
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 44, 2019, 311–327

REMARKS ON LOEWNER CHAINS DRIVEN

BY FINITE VARIATION FUNCTIONS

Atul Shekhar, Huy Tran and Yilin Wang

KTH, Department of Mathematics
Lindstedtsvägen 25, SE-100 44 Stockholm, Sweden; atuls@kth.se

Technische Univesität Berlin, Institut für Mathematik
Strasse des 17. Juni 136, 10623 Berlin, Germany; tranvohuy@gmail.com

ETH Zurich, Department of Mathematics
Rämistrasse 101, 8092 Zurich, Switzerland; yilin.wang@math.ethz.ch

Abstract. To explore the relation between properties of Loewner chains and properties of their

driving functions, we study Loewner chains driven by functions U of finite total variation. Under

a slow point condition, we show the existence of a simple trace γ and establish the continuity of

the map from U to γ with respect to the uniform topology on γ and to the total variation topology

on U . In the spirit of the work of Wong [19] and Lind–Tran [10], we also obtain conditions on the

driving function that ensures the trace to be continuously differentiable.

1. Introduction and results

The Loewner’s differential equation (abbreviated LDE) was introduced by Loewner
in the context of the Bieberbach conjecture [11] where he studied univalent functions
on the unit disc by approximating the image domain by slit domains. LDE turned
out to be an instrumental tool in its solution which was eventually settled by de
Branges [1], see also [2, 5] for background. For those purposes, it was sufficient to
consider cases where the slit is an analytical curve which is equivalent to the corre-
sponding driving function being analytical, see [3]. The development of the theory of
Schramm–Loewner evolution in recent past years has prompted to consider driving
functions which are not smooth and to understand the relation between properties
of the slit (also called the trace) in terms of properties of its driving function.

The LDE was initially written in the radial setting where the target point is in
the interior of the domain. There exists an equivalent chordal version where the
target point is on the boundary of the domain. In the present article, we choose to
work with the chordal case, but everything could easily be rephrased in the radial
setting. Let us briefly recall some basics of chordal Loewner’s theory in the upper
half plane H := {z | z ∈ C, Im(z) > 0}.

Let γ be a continuous injective curve from the compact time interval [0, T ] into
H ∪ {0} with γ(0) = 0. LDE provides a way to encode the curve γ via a real
valued function U which will be called the driving function or simply, the driver of
γ. Let us first explain how to define the driver U when one knows γ. Note that
for each t ≥ 0, Ht := H \ γ[0, t] is a simply connected domain, and there exists a
unique conformal map gt from the slit domain Ht onto H satisfying the so called
hydrodynamic normalization given by limz→∞(gt(z) − z) = 0. The map gt will be
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referred to as the mapping-out function of the set Kt := γ[0, t]. Further expanding
gt at infinity, one gets the existence of a non-negative constant bt depending on Kt

such that
gt(z) = z + bt/z +O(1/|z|2).

The constant bt is called the half-plane capacity of Kt and is denoted by bt =
hcap(Kt). It is shown that t 7→ hcap(Kt) is continuously increasing. Thus, it is
possible to choose a parametrization of γ so that hcap(Kt) = 2t for all t ∈ [0, T ].
The mapping-out function gt also admits a continuous extension to the boundary
point γt of the domain Ht. The driver U is then defined by Ut := gt(γt) which can
be shown to be a continuous real valued function. The significance of the driver U
comes from the fact that it describes the evolution of the conformal maps gt(z) in
variable t via LDE given by

(1.1) ġt(z) =
2

gt(z)− Ut

, g0(z) = z.

In fact, one can also recover the curve γ from U as follows. For each z ∈ H\{0},
let [0, Tz) with Tz ∈ (0,∞] denote the maximal interval of existence of the unique
solution to equation (1.1). Also define T0 = 0. Then

γ[0, t] = {z ∈ H, T (z) ≤ t}.
The procedure described above can also be naturally reversed. Given any con-

tinuous real valued curve U with U0 = 0, written U ∈ C0[0, T ] hereafter, define gt(z)
for z ∈ H \ {0} to be the solution of (1.1). Let Tz for z ∈ H be similarly defined as
above. Then

Kt := {z ∈ H, T (z) ≤ t}
defines an increasing family of compact sets in H. The family K = {Kt}t∈[0,T ] is
called the Loewner chain driven by U . As in the previous case, Ht := H \ Kt is
simply connected and gt is the unique conformal map from Ht onto H satisfying the
hydrodynamic normalization. The Loewner chain K also satisfies hcap(Kt) = 2t and
the so-called conformal local growth property meaning that the radius of gt(Kt+s\Kt)
tends to 0 as s → 0+ uniformly with respect to t. However, it is important to stress
that, in general, Kt may not be locally connected, and in full generality, it cannot
always be written as the image γ[0, t] for a curve γ. Even if this is the case, the
curve γ may be non-simple and Kt has to be described by filling the loops in the
image γ[0, t]. We say that the Loewner chain K driven by U admits a trace, or
synonymously, U generates a trace if there exists a curve γ : [0, T ] → H such γ0 = 0
and for all t ∈ [0, T ], Ht is the unbounded component of H \ γ[0, t]. We then call γ
the trace of the Loewner chain K. There are examples where K does not admit a
trace. These cases are of interest too but not the topic of this article. The following
questions arise naturally in this context:

(a) For what classes of drivers U ⊂ C0[0, T ] does the Loewner chain K driven by
U ∈ U admit a simple trace?

(b) What continuity properties does the map Ψ which maps U to γ satisfy on U?
(c) How does the regularity of the trace γ relate to properties of the driver U ∈ U?

