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Abstract. Quasiconformal maps in the complex plane are homeomorphisms that satisfy cer-

tain geometric distortion inequalities; infinitesimally, they map circles to ellipses with bounded

eccentricity. The local distortion properties of these maps give rise to a certain degree of global

regularity and Hölder continuity. In this paper, we give improved lower bounds for the Hölder con-

tinuity of these maps; the analysis is based on combining the isoperimetric inequality with a study

of the length of quasicircles. Furthermore, the extremizers for Hölder continuity are characterized,

and some applications are given to solutions to elliptic partial differential equations.

1. Introduction

A K-quasiconformal map f is an orientation-preserving homeomorphism between
two domains Ω and Ω′ in the complex plane, lying in the Sobolev space W 1,2

loc
and

satisfying the distortion inequality

max
β

|∂βf | ≤ Kmin
β

|∂βf |

for almost all z, where ∂β is the directional derivative in the direction β. These maps
can be realized as homeomorphic solutions to the Beltrami equation

(1.1) ∂zf = µ(z)∂zf

where the Beltrami coefficient µ(z) has the bound ‖µ‖∞ ≤ K−1
K+1

< 1 and represents
the complex dilatation of the function f . Similarly, a K-quasiregular map is a con-
tinuous orientation-preserving map satisfying this distortion inequality, but which is
not necessarily injective. Such maps have useful geometric and regularity properties,
and provide a natural framework for generalizing conformal maps. They arise natu-
rally in a number of applications, and are closely related with the solutions to elliptic
PDEs in the plane.

In this paper, we will be concerned with the precise degree of regularity and
smoothness properties of quasiconformal maps; we will be most interested in deter-
mining what Hölder continuity such maps have (that is, which Lipschitz class the
functions lie in). Given a parameter α ∈ (0, 1], a function f defined on an open set Ω
is said to be locally α-Hölder continuous if for each compact set E ⊆ Ω there exists
a constant C = C(f, E) with

|f(z1)− f(z2)| ≤ C|z1 − z2|
α

for all z1, z2 ∈ E; equivalently, f lies in the Lipschitz class Lipα(Ω). It is well known
that K-quasiconformal maps are Hölder continuous with exponent 1/K, due to a
classical theorem of Morrey [8] (which is related to the work of Ahlfors [1] and Mori
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[9]). More recently, quantitative upper and lower bounds on the size (in the sense
of Hausdorff measure and dimension) of the set where f can attain the worst-case
Hölder regularity were given by Astala, Iwaniec, Prause, and Saksman [3] and the
author [5].

However, the exponent 1/K is not always optimal for a K-quasiconformal map
when K > 1. For example, there are bilipschitz K-quasiconformal maps defined on
C which are not (K − ǫ)-quasiconformal for any ǫ > 0. A particular case of this
is a map exhibiting rotation, such as z|z|iγ for an appropriately chosen exponent
γ ∈ R. Therefore, it is apparent that the exact Hölder regularity of a quasiconformal
map depends on more than just the magnitude of the complex distortion and should
instead encode something about the structure of the distortion. A result of Ricciardi
[14] gave a great deal of information; in that paper, it was shown that if f is a solution
to the Beltrami equation ∂zf = µ∂zf then f is α-Hölder continuous with exponent

(1.2) α ≥

(

sup
Sρ,x⊂Ω

1

|Sρ,x|

ˆ

Sρ,x

|1− η2µ|2

1− |µ|2
dσ

)−1

where Sρ,x is a circle with radius ρ centered at x ∈ Ω, η is an outward unit normal,
and dσ is the arclength measure. This is ultimately a consequence of Ricciardi’s
sharp Wirtinger inequality [15] and the correspondence between elliptic equations
and Beltrami equations (in particular, see the computations following Lemma 2 of
[14]). The integrand here also appeared in [13] in the context of ring modules; for
more information, as well as some related estimates and theorems about extremizers,
see the book [4] of Bojarski, Gutlyanskii, Martio, and Ryazanov.

