s are defined and used,
›

›

›

›

1r0,tsf

λptq

›

›

›

›

“ 1.

The conclusion is that our solutions ϕf and the ’varying lambdas’ coincide when
the weight in (5.1) is chosen to be wptq “ 1

pptq
.
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