Let us list some answers to the above questions. Marshall–Rohde [12] and Lind
[8] have shown that the simple trace exists if U is 1/2-Hölder with σ0 = ‖U‖1/2 < 4.
In fact in this case, U generates a quasi-slit; also see [17] for a different proof of this
theorem. The condition σ0 < 4 is sharp, and it was shown in [9] and [12] that there
exists a driver Ut ∼ 4

√
1− t as t → 1−, which does not generate a trace. For σ < 4,
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if Uσ := {U ∈ C0[0, T ], ‖U‖1/2 ≤ σ}, then the continuity of Ψ: Uσ → C([0, T ],H)

was established in [9] w.r.t. the uniform topologies on Uσ and C([0, T ],H). A similar
result was obtained in [16] without assuming ‖U‖1/2 < 4 but instead assuming some
technical conditions on limiting trace curve γ. Some stronger continuity results were
obtained in [4] under the assumption of U being of finite energy, i.e. U̇ is square
integrable.

Sufficient conditions on U to ensure certain regularity of γ was obtained by Wong
[19] and Lind–Tran [10] where it was shown that t 7→ γt2 is a Cα+1/2 curve when U
is Cα for α > 1/2 (there is a little caveat when α− 1/2 ∈ N though). When U ∈ Uσ

for σ < 4, it was shown in [17] that γ is η-Hölder where η depends only on the σ.
When U is of finite energy, it was shown in [4] that t 7→ γt2 is a Lipschitz curve, and
thus γ is of finite total variation.

In this article, we prove some further results in the context of the above raised
questions. We will more precisely focus on drivers with finite total variation. Recall
that the total variation |||U |||I of a function U on a closed interval I is the supremum
of the sum of the absolute values of the increments of U over all partitions of I. We
will write |||U |||t := |||U |||[0,t]. Let us define the following two conditions:

(C1): For all t > 0, lim sup
s→0+

|||U |||[t−s,t]√
s

< 2.

(C2):

ˆ ε∧t

0+

1√
r
d|||U |||t−r → 0 uniformly for t ∈ (0, T ] as ε → 0.

Define the subset BVLR[0, T ] ⊂ C0[0, T ] by (LR stands for “locally regular”),

BVLR[0, T ] :=
{

U ∈ C0[0, T ] s.t. |||U |||T < ∞ and (C1) holds
}

.

We also equip BVLR[0, T ] with the metric d defined by d(U, V ) := |||U − V |||T for
U, V ∈ BVLR[0, T ]. Note however that BVLR[0, T ] is not a complete metric space.
The space C([0, T ],H) of continuous H-valued curves is equipped with the supremum
norm hereafter.

Our first main result is the following theorem.

Theorem 1.1. For each U ∈ BVLR[0, T ], the Loewner chain driven by U admits
a simple trace γ such that γt ∈ H for all t > 0.

Our proof is based on a result due to Rohde and Schramm [14] which states that
the trace exists if and only if

(1.2) γt := lim
y→0+

ft(iy + Ut)

exists and is continuous in t, where ft = g−1
t . If so, the curve γ is the trace generated

by U . We will verify the conditions of (1.2) by providing a candidate for the curve
γ by uniquely solving reverse time LDE starting from a singularity, see section 2 for
details. As a result of this, we also obtain the following continuity result.

Theorem 1.2. The map Ψ: (BVLR[0, T ], |||·|||) → (C([0, T ],H), ‖ · ‖∞) defined
by Ψ(U) = γ is continuous.

In fact, we prove Theorem 1.2 under a slightly weaker condition. See section 3
for details. Finally, we prove the following result on regularity of the trace γ.

Theorem 1.3. Let U ∈ BVLR[0, T ] such that (C2) holds. Then the curve t 7→ γt2
is continuously differentiable.
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Let us make some comments about the above results. Condition (C1) is reminis-
cent of a local 1/2-Hölder condition. But, as we will see in the following, there are
examples of functions in BVLR[0, T ] that are not 1/2-Hölder. In fact, if the driver
U is non-decreasing, then (C1) is equivalent to saying that for all t > 0, there exist
s0(t) > 0 and c(t) < 2 such that for s ∈ (0, s0(t)], |Ut − Ut−s| ≤ c(t)

√
s. Note that

this condition only imposes a 1/2-Hölder type behaviour from the left at each t with
no uniformity assumption on s0(t) and c(t) with respect to t (even though c(t) is
assumed to be smaller than 2, it can get arbitrarily close to 2 as t varies). In [17,
Theorem 1.2], a condition which is very similar to (C2) above assumes that for some
constant C0 small enough,

sup
t∈(0,T )

ˆ t

0

sup
r∈[s,t]

|Ur − Us|
(t− s)3/2

ds ≤ C0,

which ensures that the trace is the graph of a Lipschitz function. This can also be
compared with Theorem 1.3 above.

Let us go through a list of some examples:

• If U is in the Sobolev space W1,p with 1 ≤ p < 2, then U has finite variation
and finite (1− 1/p)-Hölder norm. However, this is not enough to say that U
satisfies the condition (C1).

• On the contrary, if U is in W1,2, then U is in BVLR and has small 1/2-Hölder
norm on intervals of small length. The latter together with the results in [12]
imply the existence of the trace. This case was also treated in [4] producing
some additional properties of trace such that t 7→ γ(t2) is a Lipschitz curve,
and thus the trace has finite length; see Theorem 2 in [4].

• For any constant c, Ut = c
√
t (note than when |c| ≥ 4, then ‖U‖1/2 ≥ 4)

can be easily seen to be an element of BVLR. Note that a scaling argument
immediately shows that the trace in this case is a straight line in H starting
at 0 making an angle θ(c) with the real axis; also see [6] and [9] for exact
computations. A function like Ut = 4

√
t−2

√
t log(t) is differentiable on (0, T ]

and clearly U ∈ BVLR. However ‖U‖1/2 = +∞.

Even though the last two examples do not fall in the ‖U‖1/2 < 4 regime, the only
problem lies at time t → 0+. One can also instead verify the existence of trace by
looking at Loewner chain K̃ǫ

t := gǫ(Kt+ǫ \Kǫ). Since K̃ǫ is driven by Ũ ǫ
t = Ut+ǫ −Uǫ

which is continuously differentiable for any ǫ > 0, it can be easily seen that K̃ǫ admits
a trace in H. Finally the conformal local growth property implies that K also admits
a trace. A key point to note here is that the pathological behaviour from the right
side of a point can be handled as above. Below we provide some other examples
where we have pathological behaviour from the left side of a point. As evident from
conditions (C1) and (C2), our approach stresses to control the pathological behavior
of U from the left of a time t > 0. Note that such a distinction between left and right
sides is due to the directional nature of the theory of Loewner chains.