An important application of the regularity results for quasiconformal maps is
their connection with solutions to elliptic partial differential equations of the form

(1.3) div(A∇u) = 0

where z 7→ A(z) is an essentially bounded, symmetric, measurable, matrix-valued
function satisfying the ellipticity condition

λ〈ξ, ξ〉 ≤ 〈ξ, A(z)ξ〉 ≤ Λ〈ξ, ξ〉

for some 0 < λ ≤ Λ < ∞ at almost every z. Just as there is a correspondence
between the Cauchy–Riemann equation ∂zf = 0 and the Laplacian ∆u = 0 (where
f = u+ iv and v is the harmonic conjugate of u), there is a correspondence between
the C-linear Beltrami equation (1.1) and the divergence form elliptic equation (1.3),
where f = u + iv and v is the A-harmonic conjugate of u. The exact details of this
correspondence can be found in, e.g. Chapter 16 of [2].

Solutions to these equations are known to be Hölder continuous, and the study of
their regularity has a long history. Hölder continuity of solutions to (1.3) was shown
by De Giorgi [6], Nash [11], and Moser [10]; later, Piccinini and Spagnolo [12] gave

a quantitative estimate that the Hölder continuity exponent of u is at least
√

λ/Λ
(as well as further improved bounds for the case of an isotropic matrix A). More
recently, Ricciardi [15] showed that the Hölder exponent is at least

α ≥

(

sup
Sρ,x⊂Ω

1

|Sρ,x|

ˆ

Sρ,x

〈η, Aη〉 dσ

)−1

.

The main result of this paper will be an improvement of the Hölder continuity
exponent given in (1.2) to incorporate an extra term involving the geometry of the
underlying map. In particular, we will show that:
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Theorem 1.1. Let f : Ω → Ω′ be a K-quasiconformal solution to the Beltrami

equation ∂zf = µ(z)∂zf with |µ(z)| ≤ K−1
K+1

. Then f is locally α-Hölder continuous

for some exponent α satisfying

α ≥

[

4π sup
Sρ,x⊂Ω

|f(Dρ,x)|

H1
(

f(Sρ,x)
)2 sup

Sρ,x⊂Ω

1

|Sρ,x|

ˆ

Sρ,x

|1− η̄2µ|2

1− |µ|2
dσ

]−1

where Sρ,x is the circle centered at x with radius ρ, η is the outward unit normal,

σ is arclength measure, and the suprema are taken over all circles Sρ,x such that

D2ρ,x ⊆ Ω.

We have the condition
|1− η2µ|2

1− |µ|2
≤ K

at almost all points as an application of the bound ‖µ‖∞ ≤ K−1
K+1

. Here, it is important
to note that the isoperimetric inequality guarantees that

4π
|f(Dt)|

H1(f(St))2
≤ 1

for all t (and is frequently strictly less than 1); here, Dt is the disk centered at the
origin with radius t. Our result therefore gives an improvement over the previously

known regularity whenever we can impose an upper bound on 4π |f(Dt)|
H1(f(St))2

; for ex-

ample, any affine map which stretches differently in two orthogonal directions will
exhibit this. Furthermore, we can use this information to determine the structure of
the extremizers for Hölder continuity. We have the following definition:

Definition 1.2. Let f be a K-quasiconformal map or a K-quasiregular map;
then we say that f is an extremizer for Hölder continuity at the origin if f is not
more than 1/K-Hölder continuous there. In particular, for each ǫ > 0, there is a

sequence rn → 0 such that |f(rn)− f(0)| ≥ r
1/K+ǫ
n . Likewise, we will call a function

u an extremizer for Hölder continuity at the origin if u is a solution to (1.3) with

ellipticity constants satisfying
√

Λ/λ = K.

We can now give the form of the complex dilatation of a K-quasiconformal map
that exhibits the worst-case regularity. Motivated by the fact that the Beltrami
coefficient of the radial stretch z|z|1/K−1 is −kz/z with k = K−1

K+1
, we have the following

result:

Theorem 1.3. Suppose that f is K-quasiconformal and an extremizer for Hölder

continuity at the origin. Write the Beltrami coefficient in the form µ(z) = z
z
(−k+

ǫ(z)). Then there is a sequence of scales tn → 0 for which
ˆ 1

tn

1

r

(

1

|Sr|

ˆ

Sr

Re ǫ(z) dσ

)

dr = o

(

log
1

tn

)

.

