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Abstract. We show that, if f is an outer function and a ∈ [0, 1), then the set of functions

{log |(f ◦ ψ)∗| : ψ : D → D holomorphic, |ψ(0)| ≤ a}

is uniformly integrable on the unit circle. As an application, we derive a simple proof of the fact

that, if f is outer and φ : D → D is holomorphic, then f ◦ φ is outer.

1. Introduction

Let D be the open unit disk and T be the unit circle. We write S for the set of
holomorphic functions φ : D → D (essentially the Schur class, except that we exclude
constant unimodular functions).

A holomorphic function f : D → C is called outer if it has the form

(1) f(z) = c exp

(
ˆ

T

eiθ + z

eiθ − z
log ρ(eiθ)

dθ

2π

)

(z ∈ D),

where c is a unimodular constant and ρ : T → R
+ is a function such that log ρ ∈

L1(T). Outer functions are a key tool in the theory of Hardy spaces. Among their
many nice properties is the following folklore fact: if f is outer and φ ∈ S, then f ◦φ
is also outer. This note arose as an attempt to better understand why this fact is
true.

We shall study two classes of functions. The Nevanlinna class N consists of those
functions of the form f = f1/f2, where f1, f2 are bounded and holomorphic on D

and f2 has no zeros. The Smirnov class N+ is the subclass of N consisting of those
f = f1/f2, where f1, f2 are bounded and holomorphic on D and f2 is outer.

If f ∈ N , then its radial boundary limits

f ∗(eiθ) := lim
r→1−

f(reiθ)

exist a.e. on T. This is a simple consequence of the corresponding result for bounded
holomorphic functions, due to Fatou. Also, it is clear that, if f ∈ N and φ ∈ S, then
f ◦ φ ∈ N . The corresponding result for N+ is also true, but rather less obvious. As
we shall see, it is more or less equivalent to the analogous result for outer functions.

The following theorem lists a number of well-known characterizations of N+.
We write fr(z) := f(rz). Also, we recall that f is called inner if it is a bounded
holomorphic function on D satisfying |f ∗| = 1 a.e. on T.
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Theorem A. Let f ∈ N . The following statements are equivalent:

(i) f ∈ N+,

(ii) f = fifo, where fi is inner and fo is outer,

(iii) limr→1−

´

2π

0
log+ |f(reiθ)| dθ =

´

2π

0
log+ |f ∗(eiθ)| dθ,

(iv) the set {log+ |f ∗
r | : 0 < r < 1} is uniformly integrable on T.

For the equivalence of the first three, see for example [3, §2.5]. A proof of the
equivalence of (iii) and (iv) can be found in [4, Theorem A.3.7].

Our contribution is the following theorem. Given a ∈ [0, 1), we write

Sa := {ψ ∈ S : |ψ(0)| ≤ a}.

Theorem 1. Let f ∈ N and let a ∈ [0, 1). Then f ∈ N+ if and only if the set

{log+ |(f ◦ ψ)∗| : ψ ∈ Sa}

is uniformly integrable on T.

As observed above, if f ∈ N , then f ◦ ψ ∈ N for all ψ ∈ S, and so (f ◦ ψ)∗

exists a.e. on T. Thus the statement of the theorem makes sense. We shall prove
this theorem in §2.

Clearly, if φ ∈ S and a ∈ [0, 1), then

{φ ◦ ψ : ψ ∈ Sa} ⊂ Sb,

where b := sup|z|≤a |φ(z)| ∈ [0, 1). Theorem 1 therefore immediately implies the
following result, previously obtained by other methods in [5] and [2].

Corollary 2. If f ∈ N+ and φ ∈ S, then f ◦ φ ∈ N+.

We now return to the subject of outer functions. The link with N+ is furnished
by the observation that a nowhere-vanishing holomorphic function f on D is outer
if and only if both f ∈ N+ and 1/f ∈ N+. Indeed, the ‘only if’ is obvious, and the
‘if’ is an easy consequence of the characterization (ii) of N+ in Theorem A.