• A monotone BVLR function with infinite 1/2-Hölder norm. Let c ∈
(0, 1) and α > 1/2. Define a sequence by s0 = 0 and sn = 1 − cn. Note
that sn ↑ 1. Choose a strictly increasing sequence xn with x0 = 0, xn ↑ x for
some x such that x − xn ≤ (1 − sn)

α = cnα. Further choose tn ∈ (sn, sn+1)
close enough to sn so that (tn − sn)

1/2−ǫ < xn+1 − xn. Now on the sequence
s0 < t0 < s1 < t1 < s2 < t2 < ..., define Usn = xn, Utn = xn + (tn − sn)

1/2−ǫ

and U1 = x. Interpolating between these points using straight lines gives a
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continuous monotonic increasing curve. Clearly for t ∈ (0, 1),

lim sup
s↑t

|Ut − Us|
|t− s|α < ∞.

At t = 1, for s ∈ [sn, sn+1],

U1 − Us ≤ U1 − Usn = x− xn ≤ (1− sn)
α =

(1− sn+1)
α

cα
≤ (1− s)α

cα

which implies

lim sup
s↑1

|U1 − Us|
|1− s|α < ∞.

This also clearly implies conditions (C1) and U ∈ BVLR. Finally note that

|Utn − Usn |√
tn − sn

=
1

(tn − sn)ǫ

and ‖U‖1/2 = +∞.

At last, we mention the following side remark which was the initial motivation
to carry out this work. In the random setting, Rohde and Schramm [14] showed
that if Ut =

√
κBt where κ > 0, κ 6= 8 and B is standard Brownian motion, then

almost surely the Loewner chain driven by U admits a trace γ (referred as SLEκ).
Further, γ is a simple curve when κ ≤ 4. In an attempt to understand the sample
path properties of B which implies the existence of a simple trace for SLEκ, κ ≤ 4, a
condition like (C1) seems natural since they do not require uniformity with respect
to t as explained above. Even though the Brownian drivers are far from being treated
by methods of the present article, Brownian sample paths do satisfy a local regularity
condition similar to (C1) at its slow points. Recall that t > 0 is called a α-slow point
from left for Brownian motion B if

lim sup
s→0+

|Bt − Bt−s|/
√
s ≤ α.

It is well known that such times t > 0 exist if α > 1 and form a dense subset; see
e.g. [13]. Thus, if κ < 4, α ∈ (1, 2/

√
κ) and t is a α-slow point of B, then

(1.3) lim sup
s→0+

|Ut − Ut−s|/
√
s ≤

√
κα < 2,

which is similar to the condition (C1) presented above. This is coherent with the fact
that SLEκ is a simple curve only for κ ≤ 4, suggesting that the constant 2 appearing
in condition (C1) is optimal.

Another fact is that the set of slow points is preserved under shifts in the Wiener
space by Cameron–Martin W1,2 functions. The class of functions BVLR is also stable
under such shifts. We believe that slow points play a crucial (but not complete) role
in the existence of trace and it is interesting to look for more deeper properties of
Brownian sample paths required to understand the existence of trace for SLEκ.

The organization of the paper is as follows. In section 2 we give the proof of
Theorem 1.1. The existence of limit γt is established in section 2.1 and the continuity
of γt is proved in section 2.2. Section 3 and section 4 contain the proofs of Theorem 1.2
and Theorem 1.3 respectively.
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2. Proof of Theorem 1.1

In this section we consider a U ∈ BVLR[0, T ] and employ elementary tools of
analysis and measure theory to verify the condition (1.2) which implies existence
of the trace. To this end, we subdivide the proof into two parts as follows. The
subsection 2.1 will be aimed at establishing the existence of the limit

(2.1) γt := lim
y→0+

ft(iy + Ut)

and the subsection 2.2 will be aimed at establishing the continuity of the curve t 7→ γt.

2.1. Reverse time Loewner differential equation. The basic idea in this
section is to utilize reverse time LDE in order to prove the existence of the limit
(2.1). More precisely, reverse LDE characterizes the dynamics of ft(z) for z ∈ H as
follows. Define βt

s = Ut − Ut−s for s ∈ [0, t]. We fix t ∈ (0, T ] for the rest of this
section and with a slight abuse of notation, write βs to mean βt

s.

Lemma 2.1. For each fixed t ∈ (0, T ] and z ∈ H,

ft(z + Ut) = ht(z)

where hs(z)s∈[0,t] is given by the solution of the reverse time LDE

(2.2) dhs(z) = dβs +
−2

hs(z)
ds, h0(z) = z.

Proof. Note that hs(z) = gt−s(ft(z + Ut))− Ut−s for s ∈ [0, t] is a flow from z to
ft(z + Ut) and using LDE (1.1), hs(z) satisfies equation (2.2). �

Since z ∈ H, the solution hs(z) of equation (2.2) stays in H. For analysing the
behaviour of hs(z) as z → 0, it becomes beneficial to look at the curves defined by
s 7→ φs(w) := hs(

√
w)2 for w ∈ C \ [0,∞). Recall the map z 7→ z2 is a conformal

isomorphism H → C\[0,∞) with the inverse map C\[0,∞) → H given by w 7→ √
w,

where
√
w is taken to be the square root of w with positive imaginary part. Since β

is of finite total variation, it easily follows that φs(w) satisfies

(2.3) dφs(w) = 2
√

φs(w)dβs − 4ds, φ0(w) = w

for each w ∈ C \ [0,∞). The key idea here is to give meaning to the curve s 7→ φs(0)
as a solution of the equation (2.3) with starting point w = 0. We first need the
following definition.

Definition 2.2. For a curve X : [0, T ] → C, a branch square root of X is a
measurable function A : [0, T ] → H such that for all t, A2

t = Xt.

