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Abstract. We are concerned with the Neumann type boundary value problem to parabolic
systems

∂tu− div(Dξf(x,Du)) = −Dug(x, u),

where u is vector-valued, f satisfies a linear growth condition and ξ 7→ f(x, ξ) is convex. We prove
that variational solutions of such systems can be approximated by variational solutions to

∂tu− div(Dξf
p(x,Du)) = −Dug(x, u)

with p > 1. This can be interpreted both as a stability and existence result for general flows with

linear growth.

1. Introduction and results

Throuhgout this paper, we fix dimensions n,N ∈ N, a bounded Lipschitz domain
Ω ⊂ R

n and a finite time interval (0, T ) with 0 < T < ∞. By ΩT we denote the
space-time cylinder Ω× (0, T ), by ST the lateral boundary ∂Ω× (0, T ) and by ∂parΩ
the parabolic boundary ST ∪ (Ω×{0}). We are concerned with the L2-gradient flow
associated with variational functionals of the type

I[u] =

ˆ

Ω

[

f(x,Du) + g(x, u)
]

dx

with Borel measurable functions f : Ω ×R
N×n → [0,∞) and g : Ω × R

N → [0,∞),
for vector-valued maps u : ΩT → R

N . We assume that f satisfies the linear growth
condition

(1.1) ν|ξ| ≤ f(x, ξ) ≤ L(1 + |ξ|) for all (x, ξ) ∈ Ω×R
N×n

with structure constants 0 < ν ≤ L and that

(1.2) ξ 7→ f(x, ξ) is convex.

In addition, we suppose that the partial map u 7→ g(x, u) is convex. On a formal
level, solutions of this gradient flow correspond to solutions of the system of parabolic
partial differential equations with a natural boundary condition

(1.3)



















∂tu− div(Dξf(x,Du)) = −Dug(x, u) in ΩT ,
n
∑

j=1

∂f

∂ξij
(x,Du)nj = 0 on ST , i = 1, . . . , N ,

u(x, 0) = uo(x) on Ω× {0},
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where n denotes the outer unit normal of Ω and ξ = (ξij)1≤i≤N,1≤j≤n. In the case of the

model integrand f(x, ξ) = |ξ| this boundary condition reads as
∑n

j=1 |Du|−1Duijnj =

0 on the lateral boundary, which implies the Neumann boundary condition ∂u
∂n

= 0.
Inspired by Lichnewsky and Temam [28], we consider variational solutions to (1.3).
For the precise notion of solution cf. Definition 1.1. In the present paper, solutions
to (1.3) are constructed by approximating f by f p with p > 1 and then letting p ↓ 1.
Since f p satisfies a standard p-growth and coercivity condition for p > 1, there exists
a very well developed existence theory for solutions of the L2-gradient flow associated
with

Ip[u] =

ˆ

Ω

[

f p(x,Du) + g(x, u)
]

dx,

which formally corresponds to the system of partial differential equations with a
natural boundary condition

(1.4)











∂tu− div(Dξf
p(x,Du)) = −Dug(x, u) in ΩT ,

∑n

j=1
∂fp

∂ξij
(x,Du)nj = 0 on ST , i = 1, . . . , N ,

u(x, 0) = uo(x) on Ω× {0}.
The construction of solutions to (1.3) as limits of solutions to (1.4) can also be
interpreted as a stability result in the limit p ↓ 1. Note that we have not approximated
g, since it would not simplify the existence result for the gradient flow associated with
Ip. However it could be the aim of a future work to investigate stability for more
general integrands fi and gi converging to f , respectively g in a suitable sense.

At this point, an overview over related existence and stability results is given. A
well investigated special case is the total variation flow, which formally corresponds
to

∂tu− div

(

Du

|Du|

)

= 0 in ΩT .

Different notions of solutions such as entropy solutions (allowing L1-initial data),
weak solutions and variational solutions and different boundary conditions have been
considered in the existence results [2, 3, 4, 5, 6, 7, 11, 17, 23]. The obstacle problem
associated with the total variation flow has been treated in [16]. Gradient flows re-
lated to functionals consisting of the total variation plus certain lower order terms
are applied in image restoration. Existence of variational solutions to such flows
has been shown in [13] by elliptic regularization both for Cauchy–Dirichlet and Neu-
mann boundary values. The existence of variational solutions to the time dependent
minimal surface problem has been established by Lichnewsky and Temam, cf. [28].
Spadaro and Stefanelli proved the existence of solutions to the time dependent min-
imal surface problem and more general continuous integrands of linear growth in
[32] by elliptic regularization (also called weighted energy dissipation). Here, for
a.e. t ∈ (0, T ), a solution satisfies the equation u′(t) + ∂F(u(t)) ∋ 0, where ∂F
denotes the subdifferential of the relaxation F of the given integral functional F.
Solutions to more general equations of the type