There is an analogous theorem for the geometric distortion properties of such
extremizers, and how far they can be from a map which preserves circularity:

Theorem 1.4. Suppose that f is K-quasiconformal and an extremizer for Hölder

continuity at the origin. Define a function δ by
|f(Dt)|

H1(f(St))2
= 1

4π(1+δ(t))
. Then there is

a sequence tn → 0+ such that
ˆ 1

tn

δ(r)

r
dr = o

(

log
1

tn

)

.
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These results are closely related to the work of Kovalev [7], although the notion of
an extremizer for Hölder continuity is somewhat different here. Our last main results
are on the regularity and Hölder continuity extremizers of solutions to the elliptic
equation (1.3). Suppose u ∈ W 1,2

loc
(Ω) is a continuous solution to div(A∇u) = 0

on a simply connected domain Ω, that A is symmetric, measurable, and satisfies
the ellipticity bound 1

K
|ξ|2 ≤ 〈ξ, A(z)ξ〉 ≤ K|ξ|2 almost everywhere. Let v be an

A-harmonic conjugate of u and f = u+ iv. We will show that

Theorem 1.5. If u is an extremizer for Hölder continuity at the origin, u must

be of the form

u = Φ ◦ g

where Φ is harmonic with non-vanishing gradient at g(0), g is K-quasiconformal, and

g is an extremizer for Hölder continuity. In particular, the bounds of the previous

two theorems apply to the Beltrami coefficient and circular distortion of g.

The outline of this paper is as follows. In Section 2, we prove the main theorem
on Hölder continuity of quasiconformal maps. In Section 3, we use this information
to classify the extremizers and study geometric distortion, and extend the results
to quasiregular maps. In Section 4, we apply the results of the previous sections to
solutions to elliptic PDEs.

2. Estimate of Hölder exponent: Theorem 1.1

The main result of this section is to prove Theorem 1.1 by estimating the exact
degree of Hölder continuity of a K-quasiconformal map through the behavior of the
associated Beltrami coefficient. Our goal is to show that if f satisfies ∂zf = µ∂zf , it
is locally α-Hölder continuous with exponent

α ≥

[

4π sup
Sρ,x⊂Ω

|f(Dρ,x)|

H1
(

f(Sρ,x)
)2 sup

Sρ,x⊂Ω

1

|Sρ,x|

ˆ

Sρ,x

|1− η̄2µ|2

1− |µ|2
dσ

]−1

where Sρ,x is the circle centered at x with radius ρ, η is the outward unit normal,
σ is arclength measure, and the suprema are taken over all circles Sρ,x such that
D2ρ,x ⊆ Ω. Note that the isoperimetric inequality guarantees that

4π sup
Sρ,x⊂Ω

|f(Dρ,x)|

H1
(

f(Sρ,x)
)2 ≤ 1

and so we recover the result (1.2) of Ricciardi for the case of the homogeneous Bel-
trami equation; moreover,

ˆ

Sρ,x

|1− η̄2µ|2

1− |µ|2
dσ ≤

ˆ

Sρ,x

(1 + |µ|)2

1− |µ|2
dσ =

ˆ

Sρ,x

1 + |µ|

1− |µ|
dσ ≤ K|Sρ,x|

for almost every circle (that is, for almost every positive radius). This recovers the
classic exponent of 1/K.

The theorem also shows that Hölder continuity of a quasiconformal map is locally
determined by the structure of the Beltrami coefficient. For example, if there is an
open set E where ‖µχE‖∞ < ‖µ‖∞, then the quasiconformal map displays better-
than-expected Hölder continuity on the entirety of the open set. As will be proved
later on in Section 3, this idea also gives powerful constraints on the complex distor-
tion of a map which has the worst-case Hölder continuity (even at a single point).
It is worth mentioning that this local improvement of Hölder continuity in a region
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where the Beltrami coefficient has smaller magnitude than ‖µ‖∞ also follows from
Stoilow factorization. We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. Without loss of generality, we will look at circles centered
at the origin and assume that 2D ⊂ Ω; in this case, f is quasisymmetric on the disk
D. Our starting point will be an adaptation of a classical argument of Morrey [8].
To this end, define ϕ(t) =

´

Dt
Jf = |f(Dt)|. If we can show that ϕ(t) ≤ ϕ(1)t2c, then

quasisymmetry shows that the worst case length distortion is controlled by

|f(teiθ)− f(0)|2 ∼K |f(Dt)| ≤ ϕ(1)t2c

which implies a Hölder exponent no worse than c. Our task is therefore to estimate
ϕ, which we will do by controlling ϕ by its derivative.