It is easy to check that for any curve X, a branch square root exists. Whenever the
curve X hits the positive real axis, a branch square root makes a choice of positive or
negative square root in a measurable way. Clearly X can have more than one branch
square roots in general. With an abuse of notation, we will denote all branch square

roots (or a particular one) by symbol At =
√
Xt

b
. Note that for any such branch

square root, one has |
√
Xt

b| =
√

|Xt|, and thus |
√
Xt

b| is continuous. The following
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lemma will be useful to choose branch square roots which are continuous. First we
recall without proof the following basic result which we will frequently use.

Lemma 2.3. Let xn be a sequence in a metric space M and x ∈ M an element
such that for any subsequence xnk

, there is a further subsequence which converges to
x. Then the sequence xn converges to x.

Lemma 2.4. Let Xn, X : [0, T ] → C be curves with X0 = 0, Xn
0 ∈ C\(0,∞) and

Xn
t ∈ C\ [0,∞) for all n and t > 0. If Xn converges uniformly to X, then there exist

a branch square root
√
X

b
of X and a subsequence Xnk such that

√
Xnk converges

uniformly to
√
X

b
. In particular,

√
X

b
is continuous. Further, if Xt ∈ C \ [0,∞) for

all t > 0, then
√
Xn converges uniformly to

√
X.

Proof. Note that family of curves {
√
Xn} is uniformly bounded. We will prove

that this family is equicontinuous. Then the Arzela–Ascoli’s theorem implies that
there exists a subsequence

√
Xnk converging uniformly to a continuous function A

which is a branch square root of X.
For proving the equicontinuity of the family {

√
Xn}, let ǫ > 0. We need to

exhibit a δ such that if |t − s| ≤ δ, then |√Xn
t −

√

Xn
s | = O(ǫ) for all n. Since the

family {Xn} is equicontinuous, first choose δ > 0 such that for all n,

|Xn
t −Xn

s | ≤ ǫ2 whenever |t− s| ≤ δ.

Fix t and s such that |t − s| ≤ δ. If |Xn
t | ≤ ǫ2 or |Xn

s | ≤ ǫ2, then both |Xn
t | ≤ 2ǫ2

and |Xn
s | ≤ 2ǫ2, which implies |√Xn

t −
√

Xn
s | ≤ 2

√
2ǫ.

Otherwise, that is if |Xn
t | ≥ ǫ2 and |Xn

s | ≥ ǫ2, then we claim that |
√

Xn
s +

√
Xn

t | ≥
ǫ/2, which by the identity

|
√

Xn
t −

√

Xn
s | =

|Xn
t −Xn

s |
|√Xn

t +
√

Xn
s |

implies that |√Xn
t −

√

Xn
s | = O(ǫ).

Indeed, since

ǫ2 ≤ |Xn
s | = ReXn

s + 2(Im
√

Xn
s )

2,

if ReXn
s ≤ ǫ2/2, then

|
√

Xn
s +

√

Xn
t | ≥ Im

√

Xn
s ≥ ǫ/2.

It is similar if ReXn
t ≤ ǫ2/2. Now, if both ReXn

t > ǫ2/2 and ReXn
s > ǫ2/2, then the

signs of Im(Xn
s ) and Im(Xn

t ) are the same (since the curve Xn does not intersect the
positive real axis). That implies Re

√
Xn

t and Re
√

Xn
s have the same signs. Hence,

|
√

Xn
s +

√

Xn
t | ≥ Re

√

Xn
s ≥ ǫ/

√
2.

The above mentioned claim is proved.
Finally, if Xt ∈ C \ [0,∞) for t > 0, then there is only one branch square

root given uniquely by
√
X. The uniform convergence of the whole sequence is a

consequence of Lemma 2.3. �

We are now ready to give a sense to equation (2.3) with w = 0. A curve φs = φs(0)
is called a solution to (2.3) with w = 0 if

(2.4) φs = 2

ˆ s

0

√

φr

b
dβr − 4s
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for some continuous branch square root
√
φ
b
, where the integral is interpreted as an

Riemann–Stieltjes integral.

Remark 1. We have crucially utilized the assumption that β is of finite total

variation while giving meaning to the equation (2.4) because
√
φ
b

is assumed to be
continuous only and integral in (2.4) is understood as a Riemann–Stieltjes/Lebesgue
integral. We believe that the assumption of finite total variation and properties
of Riemann–Stieltjes/Lebesgue integral are crucial for the proofs in this paper. In
Lemma 2.8 in the next section 2.2, we will see another important feature of measure
theory which is Portamanteau Theorem or weak compactness of totally bounded sets
to be crucially important. In particular, we found it non-trivial to avoid the condition
of finite total variation and perhaps use other calculus methods e.g. Young’s calculus
in order to consider drivers of finite p-variation for p > 1. We plan to study such
drivers in our future projects.

Our next goal is to establish existence and uniqueness of solution to equation
(2.4). To this end we first prove the following lemma.

Lemma 2.5. Let a curve v : [0, t] → C with a continuous branch square root√
v
b

satisfy |Re(√vs
b)| ≤ |||β|||s and

(2.5) vs = 2

ˆ s

0

√
vr

b
dβr − 4s

for all s ∈ [0, t]. If for some δ < 2 and s0 ∈ (0, t] depending on t, |||β|||s ≤ δ
√
s for

s ∈ [0, s0], then

(a) For all s ∈ (0, t], vs ∈ C \ [0,∞) and
√
vs

b =
√
vs.

(b) Moreover, for cδ =
√
4− δ2 > 0 and s ∈ (0, s0],

(2.6) cδ ≤ Im(
√
vs)/

√
s ≤ 2.

In particular, (a) and (b) hold if the condition (C1) is satisfied.
(c) There exists a constant C depending only on β such that ‖v‖∞ ≤ C and

|vr − vs| ≤ C(|||β|||[r,s] + s− r) for all r ≤ s.

Proof. The condition |||β|||s ≤ δ
√
s for every s ∈ [0, s0] implies that for s ∈ (0, s0],

2

s

ˆ s

0

|Re(√vr
b
)| d|||β|||r ≤

1

s
|||β|||2s ≤ δ2 < 4.