∂tu− div(a(x,Du)) = 0 in ΩT ,

where a(x, ξ) = Dξf(x, ξ) for an integrand f : Ω ×R
n → R, have been constructed

by Andreu, Caselles and Mazón, cf. [5, 8, 9]. Here, the integrand f satisfies a linear
growth condition. For any fixed x the partial map ξ 7→ f(x, ξ) is assumed to be convex
and differentiable. Furthermore, a continuity condition similar to (1.8) is imposed
on the recession function f∞, allowing the application of a variant of Reshetnyak’s
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continuity theorem. Observe that the differentiability assumption on the partial map
ξ 7→ f(x, ξ) excludes integrands like f(ξ) = |ξ| or f(x, ξ) = a(x)|ξ|.

While there is a wide range of existence results for functionals with linear growth,
only a few stability results are known. Although the focus is not on stability but
on existence, stability methods were used in [18], where de León and Webler were
concerned with the inhomogeneous total variation flow with zero Dirichlet boundary
values. More precisely, the intermediate existence result for more regular data given
in [18, Sec. 4] relies on approximation by solutions of the inhomogeneous parabolic
p-Laplacian. This is slightly related to [33], where Tölle showed that solutions to the
inhomogeneous total variation flow can be approximated by solutions to the inho-
mogeneous parabolic p-Laplacian if the initial data and the inhomogenities converge
in a suitable sense. Here, the case of zero Dirichlet boundary values as well as Neu-
mann boundary values is considered. Another stability result concerning p ↓ 1 has
been obtained by Gianazza and Klaus in [22]. For a bounded C1-domain and time
independent Dirichlet boundary values the authors constructed solutions of the total
variation flow as limit of solutions of the parabolic p-Laplacian. The overall proof
strategy in the present paper is the same as in [14]. The authors use stability meth-
ods to prove the existence of variational solutions to Cauchy–Dirichlet problems of
the type

{

∂tu− div(Dξf(x,Du)) = 0 in ΩT ,

u = g on ∂parΩ,

where f satisfies a linear growth and coercivity condition and is convex with respect
to the gradient variable and the boundary values g are possibly time dependent.

In contrast, stability in the case p → po > 1 is well established. For a recent
result see [21]. Here, Fujishima, Habermann, Kinnunen and Masson showed that
parabolic Q-quasiminimizers related to the parabolic p-Laplace equation with given
boundary values are stable with respect to parameters Q and p. Since the proof relies
on higher integrability of the gradient, the result is restricted to the case p > 2n

n+2
.

In the degenerate case p ≥ 2, a stability result for solutions of parabolic p-Laplace
equations has previously been obtained by Kinnunen and Parviainen, cf. [25].

1.1. Convex functionals with linear growth. Note that f is a Carathéodory
function, since (1.1) and (1.2) together imply that ξ 7→ f(x, ξ) is Lipschitz continuous
(cf. Lemma 2.10). Assumption (1.1) ensures that

(1.5) F[u] :=

ˆ

Ω

f(x,Du) dx

is finite on the Sobolev space W 1,1(Ω,RN). However under the above conditions (and
even under reasonable extra assumptions) the infimum of F will not be attained in
W 1,1(Ω,RN), but only in BV(Ω,RN). As usual, BV(Ω,RN) denotes the space of
functions u ∈ L1(Ω,RN) with finite total variation

|Du|(Ω) := sup

{
ˆ

Ω

u · divϕ dx : ϕ ∈ C1
0(Ω,R

N×n), ‖ϕ‖L∞(Ω,RN ) ≤ 1

}

<∞.

Note that Du ∈ RM(Ω,RN×n), the space of finite vector-valued Radon measures.
The norm in BV(Ω,RN) is defined by

‖u‖BV(Ω,RN ) := ‖u‖L1(Ω,RN ) + |Du|(Ω).
Therefore we need to extend F from W 1,1(Ω,RN) to BV(Ω,RN). To this end we
define the so called recession function f∞ of f , which takes into account the jumps
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of BV functions. More precisely, for an integrand satisfying (1.1) we set

(1.6) f∞(x, ξ) := lim inf
x̃→x,ξ̃→ξ

t↓0

tf
(

x̃, t−1ξ̃
)

for (x, ξ) ∈ Ω×
(

R
N×n \ {0}

)

,

and f∞(x, 0) = 0 for all x ∈ Ω. Note that f∞ is positively 1-homogeneous and convex
in ξ. Moreover, f∞ fulfills the following linear growth and coercivity condition

(1.7) ν|ξ| ≤ f∞(x, ξ) ≤ L|ξ| for all (x, ξ) ∈ Ω×R
N×n.