In order to do this, we will compute the circumference of the quasicircle f(St)
explicitly, where St has radius t and is centered at the origin. Parameterize the qua-
sicircle by γ(θ) = f(teiθ) for θ ∈ [0, 2π]; note that for almost every t, the quasicircle
has positive and finite length. Indeed, since f ∈ W 1,2

loc
, f is absolutely continuous

on the circle St for almost every t ∈ [0,∞). Likewise, since the Beltrami coefficient
µ is defined almost everywhere with respect to the area measure, Fubini’s theorem
guarantees that µ is defined at almost every point (with respect to arclength) on
almost every circle. We also have that fz = µfz almost everywhere in the plane, so
almost everywhere on almost every circle. Thus, we can compute the length of f(St)
by

Length =

ˆ 2π

0

∣

∣

∣

∣

d

dθ
γ(θ)

∣

∣

∣

∣

dθ.

Writing f = u+ iv, we have that

1

t2

∣

∣

∣

∣

d

dθ
γ

∣

∣

∣

∣

2

=
1

t2

∣

∣

∣

∣

d

dθ
[u(t cos θ, t sin θ) + iv(t cos θ, t sin θ)]

∣

∣

∣

∣

2

=
1

t2
|−tux sin θ + tuy cos θ + i [−tvx sin θ + tvy cos θ]|

2

= u2
x sin

2 θ + u2
y cos

2 θ − 2uxuy sin θ cos θ

+ v2x sin
2 θ + v2y cos

2 θ − 2vxvy sin θ cos θ

= |fx|
2 sin2 θ + |fy|

2 cos2 θ − 2 sin θ cos θ
(

uxuy + vxvy
)

.(2.1)

If we write the Beltrami equation in terms of x- and y-derivatives rather than the
Wirtinger derivatives, we find that

(2.2) fx + ify = µ(fx − ify) =⇒ fx(1− µ) = −ify(1 + µ) =⇒ fy = i
1 − µ

1 + µ
fx.

Furthermore,

Re(fxfy) = Re
(

(ux − ivx)(uy + ivy)
)

= uxuy + vxvy.

Thus, the final term in (2.1) can be replaced with

uxuy + vxvy = Re(fxfy) = Re

(

fxi
1 − µ

1 + µ
fx

)

= |fx|
2

(

− Im
1− µ

1 + µ

)

= −
|fx|

2

|1 + µ|2
Im
(

(1− µ)(1 + µ)
)

= −
|fx|

2

|1 + µ|2
Im(µ− µ)

=
2|fx|

2 Imµ

|1 + µ|2
.(2.3)
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We also wish to rewrite fx in terms of the Jacobian, so as to relate ϕ to ϕ′. We have

Jf = |fz|
2 − |fz|

2 = (1− |µ|2)|fz|
2.

On the other hand, fx = fz + fz = (1 + µ)fz, so that

(2.4) Jf =
1− |µ|2

|1 + µ|2
|fx|

2.

Combining the equations (2.1)–(2.4), we find that the length H1
(

f(St)
)

of the qua-
sicircle f(St) can be written as

ˆ 2π

0

|1 + µ|
√

1− |µ|2
J
1/2
f

√

sin2 θ +

∣

∣

∣

∣

1− µ

1 + µ

∣

∣

∣

∣

2

cos2 θ − 4 sin θ cos θ
Imµ

|1 + µ|2
t dθ

=

ˆ 2π

0

J
1/2
f

√

1− |µ|2

√

|1 + µ|2 sin2 θ + |1− µ|2 cos2 θ − 4 sin θ cos θ Imµ t dθ.(2.5)

It remains to simplify the term within the square root. We can expand it to find that

|1 + µ|2 sin2 θ+|1− µ|2 cos2 θ − 4 sin θ cos θ Imµ

= 1 + |µ|2 + 2Reµ sin2 θ − 2Reµ cos2 θ − 4 sin θ cos θ Imµ

= 1 + |µ|2 − 2Reµ cos 2θ − 2 Imµ sin 2θ

= 1 + |µ|2 − 2Re
(

(cos 2θ − i sin 2θ)(Reµ+ i Imµ)
)

= 1 + |µ|2 − 2Re(e−2iθµ) = |1− e−2iθµ|2.

Noting that eiθ = η is the outer normal from the circle at the point z = cos θ+ i sin θ,
combining this with (2.5) we arrive at

H1
(

f(St)
)

=

ˆ 2π

0

(

|1− η2µ|2

1− |µ|2

)1/2

J
1/2
f t dθ.