Thus,

Re(vs) ≤ (δ2 − 4)s,

which implies for s ∈ (0, s0] that vs ∈ C \ [0,∞) and that

Im(
√
vs) ≥

√
4− δ2

√
s.

Since the solution of equation (2.3) remains in C \ [0,∞) once the starting point
w ∈ C \ [0,∞), we conclude that vs ∈ C \ [0,∞) for all time s ∈ (0, t].

Write Xs+ iYs =
√
vs. By comparing the real and imaginary parts on both sides

of equation (2.5), we derive differential formulae for X2
s − Y 2

s and 2XsYs

d(X2
s − Y 2

s ) = 2Xs dβ − 4 ds,

d(2XsYs) = 2Ys dβ.
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Then we can step-by-step deduce differential formulae for (X2
s + Y 2

s )
2, X2

s + Y 2
s , X2

s ,
and Ys. In particular,

d(Y 2
s ) =

4Y 2
s

X2
s + Y 2

s

ds

which means

Y 2
s =

ˆ s

0

4Y 2
r

X2
r + Y 2

r

dr ≤ 4s.

This implies the other inequality in (2.6) and the boundedness of v.
Finally, a bound on the modulus of continuity of v follows by applying triangle

inequality to the equation (2.5). �

The above lemma tells us in particular, under the condition (C1), solutions to
the equation (2.4) leave [0,∞) immediately and hence the equation (2.4) can be
equivalently written with the usual complex square root as

(2.7) φs = 2

ˆ s

0

√

φr dβr − 4s.

We now prove the following result on the existence and the uniqueness of solution
to (2.7).

Proposition 2.6. Let U ∈ BVLR. Then there exists a unique continuous func-
tion φs = φs(0) with φs ∈ C \ [0,∞) for s > 0, |Re(

√
φs)| ≤ |||β|||s, and satisfying

(2.7).

Proof. We first address the uniqueness of solution. Let φ1 and φ2 be two solutions
satisfying the conditions above. From Lemma 2.5, for i = 1, 2 and s ≤ s0,

(2.8)
√
4− δ2 ≤ Im(

√

φi
s)√

s
≤ 2 and

|Re(
√

φi
s)|

Im(
√

φi
s)

≤ δ√
4− δ2

.

In particular,
ˆ s

0+

1

|
√

φi
r|
dr < ∞

and
√

φi
s = βs +

ˆ s

0+

−2
√

φi
r

dr.

Write
√

φ1
s = Xs + iYs,

√

φ2
s = X̃s + iỸs. Then for any 0 < u < s ≤ s0,

√

φ1
s −

√

φ2
s =

√

φ1
u −

√

φ2
u +

ˆ s

u

2(
√

φ1
r −

√

φ2
r)

√

φ1
r

√

φ2
r

dr,

which implies

(2.9)
√

φ1
s −

√

φ2
s = (

√

φ1
u −

√

φ2
u) exp

[
ˆ s

u

2
√

φ1
r

√

φ2
r

dr

]

.

Note that for s > 0, we have Ys, Ỹs > 0 and

d log(Ys)

ds
=

2

X2
s + Y 2

s

and
d log(Ỹs)

ds
=

2

X̃2
s + Ỹ 2

s

.
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Use the estimate (2.8),

Re

[
ˆ s

u

2
√

φ1
r

√

φ2
r

dr

]

=

ˆ s

u

2(XrX̃r − YrỸr)

(X2
r + Y 2

r )(X̃
2
r + Ỹ 2

r )
dr

≤
ˆ s

u

2XrX̃r

(X2
r + Y 2

r )(X̃
2
r + Ỹ 2

r )
dr

≤
ˆ s

u

X2
r

(X2
r + Y 2

r )
2
dr +

ˆ s

u

X̃2
r

(X̃2
r + Ỹ 2

r )
2
dr

≤ δ2

8

(
ˆ s

u

2

(X2
r + Y 2

r )
dr +

ˆ s

u

2

(X̃2
r + Ỹ 2

r )
dr

)

=
δ2

8
log

{

YsỸs

YuỸu

}

.

Thus, it follows from (2.9)

(2.10) |
√

φ1
s −

√

φ2
s| ≤ (YsỸs)

δ2/8|
√

φ1
u −

√

φ2
u|(YuỸu)

−δ2/8.

Since Re(
√

φi
u) ≤ |||β|||u ≤ δ

√
u and Im(

√

φi
u) ≤ 2

√
u, |
√

φ1
u −

√

φ2
u| ≤ C

√
u for

some constant C. Also, again from (2.8), YuỸu ≥ (4− δ2)u. Thus, (2.10) gives

|
√

φ1
s −

√

φ2
s| ≤ C(YsỸs)

δ2/8
√
u
1−δ2/4

for some constant C. Since δ < 2, by letting u → 0+, the right hand side of the
previous inequality tends to 0 which implies φ1

s = φ2
s for s ≤ s0. Finally, the fact

φ1
s0 = φ2

s0 ∈ C \ [0,∞) and the uniqueness of solution to equation (2.3) for starting
point w ∈ C \ [0,∞) imply φ1

s = φ2
s for all s ∈ [0, t].

For the existence of a solution, by applying triangle inequality to (2.3), one can
see that the functions {φ·(−y2), y ∈ (0, 1]} form a uniformly bounded equicontinuous
family. Thus, by Arzela–Ascoli Theorem and Lemma 2.4, there is a subsequence
φ(−y2n) converging uniformly to a continuous function φ and

√

φ(−y2n) converging

uniformly to some continuous branch square root
√
φ
b

as yn → 0+. Then it follows
from a convergence theorem of Riemann–Stieltjes integrals that

φs = 2

ˆ s

0

√

φr

b
dβr − 4s.

Also, it follows from equation (2.2) that if Xs + iYs = hs(iy) =
√

φs(−y2), then

d(Xs − βs) =
−2Xs

X2
s + Y 2

s

ds and dYs =
2Ys

X2
s + Y 2

s

ds.

It implies that

d(XsYs) = Xs dYs + Ys dXs = Ys dβs.

Therefore

Xs =
1

Ys

ˆ s

0

Yr dβr.