Combining this remark with Theorem 1, we obtain the following theorem, which
we believe to be new.

Theorem 3. Let f ∈ N with no zeros and let a ∈ [0, 1). Then f is outer if and

only if the set

{log |(f ◦ ψ)∗| : ψ ∈ Sa}

is uniformly integrable on T.

From this, we deduce the result mentioned at the beginning of the section.

Corollary 4. If f is outer and φ ∈ S, then f ◦ φ is outer.

2. Proof of Theorem 1

The main idea of the proof is to exploit a criterion for uniform integrability due
to de la Vallée Poussin. For convenience, we include a quick proof.

Let (X, µ) be a measure space and let G be a family of measurable complex-valued
functions on X. We recall that G is uniformly integrable if

sup
g∈G

ˆ

{|g|≥t}

|g| dµ→ 0 (t→ ∞).
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Lemma B. The family G is uniformly integrable on (X, µ) if and only if there

exists a function ω : R → R
+ with limt→∞ ω(t)/t = ∞ such that

(2) sup
g∈G

ˆ

X

ω(|g|) dµ <∞.

The function ω may be chosen to be convex and increasing.

Proof. Suppose ω exists. Given ǫ > 0, choose t such that ω(s)/s ≥ 1/ǫ for all
s ≥ t. Then, for each g ∈ G, we have

ˆ

{|g|≥t}

|g| dµ ≤

ˆ

{|g|≥t}

ǫω(|g|) dµ ≤ ǫ

ˆ

X

ω(|g|) dµ ≤ ǫM,

where M is the supremum in (2).
Conversely, suppose that G is uniformly integrable. Choose a positive increasing

sequence tn → ∞ such that, for each n,

sup
g∈G

ˆ

{|g|≥tn}

|g| dµ ≤ 2−n.

Define ω(t) :=
∑

n≥1
(t − tn)

+. Clearly limt→∞ ω(t)/t = ∞ and, for each g ∈ G, we
have

ˆ

X

ω(|g|) dµ =
∑

n≥1

ˆ

X

(|g| − tn)
+ dµ ≤

∑

n≥1

ˆ

{|g|≥tn}

|g| dµ ≤
∑

n≥1

2−n ≤ 1.

Finally, we note that ω, as constructed above, is convex and increasing. �

Proof of Theorem 1. By considering ψ of the form ψ(z) := rz (0 < r < 1), we
see that the ‘if’ part of the theorem follows from the characterization of N+ given in
Theorem A (iv).

We now turn to the ‘only if’ part. Let f ∈ N+. By Theorem A (iv), the family
{log+ |f ∗

r | : 0 < r < 1} is uniformly integrable on T. Therefore, by Lemma B, there
exists a convex increasing function ω : R → R

+ with limt→∞ ω(t)/t = ∞ such that

(3) sup
0<r<1

ˆ

T

ω
(

log+ |f(reiθ)|
) dθ

2π
<∞.

Now ω(log+ |f |) is subharmonic on D, because ω is a convex increasing function
and log+ |f | a subharmonic function on D (see [1, Theorem 3.4.3(ii)]). By [1, The-
orem 3.6.6], the condition (3) implies that ω(log+ |f |) has a harmonic majorant on
D, let us call it h. Thus, if ψ ∈ Sa, then for all r ∈ (0, 1) we have

ˆ

T

ω
(

log+ |(f ◦ ψ)(reiθ)|
) dθ

2π
≤

ˆ

T

(h ◦ ψ)(reiθ)
dθ

2π
= h(ψ(0)) ≤M,

where M := sup|z|≤a h(z). Letting r → 1− and using Fatou’s lemma, we deduce that
ˆ

T

ω
(

log+ |(f ◦ ψ)∗(eiθ)|
) dθ

2π
≤M.

Thus

sup
ψ∈Sa

ˆ

T

ω
(

log+ |(f ◦ ψ)∗(eiθ)|
) dθ

2π
<∞,

and the result now follows by applying Lemma B in the other direction. �
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