ERRATUM TO “QUASICONFORMAL HARMONIC MAPPINGS WITH THE CONVEX HOLOMORPHIC PART”

Dariusz Partyka, Ken-ichi Sakan and Jian-Feng Zhu

The John Paul II Catholic University of Lublin, Institute of Mathematics and Computer Science
Al. Raclawickie 14, P.O. Box 129, 20-950 Lublin, Poland; partyka@kul.lublin.pl
and The State School of Higher Education in Chełm, Institute of Mathematics and
Information Technology, Pocztowa 54, 22-100 Chełm, Poland
Osaka City University, Graduate School of Science, Department of Mathematics
Sugimoto Sumiyoshi-ku, Osaka, 558-8585, Japan; ksakan@sci.osaka-cu.ac.jp
Huaqiao University, School of Mathematical Sciences
Quanzhou-362021, P. R. China; flandy@hqu.edu.cn

Corollary 2.7. Given $R > 0$ let H be a conformal mapping in D such that $H(D)$ is a convex domain and $D(H(0), R) \subset H(D)$. Then H is co-Lipschitz with

\[L^-(H) = D^-(H) \geq \frac{R}{4}. \tag{2.19} \]

Proof. Under the assumption of the corollary we see that the mapping $D \ni z \mapsto \tilde{H}(z) := H(z) - H(0)$ maps D onto a convex domain and $D(0, R) \subset \tilde{H}(D)$. Since $\tilde{H}(0) = 0$ we conclude from [10, Corollary 3.1] (see also [5, Theorem 2.5]) that

\[|H'(z)| = |\tilde{H}'(z)| \geq \frac{R}{4}, \quad z \in D. \]

Therefore $D^-(H) \geq R/4$, and so the inequality in (2.19) holds. By Remark 2.6 we see that the equality in (2.19) holds. Therefore H is a co-Lipschitz mapping, which is our claim. \qed

Let us consider the following deformations of a harmonic mapping $F = H + G$ in D,

\[D \ni z \mapsto F_\varepsilon(z) := H(z) + \varepsilon G(z), \quad \varepsilon \in \mathbb{C}. \tag{2.20} \]

Using now the decomposition (2.2) we derive the following theorem.

Theorem 2.8. Let $F = H + G$ be a sense-preserving harmonic mapping in D. Suppose that H is injective, $H(D)$ is a rectifiably M-arcwise connected domain with a given $M \geq 1$ and that F is not a conformal mapping. Then for every $\varepsilon \in D(1/M\|\mu_F\|_\infty)$, F_ε is a quasiconformal harmonic mapping. Moreover, if $M = 1$, then F_ε is co-Lipschitz.

Proof. Fix $\varepsilon \in D(1/M\|\mu_F\|_\infty)$. By setting $H(D) \ni z \mapsto \phi(z) := \varepsilon G \circ H^{-1}(z)$, we see that for every $z \in H(D)$,

\[|\phi'(z)| = \left| \frac{\varepsilon G'(H^{-1}(z))}{H'(H^{-1}(z))} \right| = |\varepsilon| \|\mu_F(H^{-1}(z))\| \leq |\varepsilon| \|\mu_F\|_\infty. \tag{2.21} \]

\[\text{https://doi.org/10.5186/aasfm.2018.4355} \]
2010 Mathematics Subject Classification: Primary 30C62, 30C55.

Key words: Harmonic mappings, quasiconformal mappings, Lipschitz condition, bi-Lipschitz condition, co-Lipschitz condition, Jacobian.
Hence $MD^+(\phi) \leq M|\varepsilon|\|\mu_F\|_\infty < 1$. From Lemma 2.4 it follows that $I[\phi]$ is bi-Lipschitz, and so $I[\phi]$ is quasiconformal. Since $F_\varepsilon = I[\phi] \circ H$, F_ε is a quasiconformal mapping as a composition of quasiconformal ones. Suppose now that $M = 1$, i.e., $H(D)$ is a convex domain. By the conformality of H, $D(H(0), R) \subset H(D)$ for a certain positive number R. Then by Corollary 2.7 we see that H is a co-Lipschitz mapping. Therefore F_ε is a co-Lipschitz mapping as a composition of co-Lipschitz ones, which proves the theorem.

References

Received 6 April 2018 • Accepted 6 April 2018