Use the Riemann–Stieltjes inequality and the monotonicity of Ys,

|Xs| ≤
1

Ys

(

sup
r∈[0,s]

Yr

)

|||β|||s = |||β|||s.
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In particular, |Re(
√

φs(−y2))| ≤ |||β|||s for all y > 0. Thus, |Re(
√
φs

b
)| ≤ |||β|||s.

Finally, use Lemma 2.5 to obtain φs ∈ C \ [0,∞) for all s > 0 and
√
φ
b
=

√
φ, which

concludes the proof. �

As an immediate corollary, we obtain the existence of the limit (2.1).

Corollary 2.7. The solution φ(−y2) of equation (2.3) with y > 0 converges
uniformly to the solution φ(0) as y → 0+. In particular, ft(iy + Ut) = ht(iy) =
√

φt(−y2) converges to
√

φt(0) as y → 0+.

Proof. As in the proof of Proposition 2.6, for any sequence φ(−y2n) with yn → 0+,
there is a subsequence φ(−y2nk

) converging uniformly to a solution of equation (2.7).
Since φ(0) is the unique solution of equation (2.7), using Lemma 2.3, we conclude
that φ(−y2) converges uniformly to φ(0) as y → 0+. Finally, since φt(0) ∈ C\ [0,∞),

we arrive at
√

φt(−y2) →
√

φt(0) as y → 0+. �

2.2. Continuity of the map t 7→ γt. In this section, we prove the continuity
of γ defined by equation (2.1). At this point we denote the solution constructed in
Proposition 2.6 as φt

s = φt
s(0) for s ∈ [0, t]. As seen in Corollary 2.7,

γt =
√

φt
t

The following lemma will be the key for establishing the continuity of γ.

Lemma 2.8. Let Xn be a sequence of continuous functions on [0, T ] converging
uniformly to X. Suppose supn |||Xn|||+ |||X||| < ∞, then for any continuous function
Z,

ˆ T

0

Zr dX
n
r →

ˆ T

0

Zr dXr as n → ∞.

Proof. The proof follows easily as an application of Portmanteau Theorem and
is left to the reader to verify. �

Proposition 2.9. The map t 7→ φt
t is continuous. In particular, γ is a curve.

Proof. Note that for s ∈ [0, t],

φt
s = 2

ˆ s

0

√

φt
r dβ

t
r − 4s

From Lemma 2.5, the curves φt are uniformly bounded in t and

|φt
t| ≤ C(

∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

t
+ t)

for some constant C, implying continuity at t = 0

lim
t→0+

φt
t = 0.

For continuity on (0, T ], fix a time t0 > 0. Then for t ∈ (t0/2, 2t0), define αt
s = φt

st/t0

for s ∈ [0, t0]. Note that |Re(
√

αt
s)| ≤ |||βt|||st/t0 and

αt
s = 2

ˆ s

0

√

αt
r dβ

t
rt/t0

− 4st/t0.

Lemma 2.5 implies that the family of curves {αt} is uniformly bounded and equicon-
tinuous. Again, by Arzela–Ascoli’s theorem and Lemma 2.4, along some subsequence
tn → t0, α

tn converges uniformly to some continuous function φ̃ and
√
αtn converges

uniformly to some branch square root

√

φ̃
b

with |Re(
√

φ̃s

b

)| ≤ |||βt0 |||s on [0, t0]. As
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an application of Lemma 2.8 and together with the Riemann–Stieltjes’ inequality, we
see that

φ̃s = 2

ˆ s

0

√

φ̃r

b

dβt0
r − 4s.

Using Lemma 2.5 and Proposition 2.6, we conclude that φ̃s = φt0
s . Finally, Lemma 2.3

implies that αt converges uniformly to φt0 as t → t0. In particular, φt
t = αt

t0 → φt0
t0 .

Note that φt
t ∈ C \ [0,∞) for all t > 0. Thus, γt =

√

φt
t is also a curve. �

Proof of Theorem 1.1. The existence of the trace γ follows from Corollary 2.7
and Proposition 2.9. Clearly, γt ∈ H for all t > 0 from the construction above of
γ. For the simpleness of γ, suppose on the contrary γs = γs′ for s < s′. Note that
chain K̃t := gs(Kt+s \Ks)− Us is driven by Ũt = Ut+s − Us. Clearly Ũ ∈ BVLR and
by above argument K̃ is generated by a curve γ̃ with γ̃t ∈ H. But since γs = γs′,
γ̃s′−s ∈ R which is a contradiction. �

Remark 2. We emphasize that in our approach it was very beneficial to consider
the squared equation for φt

s(0) = ht
s(0)

2 starting from 0 instead of considering the
equation for ht

s(0) itself with the additional assumption that it takes values in upper
half plane H. Even though the solution ht

s(0) eventually takes value in H, it was
important in the proof above to consider equation (2.4) which is unconditionally well
defined by using the concept of branch square root. This is because H,C\ [0,∞) are
open sets and a sequence of functions taking values in here can escape the set in the
limit. Thus, imposing the additional assumption that ht

s(0) ∈ H is not stable when
the parameter t is varied. As evident in the proof above, we got around this issue
while checking the continuity of t 7→ γt by considering (2.4) instead.

3. Proof of Theorem 1.2

In this section we will employ the approach developed in the previous section to
obtain the continuity of the map Ψ: BVLR[0, T ] → C([0, T ],H) mapping U 7→ γ. In
fact we will prove a slightly stronger version of Theorem 1.2 as follows.

Proposition 3.1. Let Un, U ∈ BVLR[0, T ] with ‖Un − U‖∞ → 0 as n → ∞.
Further assume that supn |||Un|||T < ∞ and family of curves s 7→ |||Un|||s is equicontin-
uous in n. If γn and γ are the trace of Loewner chain driven by Un and U respectively,
then

‖γn − γ‖∞ → 0 as n → ∞.