In addition to the assumptions on f above, we impose the continuity condition

(1.8) lim
x̃→x,ξ̃→ξ

t↓0

tf
(

x̃, t−1ξ̃
)

exists in R

for every (x, ξ) ∈ Ω×
(

R
N×n \ {0}

)

, which ensures that the lower limit in definition
(1.6) is indeed a limit and that the recession function f∞ is continuous with respect
to (x, ξ) on Ω×R

N×n. Let u be a function of bounded variation. By Dau we denote
the absolutely continuous part and by Dsu the singular part of the Lebesgue decom-
position of Du with respect to the Lebesgue measure Ln. Moreover, ∇u denotes the
Radon–Nikodym density of Dau with respect to Ln, i.e. we have

Du = Dau+Dsu = ∇uLn +Dsu.

Using the preceding definitions, we extend the functional F : W 1,1(Ω,RN) → [0,∞)
to a convex functional F : BV(Ω,RN) → [0,∞) by

(1.9) F [u] :=

ˆ

Ω

f(x,∇u) dx+
ˆ

Ω

f∞
(

x,
Dsu

|Dsu|

)

d|Dsu|

for any u ∈ BV(Ω,RN). Note that F = F on W 1,1(Ω,RN).

1.2. Variational solutions. Furthermore, we assume that the Borel measurable
function g : Ω×R

N → [0,∞) satisfies the growth condition

(1.10) 0 ≤ g(x, u) ≤M(1 + |u|2) for all (x, ξ) ∈ Ω×R
N

with a structure constant M > 0 and that

(1.11) u 7→ g(x, u) is convex.

Note that the preceding two conditions together imply that u 7→ g(x, u) is locally Lip-
schitz continuous, cf. Lemma 2.10. To obtain a rigorous formulation of the problem
associated with f , we consider the parabolic function space L1

w∗(0, T ; BV(Ω,R
N))

consisting of the weakly∗ measurable maps u : (0, T ) → BV(Ω,RN) that fulfill t 7→
‖u(t)‖BV(Ω,RN ) ∈ L1(0, T ); cf. Section 2.1 for a precise definition. A Cauchy datum
is given by

(1.12) uo ∈ L2(Ω,RN).

In the present paper we study variational solutions to the Cauchy–Neumann problem
associated with (1.3) in the sense of the following definition.

Definition 1.1. (Variational solution for functionals with linear growth) Assume
that the Cauchy datum uo fulfills (1.12), that f satisfies hypotheses (1.1), (1.2) and
(1.8), that the functional F is given as in (1.9) and that g fulfills (1.10) and (1.11).
We identify a measurable map u : ΩT → R

N in the class

u ∈ L∞(

0, T ;L2(Ω,RN)
)

∩ L1
w∗
(

0, T ; BV(Ω,RN)
)
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as a variational solution to the gradient flow associated with (1.3) if and only if the
variational inequality

ˆ τ

0

F [u] dt+

¨

Ωτ

g(x, u) dx dt

≤
¨

Ωτ

∂tv · (v − u) dx dt+

ˆ τ

0

F [v] dt+

¨

Ωτ

g(x, v) dx dt

− 1
2
‖(v − u)(τ)‖2L2(Ω,RN ) +

1
2
‖v(0)− uo‖2L2(Ω,RN )

(1.13)

holds true for a.e. τ ∈ [0, T ] and any comparison map v ∈ L1
w∗(0, T ; BV(Ω,R

N)) with
∂tv ∈ L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN). �

Remark 1.2. Variational inequality (1.13) allows us to conclude that any vari-
ational solution in the sense of the preceding definition attains the initial datum in
the L2-sense; cf. Lemma 2.11 for details.

Next we are concerned with the approximations f p of f with p > 1. Note that
for any p > 1 the integrand f p : Ω × R

N×n → R satisfies the standard p-growth
condition

(1.14) νp|ξ|p ≤ f p(x, ξ) ≤ Lp(1 + |ξ|)p ≤ Lp(1 + |ξ|p)
for all x ∈ Ω and ξ ∈ R

N×n, where Lp := 2p−1Lp. Since f is non-negative and (·)p is
non-decreasing and convex on R

+
0 , we have that

(1.15) ξ 7→ f p(x, ξ) is convex.