We are now ready to make the estimate of ϕ. Denote

A = 4π sup
t

|f(Dt)|

H1
(

f(St)
)2 and C = sup

t

1

|St|

ˆ

St

|1− η2µ|2

1− |µ|2
dσ

recalling that dσ = tdθ is arclength. We then have for almost every t that

ϕ(t) =
|f(Dt)|

H1
(

f(St)
)2H

1
(

f(St)
)2

≤
1

4π
A

(

ˆ 2π

0

(

|1− η2µ|2

1− |µ|2

)1/2

J
1/2
f t dθ

)2

≤
1

4π
A

ˆ 2π

0

|1− η2µ|2

1− |µ|2
t dθ

ˆ 2π

0

Jf t dθ

=
1

2
At

(

1

2πt

ˆ

St

|1− η2µ|2

1− |µ|2
dσ

)(
ˆ 2π

0

Jf t dθ

)

≤
1

2
ACtϕ′(t)(2.6)

for almost every t. We then find that

d

dt

[

t−2/ACϕ(t)
]

= t−2/AC−1

[

−
2

AC
ϕ(t) + tϕ′(t)

]

≥ 0

almost everywhere. Integrating this inequality over [t, 1] leads to ϕ(t) ≤ ϕ(1)t2/AC ,
which is the desired result. �
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3. Extremizers for Hölder continuity: Theorems 1.3–1.4

Here we will study the structure of the Beltrami equation for the extremizers of
Hölder continuity. Recall that by the work of Morrey [8] (as well as Ahlfors [1] and
Mori [9]), a K-quasiconformal map is at least 1

K
-Hölder continuous. We will show

that, in some sense, the extremizers must have Beltrami coefficients which are very
close to the coefficient for a pure radial stretch. Denote k = K−1

K+1
; since the Beltrami

coefficient has |µ| ≤ k, we can always write

µ(z) = e2iθ (−k + ǫ(z))

with θ being the argument of z, and ǫ some function such that has nonnegative real
part. Note that −ke2iθ is precisely the Beltrami coefficient of the radial stretch
z|z|1/K−1. Following this, our next goal is to prove Theorem 1.3: if f is a K-
quasiconformal extremizer for Hölder continuity at the origin, then there is a sequence
of scales tn → 0 for which

ˆ 1

tn

1

r

ˆ

Sr

Re ǫ(z) dτ dr = o

(

log
1

tn

)

where dτ = dσ
2πr

is normalized arclength. Morally, this says that the circular averages
of Re ǫ(z) are tending to zero in some quantitative sense - otherwise, the integral
´ 1

tn
dr
r

would give some non-zero fraction of log 1/tn.

Proof of Theorem 1.3. We proceed through two steps; the first is to estimate
the impact that our perturbation by ǫ has on

g(t) :=

ˆ

Sr

|1− e−2iθµ|2

1− |µ|2
dτ

and the second is to sharpen the estimate of |f(Dt)| accordingly. Here, dτ stands for
the normalized measure dτ = dσ/2πr. Recall that Theorem 1.1 (and in particular
equation (2.6) with the estimate A ≤ 1) tells us that

ϕ(r) ≤
rg(r)

2
ϕ′(r)

for almost every r ∈ [0, 1]. Integrating this differential inequality, we find that

ln
ϕ(1)

ϕ(t)
=

ˆ 1

t

ϕ′(r)

ϕ(r)
dr ≥

ˆ 1

t

2

rg(r)
dr.(3.1)

Later on, we will prove that there is a constant c1 > 0 depending only on K such
that

g(r) ≤ K − c1

ˆ

Sr

Re ǫ dτ(3.2)

so that
1

g(r)
≥

1

K
·

1

1− (c1/K)
´

Sr
Re ǫ dτ

≥
1

K

[

1 + c

ˆ

Sr

Re ǫ dτ

]

with c = c1/K > 0. With this estimate in mind, we can continue (3.1) to find that

ln
ϕ(1)

ϕ(t)
≥

ˆ 1

t

2

r
·
1

K

[

1 + c

ˆ

Sr

Re ǫ dτ

]

dr

= ln t−2/K +
2c

K

ˆ 1

t

1

r

ˆ

Sr

Re ǫ dτ dr.
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Rearranging this gives us

ϕ(t) ≤ ϕ(1)t2/K exp

(

−2
c

K

ˆ 1

t

1

r

ˆ

Sr

Re ǫ dτ dr

)

.