Proof. We will use the notations from Section 2. Let φn,t
s , φt

s be the solutions
to equation (2.7) driven by βn,t, βt respectively as produced in Proposition 2.6. For
each t0 > 0 and t ∈ ( t0

2
, 2t0), define αn,t

s = φn,t
ts

t0

for s ∈ [0, t0] and note that

αn,t
s = 2

ˆ s

0

√

αn,t
r dβn,t

rt/t0
− 4st/t0

Lemma 2.5 implies that αn,t is uniformly bounded in n, t and using equicontinuity of
s 7→ |||Un|||s in n, we see that the family of curves {αn,t} is also equicontinuous. Using
Arzela–Ascoli Theorem and Lemma 2.4, along some subsequence (nk, tk) → (∞, t0),

αnk,tk converges uniformly to some curve φ̃ and
√
αnk,tk converges to some branch
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square root

√

φ̃
b

of φ̃. Using Lemma 2.8, φ̃ satisfies

φ̃s = 2

ˆ s

0

√

φ̃r

b

dβt0
r − 4s

and Lemma 2.5 and Proposition 2.6 implies φ̃ = φt0 . A variant of Lemma 2.3 for
double indexed sequences implies that αn,t converges uniformly to φt0 as (n, t) →
(∞, t0). In particular, φn,t

t = αn,t
t0 → φt0

t0 for each t0 > 0. Also for t0 = 0, since

|φn,t
t | ≤ C(

∣

∣

∣

∣

∣

∣βn,t
∣

∣

∣

∣

∣

∣

t
+ t),

we have φn,t
t → φ0

0 = 0 as (n, t) → (∞, 0). In other words, for each ǫ > 0 and
t0 ∈ [0, T ], there exists natural number Nt0,ǫ and open ball Bt0,ǫ around t0 such that
for n ≥ Nt0,ǫ and t ∈ Bt0,ǫ,

|φn,t
t − φt0

t0 | ≤ ǫ.

By possibly choosing a smaller radius for ball Bt0,ǫ, we see that

|φn,t
t − φt

t| ≤ |φn,t
t − φt0

t0 |+ |φt
t − φt0

t0 | ≤ 2ǫ.

The collection of balls {Bt0,ǫ}t0∈[0,T ] forms an open cover of the compact set [0, T ].
Hence, it has a finite subcover, say {Bti,ǫ}i=1,..,m. Now, for n ≥ maxi=1,..,mNti,ǫ,

sup
t∈[0,T ]

|φn,t
t − φt

t| ≤ 2ǫ

implying the uniform convergence of φn to φ. Finally, note that γn
t =

√

φn,t
t , γt =

√

φt
t

and application of Lemma 2.4 concludes the proof. �

4. Proof of Theorem 1.3

In this section, we provide a sufficient condition on U ∈ BVLR[0, T ] to generate
a C1 trace. Along with the assumption U ∈ BVLR[0, T ], we further assume

For all t > 0,

ˆ t

0+

1√
r
d
∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

r
< ∞

and that the same integral from 0 to ε converges uniformly to 0 in the following
sense:

(C2): ∃ increasing function δ : (0, T ] 7→ R+, s.t. δ(ε)
ε→0−−→ 0

and

ˆ ε∧t

0+

1√
r
d
∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

r
≤ δ(ε), ∀t ∈ (0, T ].

By probably restricting to a smaller interval [0, T ], without loss of generality, we
can assume that supε>0 δ(ε) =: c < 2.

Proposition 4.1. Let U ∈ BVLR[0, T ]. Further, suppose the condition (C2)
holds. Then, the curve t 7→ φt

t(0) is continuously differentiable. In particular, the
curve t 7→ γt2 is continuously differentiable.

Before going into the proof, we list some remarks regarding the condition (C2).

• Note that (C2) is stronger than condition (C1) appearing in the definition of
space BVLR[0, T ]. It can be easily seen that (C2) implies (C1) since ∀t ∈ (0, T ]

(4.1)
∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

s
/
√
s =

ˆ s

0

1√
s
d
∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

r
≤
ˆ s

0

1√
r
d
∣

∣

∣

∣

∣

∣βt
∣

∣

∣

∣

∣

∣

r
≤ δ(s).
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In addition,

∀s, t ∈ [0, T ], |||U |||[s,t] ≤ δ(|t− s|)
√

|t− s|,

which shows that the 1/2-Hölder norm of the driver converges uniformly to 0
as the length of intervals goes to 0.

• The results of Rohde–Marshall–Lind in [12], [8] shows that if the 1/2-Hölder
norm of the driver U is less than 4, the trace is a K-quasi-slit, with K going to 1
as the Hölder norm approaches 0. It is also not hard to see that |Ut+s−Ut|/

√
s

should converge to 0 as s → 0 at every t to get a C1 trace. One could ask
whether the assumption that the 1/2-Hölder norm is uniformly small on small
intervals, e.g. given by condition (4.1), is sufficient to imply C1 trace. The
answer is negative, and thus we require to put the stronger condition (C2).

In fact, finite Dirichlet energy drivers (studied in [4] and [18]) are examples
where the 1/2-Hölder norm is uniformly small on small intervals but the trace
is not necessarily C1. It is shown in [18] that one can turn the trace to the
right with angle θ, with an increasing driver whose energy is proportional to
θ2. By concatenating pieces of Loewner curves turning to the right during
short time with angle 1/n (n = 1, · · · ,∞), one constructs a finite energy
driver which generates an infinite spiral during finite time (see [15] Section
4.2). This example satisfies (4.1) but does not generate C1 trace.

We show a concrete driver U where the above slow spiral happens at time
1: U is constant after time 1, smooth on [0, 1] and for s < 1/2:

U1 − U1−s = βs =

ˆ s

0+

dr√
r log(r)

.

The energy of U on [1− s, 1] is equal to
ˆ s

0+

β̇2
r dr =

ˆ s

0+

1

r(log(r))2
dr =

[ −1

log(r)

]s

0+

s→0−−→ 0.

Thus, the condition (4.1) holds:

|||β|||s = |βs| =
∣

∣

∣

∣

ˆ s

0+

β̇r dr

∣

∣

∣

∣

≤
√
s

√

ˆ s

0+

β̇2
r dr.

This example fails at (C2) since
ˆ s

0+

1√
r
d|||β|||r = −

ˆ s

0+

1

r log r
dr = ∞.