We consider Cauchy data

(1.16) up,o ∈ L2(Ω,RN).

Definition 1.3. (Variational solution for functionals with superlinear growth)
Let up,o fulfill (1.16). Assume that f p satisfies hypotheses (1.14) and (1.15) and that
g satisfies (1.10) and (1.11). We identify a measurable map u : ΩT → R

N in the class

u ∈ C0
(

[0, T ];L2(Ω,RN)
)

∩ Lp
(

0, T ;W 1,p(Ω,RN)
)

as a variational solution to the gradient flow associated to (1.4) if the variational
inequality

¨

Ωτ

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

Ωτ

∂tv · (v − u) dx dt+

¨

Ωτ

[

f p(x,Dv) + g(x, v)
]

dx dt(1.17)

− 1
2
‖(v − u)(τ)‖2L2(Ω,RN ) +

1
2
‖v(0)− up,o‖2L2(Ω,RN )

holds true for any τ ∈ [0, T ] and any comparison map v ∈ Lp(0, T ;W 1,p(Ω,RN))
with ∂tv ∈ L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN). �

Remark 1.4. Note that variational inequality (1.17) implies that any variational
solution in the sense of the preceding definition attains the initial values up,o in the
sense that u(t) → up,o in C0([0, T ];L2(Ω,RN)) as t ↓ 0; see Lemma 2.14 below.
Furthermore, if up,o ∈ L2(Ω,RN)∩W 1,p(Ω,RN), u possesses a time derivative ∂tu ∈
L2(ΩT ,R

N), cf. Theorem 3.1. �

The following theorem is the main result of the present paper.
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Theorem 1.5. Assume that f satisfies hypotheses (1.1), (1.2) and (1.8) and g
fulfills hypotheses (1.10) and (1.11). Let pi > 1 for i ∈ N with pi ↓ 1 as i → ∞.
Assume that the Cauchy data ui,o := upi,o satisfy assumption (1.16) and that

(1.18) ui,o → uo in L2(Ω,RN).

For any i ∈ N let

ui ∈ C0
(

[0, T ];L2(Ω,RN)
)

∩ Lpi
(

0, T ;W 1,pi(Ω,RN)
)

be the variational solution to (1.4) in the sense of Definition 1.3 with Cauchy datum
ui,o. Then, there exists a limit map

u ∈ C0
(

[0, T ];L2(Ω,RN)
)

∩ L1
w∗(0, T ; BV(Ω,R

N))

such that










ui → u in L1(ΩT ,R
N),

Dui
∗⇁ Du weakly∗ in RM(Ω,RN×n),

ui
∗⇁ u weakly∗ in L∞(

0, T ;L2(Ω,RN)
)

as k → ∞. The limit function u is the unique variational solution to (1.3) in the
sense of Definition 1.1.

1.3. Plan of the paper. In Section 2, we collect results that we will need
in the following sections. These are already known or their proofs are basically the
same as in the case of Dirichlet boundary values. In particular, we prove a certain
continuity property with respect to time in Section 2.7. This allows us to deduce
compactness for the sequence of variational solutions associated with exponents p >
1, which is crucial for passing to the limit p ↓ 1. However, we postponed well-
known results about continuity, uniqueness and localization of variational solutions
in the case p > 1 to the appendices A and B, since we give longer proofs for the
convenience of the reader. In addition, Appendix A contains the continuity and
uniqueness results for p = 1. Next, we establish the existence of variational solutions
to problems with superlinear growth in the case of regular initial data in Section 3.
This result is extended to the case of L2-initial data in Section 4. Note that in contrast
to previous existence results, cf. for example [13], comparison functions with time
derivative in L1(0, T ;L2(Ω,RN)) instead of L2(ΩT ,R

N) are admissible. However,
this condition is more natural, since L1(0, T ;L2(Ω,RN)) is the predual of the space
L∞(0, T ;L2(Ω,RN)), in which the variational solutions are contained. In Section 5
we give the proof of the main result. More precisely, we first derive the convergence of
the variational solutions associated with p > 1 to a suitable limit map as p ↓ 1. Using
a version of Reshetnyak’s lower semicontinuity theorem, Theorem 2.3, we establish
the variational inequality for the limit map and certain regular comparison maps.
In particular, we require v ∈ L2(0, T ;W 1,2(Ω,RN)). By an approximation argument
involving a version of Reshetnyak’s continuity theorem, cf. Theorem 2.4, we finally
prove the desired variational inequality for general comparison maps. Compared to
the case of Dirichlet boundary values treated in [14], througout the present paper
the construction of admissible comparison maps is somewhat easier, since we do not
have to care about boundary values attained by mollifications.
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2. Preliminaries