Now if f is no more regular than 1/K-Hölder continuous and γ > 0, there is a

sequence of scales rn → 0 (depending on γ) for which ϕ(rn) ≥ r
2/K+γ
n ϕ(1) for all n.

We therefore have

r2/K+γ
n ≤ r2/Kn exp

(

−2
c

K

ˆ 1

rn

1

r

ˆ

Sr

Re ǫ dτ dr

)

which is the key estimate behind our constraint on the structure of Re ǫ. Equivalently,

γ log rn ≤ −2
c

K

ˆ 1

rn

1

r

ˆ

Sr

Re ǫ dτ dr

which gives us

γK

2c
log

1

rn
≥

ˆ 1

rn

1

r

ˆ

Sr

Re ǫ dτ dr.

Taking a sequence of γm → 0 and choosing scales rm appropriately gives the desired
estimate.

All that remains now is to show (3.2). Writing µ = e2iθ(−k+Re ǫ) and choosing
w = −k + Re ǫ we have that

|1− e−2iθµ|2

1− |µ|2
=

|1− w|2

1− |w|2
.

We will show that

|1− w|2

1− |w|2
−

1 + k

1− k
. −Re ǫ(3.3)

where the implied constant only depends on k; the estimate (3.2) follows immediately
from integrating this over Sr, recalling that 1+k

1−k
= K and that dτ is a probability

measure. It is worth mentioning that the estimate |1−w|2/(1−|w|2)−(1+k)/(1−k) ≤
0 is immediate from the triangle inequality, but that we need to sharpen it a little
bit. To carry out this estimate, observe that since w is real we have

|1− w|2

1− |w|2
−

1 + k

1− k
=

1− w

1 + w
−

1 + k

1− k

=
(1− w)(1− k)− (1 + k)(1 + w)

(1 + w)(1− k)

=
−2(w + k)

(1 + w)(1− k)
=

−2Re ǫ

(1 + w)(1− k)
.

Now w ≤ k since ǫ(z) lies within the disk centered at k with radius k, and so we have

|1− w|2

1− |w|2
−

1 + k

1− k
≤

−2Re ǫ

(1 + k)(1− k)

which proves (3.3) and thus (3.2). �

In a similar manner, we can study the local distortion properties of an extremizer.
Infinitesimally, a quasiconformal map must take circles to ellipses with bounded
eccentricity; we will show that (in an appropriate sense), the extremizers for Hölder
continuity must almost take circles to circles. Our approach to this is similar to the
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previous theorem: we will write |f(Dt)|/H
1(f(St))

2 as a perturbation of 1/4π and
control the perturbation. To quantify this, define functions h and δ by

h(t) :=
|f(Dt)|

H1(f(St))2
=

1

4π(1 + δ(t))
.

We are now ready to prove Theorem 1.4: if f is K-quasiconformal extremizer for
Hölder continuity at the origin ,then there is a sequence tn → 0+ such that

ˆ 1

tn

δ(r)

r
dr = o

(

log
1

tn

)

.

Proof of Theorem 1.4. As a first remark, the isoperimetric inequality shows that
h(t) ≤ 1

4π
for all t, so δ(t) ≥ 0 everywhere; also, δ(t) < ∞ almost everywhere. In

analogy with the previous theorem, we can conclude from (2.6) that

ϕ(t) ≤ 2πKth(t)ϕ′(t).

We are again using the observation that |1− η2µ|2/(1− |µ|2) ≤ K. Rearranging and
integrating leads to

ϕ(t) ≤ ϕ(1) exp

(

−

ˆ 1

t

dr

2πKrh(r)

)

.(3.4)

Now since f is an extremizer for Hölder continuity, for any sequence γn → 0+ there

is a sequence of scales tn → 0+ for which ϕ(tn) ≥ ϕ(1)t
2/K(1+γn)
n ; combining this with

(3.4) leads to

t
2

K
(1+γn)

n ≤ exp

(

−

ˆ 1

tn

dr

2πKrh(r)

)

.