• The result from [19] shows that if U ∈ Cα with α > 1/2, then its trace is in
Cα+1/2 ⊂ C1. It is natural to ask whether Cα drivers satisfy (C2). Since the
condition (C2) is on the total variation of the driver, it cannot cover all the
Cα drivers. However, if the driver is monotonic, then it satisfies also (C2):
ˆ ε

0

d‖βt‖r√
r

=
βt
ε√
ε
−
ˆ ε

0

βt
r

r3/2
dr ≤ Cεα−1/2 +

ˆ ε

0

Crα−3/2 dr ≤ 2Cεα−1/2,

for some constant C > 0 independent of t.

Now, we list some lemmas used in the proof of Proposition 4.1. We will use
Lemma 4.2 in [7] which is recalled below without proof for readers’ convenience.
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Lemma 4.2. [7, Lemma 4.2] Let X : [0, T ) → C be a continuous function such
that the right derivative

X ′
+(t) = lim

h→0+

Xt+h −Xt

h

exists everywhere and that X ′
+(t) is a continuous function. Then X is continuously

differentiable and X ′(t) = X ′
+(t) for t > 0.

In view of the above lemma, establishing the right derivative turns out be rela-
tively simpler to work with because of the directional nature of Loewner chains which
is also reflected in the following lemma.

Recall the definition of curve φt
s(w) as the solution of equation (2.3) and (2.7)

with φt
0(w) = w ∈ C \ (0,∞).

The condition (C2) and Lemma 2.5 imply in particular that for all 0 < s ≤ t ≤ T ,

(4.2) 2
√
s ≥ Im

(

√

φt
s(0)

)

≥
√

4− δ(s)2
√
s ≥

√
4− c2

√
s =: C

√
s.

Lemma 4.3. (Flow Property) If U ∈ BVLR[0, T ], then for s, t ∈ [0, T ), s ≤ t
and h ≥ 0,

φt+h
s+h(0) = φt

s(φ
t+h
h (0)).

Proof. Note that

φt+h
s+h(0) = φt+h

h (0) + 2

ˆ s+h

h

√

φt+h
r (0) dβt+h

r − 4s,

which implies that s 7→ φt+h
s+h(0) is the solution of equation (2.3) with the initial

condition w = φt+h
h (0). Since equation (2.3) has a unique solution, we conclude that

φt+h
s+h(0) = φt

s(φ
t+h
h (0)). �

Proof of Proposition 4.1. We first establish the right derivative of curve θt =
φt
t(0). Note that

φt+h
h (0) = 2

ˆ h

0

√

φt+h
r (0) dβt+h

r − 4h.

Since |Re
√

φt+h
r (0)| ≤

∣

∣

∣

∣

∣

∣βt+h
∣

∣

∣

∣

∣

∣

r
and Im

√

φt+h
r (0) ≤ 2

√
r, using condition (C2), we

easily see that

lim
h→0+

φt+h
h (0)/h = −4

This implies θ′+(0) = −4. For differentiability at t0 > 0, we will use Lemma 4.3.
Consider the curves

s 7→ Zt0,h
s :=

φt0+h
s+h (0)− φt0

s (0)

φt0+h
h (0)

=
φt0
s (φ

t0+h
h (0))− φt0

s (0)

φt0+h
h (0)

.

By (4.2), one has

Im

(

√

φt0
s (0)

)

≥ C
√
s

and similarly

Im

(

√

φt0
s (φ

t0+h
h (0))

)

= Im

(

√

φt0+h
s+h (0)

)

≥ C
√
s+ h.
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We claim that the family{Zt0,h}h>0 is equicontinuous for h small enough. To see
that, note

Zt0,h
v − Zt0,h

u = 2

ˆ v

u

Zt0,h
r

√

φt0
r (φ

t0+h
h (0)) +

√

φt0
r (0)

dβt0
r .

Since the condition (C2) holds, Gronwall’s inequality implies that family {Zt0,h} is
bounded, and thus its equicontinuity easily follows. Also, it follows from dominated
convergence theorem that if Zt0 is any subsequential limit of Zt0,h as h → 0+, then

Zt0
s = 1 +

ˆ s

0

Zt0
r

√

φt0
r (0)

dβt0
r .

Again using (C2) and similar proof as in Proposition 2.6, we conclude that above
equation has a unique solution, and thus Zt0,h converges uniformly to Zt0 . In fact,
we can also write Zt0 in a closed form as

Zt0
s = exp

(
ˆ s

0

1
√

φt0
r (0)

dβt0
r

)

.

Then,

θ′+(t0) = lim
h→0+

φt0+h
t0+h(0)− φt0

t0(0)

φt0+h
h (0)

φt0+h
h (0)

h
= lim

h→0+
Zt0,h

t0

φt0+h
h (0)

h
= −4 exp

(
ˆ t0

0

dβt0
r

√

φt0
r

)

.

Since θ′+(0) = −4, (C2) and (4.2) imply that θ′+ is continuous at t0 = 0. For continuity
at t0 > 0, let t ∈ (t0/2, 2t0). Note that

ˆ t

0

1
√

φt
r

dβt
r =

ˆ t0

0

1
√

αt
r

dβt
rt/t0

=

ˆ ǫ

0

1
√

αt
r

dβt
rt/t0

+

ˆ t0

ǫ

1
√

αt
r

dβt
rt/t0

,

where αt
s = φt

st/t0
. Using again (4.2), we see that αt

ε is uniformly bounded away from

0 for each fixed ǫ > 0. Together with the proof in Proposition 2.9, we see that 1/
√

αt
s

converges uniformly to 1/
√

φt0
r on [ǫ, t0] for any ǫ > 0. Thus, Lemma 2.8 implies

lim
t→t0

ˆ t0

ǫ

1
√

αt
r

dβt
rt/t0

=

ˆ t0

ǫ

1
√

φt0
r

dβt0
r .

Since ǫ is arbitrary, using condition (C2), we conclude that θ′+ is continuous at t0 > 0
as well. Finally, Lemma 4.2 implies that θ is continuously differentiable, which also
implies t 7→ γt2 is continuously differentiable. �
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