A vital ingredient in the proof of Theorem 1.5 is the following compactness
lemma. We use the abbreviation

τhf(t) := f(t+ h)− f(t)

for h > 0 and t ∈ (0, T − h).

Lemma 2.1. [31, Theorem 5] Let X ⊂ B ⊂ Y be three Banach spaces such
that the embedding X →֒ B is compact and 1 ≤ p < ∞. Assume that the set
F ⊂ Lp(0, T ;X) is bounded and satisfies the property

‖τhf‖Lp(0,T−h;Y ) → 0 as h ↓ 0 uniformly for f ∈ F.

Then, the set F is relatively compact in Lp(0, T ;B).

2.1. Parabolic function spaces. Let X be a Banach space and 1 ≤ p ≤ ∞.
By Lp(0, T ;X) we denote the space of Bochner measurable functions u : [0, T ] → X
with t 7→ ‖u(t)‖X ∈ Lp(0, T ). However, since BV(Ω,RN) is not separable, assuming
Bochner measurability is too restrictive in the case X = BV(Ω,RN). For example
the cone in space-time u(t) = χBt(xo) is not Bochner measurable, because its image is
not separable in BV(Ω,RN). Therefore, we consider weakly∗-measurable functions
instead. Observe that BV(Ω,RN) is the dual of the separable Banach space X0

consisting of the functions g − divG with g ∈ C0
0 (Ω,R

N) and G ∈ C0
0 (Ω,R

N×n), see
e.g. [1, Remark 3.12]. Hence, a function v : I → BV(Ω,RN) = X ′

0 is called weakly*-
measurable if for every ϕ ∈ X0 the mapping I ∋ t 7→ 〈v(t), ϕ〉 ∈ R is measurable.
Here 〈·, ·〉 denotes the duality pairing between BV(Ω,RN) and X0. This definition
implies that the norms ‖v(t)‖BV(Ω,RN ) depend measurably on t ∈ I. Indeed, the norm

on BV(Ω,RN) = X ′
0 can be written as

‖v(t)‖BV(Ω,RN ) = sup
{

〈v(t), ϕ〉 : ϕ ∈ X0, ‖ϕ‖X0 ≤ 1
}

.

Since by definition t 7→ 〈v(t), ϕ〉 is measurable and X0 is separable, the supremum
in the preceding equality depends measurably on t ∈ I. At this stage, we are able to
define the parabolic function spaces

Lp
w∗
(

0, T ; BV(Ω,RN)
)

:=

{

v : [0, T ] → BV(Ω,RN)

∣

∣

∣

∣

v is weakly*-measurable with
t 7→ ‖v(t)‖BV(Ω,RN ) ∈ Lp(0, T )

}

for any 1 ≤ p ≤ ∞. For a brief summary on the different notions of measurability
and the related concepts of integration, cf. [19, Chap. 2].

We will need the following compactness property of the space L1
w∗(0, T ; BV(Ω,

R
N)). Its proof is formulated in [16, Lemma 2.4] for the case N = 1, but all of the

arguments stay valid in the vector-valued case.

Lemma 2.2. Assume that the sequence ui ∈ L1
w∗(0, T ; BV(Ω,R

N)) satisfies
ui ⇁ u weakly in L1(ΩT ,R

N) as i→ ∞ for some u ∈ L1(ΩT ,R
N) and

lim inf
i→∞

ˆ T

0

|Dui(t)|(Ω) dt <∞.

Then we have u ∈ L1
w∗(0, T ; BV(Ω,R

N)) and
ˆ T

0

|Du(t)|(Ω) dt ≤ lim inf
i→∞

ˆ T

0

|Dui(t)|(Ω) dt.
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2.2. Reshetnyak (semi-)continuity. From [30, Corollary 4.15] we infer the
following result on lower semicontinuity of the functional F . For related results
cf. also [1], [20] and [26, Theorem 2].