Taking a logarithm and rearranging, we find that

2

K
(1 + γn) log tn ≤ −

ˆ 1

tn

dr

2πKrh(r)
= −

ˆ 1

tn

dr

2πKr 1
4π(1+δ(r))

= −
2

K

ˆ 1

tn

1 + δ(r)

r
dr =

2

K
log tn −

2

K

ˆ 1

tn

δ(r)

r
dr.

Rearranging this leads to
ˆ 1

tn

δ(r)

r
dr ≤ γn log

1

tn

as desired. �

Corollary 3.1. Suppose f is K-quasiconformal and an extremizer for Hölder

continuity at the origin and δ is defined as in Theorem 1.4. Then for any δ0 > 0, the

set {r : δ(r) > δ0} has zero lower density at 0.

Proof. Fix δ0 > 0 and suppose, intending a contradiction, that the lower density
of {r : δ(r) > δ0} is at least η > 0 at zero. Then there exists a scale ǫ > 0 such that
for all γ < ǫ,

|{r : δ(r) > δ0} ∩ [0, γ]}|

γ
>

η

2
.

Consequently, there exists an M depending only on η such that for all γ < ǫ,

|{r : δ(r) > δ0} ∩ [γ/M, γ]}|

γ
>

η

100
.
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Therefore, we can estimate that
ˆ γ

γ/M

δ(r)

r
dr ≥

δ0
γ
|[γ/M, γ] ∩ {r : δ(r) > δ0}| >

δ0
γ

·
γη

100
=

δ0η

100
.(3.5)

Summing (3.5) over intervals [γ/M, γ], [γ/M2, γ/M ] and so on, it is immediate that

ˆ 1

t

δ(r)

r
dr & log

1

t

for all sufficiently small t. This contradicts the result of Theorem 1.4 and the corollary
follows. �

Finally, as usual, there is a natural generalization of the quasiconformal result to
the quasiregular result. Recall that we have defined extremizers for Hölder continuity
in Definition 1.2.

Theorem 3.2. A K-quasiregular map g is an extremizer for Hölder continuity at

the origin if and only if it is of the form g = Φ◦f , where f is K-quasiconformal and an

extremizer for Hölder continuity at the origin, and Φ is conformal in a neighborhood

of f(0).

Proof. Suppose g is a K-quasiregular extremizer. By the Stoilow factorization
theorem, there exists a holomorphic Φ and K-quasiconformal f such that

g = Φ ◦ f.

Since Φ is a smooth function, Φ ◦ f is at least as regular as f is (in particular, if
f is α-Hölder continuous, then so is g); but since g is not more than 1/K-Hölder
continuous, neither is f . Furthermore, we must have Φ′(f(0)) 6= 0 (which implies
conformality); otherwise, Φ(f(z)) − Φ(f(0)) vanishes to at least second order at 0,
and Φ ◦ f is Hölder continuous at 0 with exponent at least min{1, 2/K} > 1/K.

On the other hand, if g = Φ ◦ f with f an extremizer and Φ conformal at f(0),
we can locally invert Φ as a smooth function, so that f = Φ−1 ◦g. Hence f is at least
as regular as g is; but since f has the worst-case regularity, so must g. �

As pointed out by an anonymous referee, an alternative proof of this follows from
Theorem 4.7 in Chapter III of [16]: a quasiregular extremizer for Hölder continuity
at the origin must be locally injective there (and hence locally quasiconformal, in
which case the previous theorems apply directly). In particular, this method of proof
avoids Stoilow factorization and would apply to higher dimensional settings if given
a characterization of the extremizers in higher dimensions.

4. Applications to elliptic PDEs: Theorem 1.5

Next, we will use the relationship between quasiconformal maps and solutions
to elliptic partial differential equations in order to deduce regularity results and
classify the extremizers for Hölder continuity. The starting point for this work is
the correspondence laid down in [2], Chapter 16. Throughout, we will assume that
A(z) is a matrix valued function which is measurable, symmetric, and satisfies the
ellipticity bound

1

K
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2
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at almost every z ∈ Ω. Note that this implies that A(z) is positive definite, and an
equivalent formulation is the unified inequality

(4.1) |ξ|2 + |A(z)ξ|2 ≤

(

K +
1

K

)

〈A(z)ξ, ξ〉.

Consider the divergence form equation

(4.2) divA(z)∇u = 0.

If Ω is a simply connected domain and u ∈ W 1,2
loc

(Ω) is a solution to (4.2), the Poincaré

lemma guarantees that there exists an A-harmonic conjugate v; that is, v ∈ W 1,2
loc

(Ω)
solves

∇v = ∗A(z)∇u

where ∗ is the Hodge star operator, viewed as the matrix

∗ =

[

0 −1
1 0

]

.

Define f = u + iv; we now claim that the ellipticity condition implies that f is K-
quasiregular. Following Theorem 3.2, we will be able to use this to determine the
regularity and extremizers for Hölder continuity. To see that f is actually quasireg-
ular, we may compute that

‖Df‖2 = |∇u|2 + |∇v|2 = |∇u|2 + | ∗ A(z)∇u|2 ≤

(

K +
1

K

)

〈A(z)∇u,∇u〉

as an application of the inequality (4.1), where ‖ · ‖ is the Hilbert–Schmidt norm.
Using the definition of the A-harmonic conjugate, it is immediate to check that
〈A(z)∇u,∇u〉 = Jf(z) is the Jacobian of f , and we therefore have ‖Df‖2 ≤ (K +
1
K
)Jf(z). Rewriting the Hilbert–Schmidt norm in terms of Wirtinger derivatives, this

implies that |∂zf | ≤
K−1
K+1

|∂zf | as desired.
This brings us to the first theorem on regularity, which is an application of

the natural extension of Theorem 1.1 to the quasiregular setting. Note that by
the Stoïlow factorization theorem f is K-quasiregular then there exists a K-quasi-
conformal g and an analytic function Φ such that f = Φ ◦ g; as such, f inherits (and
possibly improves) the continuity of g; see the proof of Theorem 3.2 for more along
these lines.

Theorem 4.1. Let u ∈ W 1,2
loc

(Ω) be a continuous solution to (4.2) on a simply

connected domain Ω, where v is its A-harmonic conjugate, and f = u+ iv. Let µ(z)
denote the complex dilatation of f . Then u is locally α-Hölder continuous with some

exponent α, where

α ≥

[

4π sup
Sρ,x⊂Ω

|f(Dρ,x)|

H1
(

f(Sρ,x)
)2 sup

Sρ,x⊂Ω

1

|Sρ,x|

ˆ

Sρ,x

|1− η̄2µ|2

1− |µ|2
dσ

]−1

.

The suprema are taken as in Theorem 1.1. In particular, u = Re f is Hölder contin-

uous with exponent at least 1/K.

In a similar manner, we are now able to classify the extremizers for Hölder con-
tinuity and prove Theorem 1.5:

Proof of Theorem 1.5. With the assumptions and notation of Theorem 4.1,
suppose that u is an extremizer for Hölder continuity at the origin. We want to find
a harmonic map Φ and a K-quasiconformal map g such that g is an extremizer for
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Hölder continuity at the origin, Φ has non-vanishing gradient in a neighborhood of
g(0), and f = Φ ◦ g; moreover, the Beltrami coefficient and circular distortion of g
should satisfy the bounds of Theorems 1.3 and 1.4.

This follows essentially the same idea as the proof of Theorem 3.2. Since u is
the real part of a K-quasiregular map f , we can use Stoïlow factorization to write
u = (ReΨ) ◦ g with Ψ holomorphic and g being K-quasiconformal. As before, Ψ
must have non-vanishing gradient at g(0) (so as not to improve the regularity), and
g must be an extremizer for Hölder continuity at the origin; the result follows. �

Finally, we also have a generalization of the result on extremizers to nonlinear
elliptic PDEs.

Theorem 4.2. Let Ω ⊆ C be a simply connected domain and suppose A : Ω×
C → C is measurable in z ∈ Ω and continuous in ξ ∈ C and satisfies the ellipticity

condition

|ξ|2 + |A(z, ξ)|2 ≤

(

K +
1

K

)

〈ξ,A(z, ξ)〉.

If u ∈ W 1,2
loc

(Ω) is a solution to

(4.3) divA(z,∇u) = 0

and u is an extremizer for Hölder continuity at the origin, u is the form of Theo-

rem 1.5.

Proof. By Theorem 16.1.8 of [2], every solution u ∈ W 1,2
loc

(Ω) of (4.3) solves a
linear elliptic equation

divA(z)∇u = 0

with A(z) a positive definite, symmetric measurable matrix field of determinant 1.
Furthermore, we have the ellipticity bound 1

K
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2 and the result

follows from Theorem 1.5. �
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