Theorem 2.3. (Reshetnyak’s lower semicontinuity theorem) Assume that Ω ⊂
R

n is a bounded Lipschitz domain and that f : Ω×R
N×n → [0,∞) is a Carathéodory

function satisfying (1.1) and (1.8) and that ξ 7→ f(x, ξ) is quasiconvex for every
x ∈ Ω. Further, suppose that the functional F is given as in (1.9). For functions
uk, u ∈ BV(Ω,RN) with uk → u in L1(Ω,RN) as k → ∞ we have that

(2.1) F [u] ≤ lim inf
k→∞

F [uk].

Proof. We assume that the right-hand side of (2.1) is finite, since otherwise, the
claim trivially holds. Hence, we can find a subsequence ukj with

ν lim sup
j→∞

|Dukj |(Ω) ≤ lim
j→∞

F [ukj ] = lim inf
k→∞

F [uk] <∞.

Since ukj → u in L1(Ω) by assumption, we deduce that ukj
∗⇁ u weakly∗ in BV(Ω,RN)

as j → ∞. Therefore, we are in a position to apply [30, Corollary 4.15], which yields

F [u] ≤ lim
j→∞

F [ukj ] = lim inf
k→∞

F [uk],

which is assertion (2.1). �

Next, we state the following version of Reshetnyak’s continuity theorem which
is obtained by specializing [10, Theorem 3.10] to bounded domains; see also [27,
Theorem 3] for a related result.

Theorem 2.4. (Reshetnyak’s continuity theorem) Suppose that Ω is bounded,
that ∂Ω has zero Ln-measure and that f : Ω×R

m → R fulfills (1.1), (1.2) and (1.8).
Moreover assume that (µk)k∈N weak∗-converges to µ in the space of finite R

m-valued
Radon measures on Ω. If there holds

lim
k→∞

|(Ln, µk)|(Ω) = |(Ln, µ)|(Ω)

for the R
m+1-valued measures (Ln, µk) and (Ln, µ), then we have

lim
k→∞

[
ˆ

Ω

f

(

·, dµ
a
k

dLn

)

dx+

ˆ

Ω

f∞
(

·, dµs
k

d|µs
k|

)

d|µs
k|
]

=

ˆ

Ω

f

(

·, dµ
a

dLn

)

dx+

ˆ

Ω

f∞
(

·, dµs

d|µs|

)

d|µs|.

In the preceding theorem
(

Ln, µ
)

(A) is nothing else than
(

Ln(A), µ(A)
)

. More-

over,
∣

∣(Ln, µ)
∣

∣(Ω) denotes the total variation of the vector-valued measure (Ln, µ).

In terms of the Lebesgue decomposition µ = µa+µs = dµa

dLnLn+µs the total variation
can be expressed as follows

∣

∣

(

Ln, µ
)
∣

∣(Ω) =

ˆ

Ω

√

1 +
∣

∣

∣

dµa

dLn

∣

∣

∣

2

dx+
∣

∣µs
∣

∣(Ω).

2.3. Mollification in space. In order to prove Theorem 1.5, we need to
regularize certain comparison maps. To this end we first extend these functions from
Ω to R

n by means of the following lemma. Its proof can be found in [17, Lemma 2.3]
for the case N = 1 and ∂tv ∈ L2(ΩT ). However, the arguments extend to the case
considered in the present paper.
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Lemma 2.5. Assume that Ω ⊂ R
n is a domain with bounded Lipschitz bound-

ary. Then there exists a bounded linear extension operatorE : BV(Ω,RN) → BV(Rn,
R

N) with the properties

(i) |DEv|(∂Ω) = 0 for every v ∈ BV(Ω,RN),
(ii) if v ∈ L2(Ω,RN) ∩ BV(Ω,RN), then Ev ∈ L2(Rn,RN) ∩ BV(Rn,RN),
(iii) if v ∈ L2(ΩT ,R

N)∩L1
w∗(0, T ; BV(Ω,R

N)), then Ev ∈ L2(Rn × (0, T ),RN)∩
L1
w∗(0, T ; BV(R

n,RN)). If ∂tv ∈ L1(0, T ;L2(Ω,RN)) holds true, then also
∂tEv ∈ L1(0, T ;L2(Rn,RN)).

Let φε denote the standard mollifier on R
n. We compile properties of the spatial

regularization vε := v ∗ φε of a map v in the following lemma.

Lemma 2.6. Let v ∈ L1
w∗(0, T ; BV(R

n,RN)) with ∂tv ∈ L1(0, T ;L2(Rn,RN))
and v(0) ∈ L2(Rn,RN). Then the following assertions hold true:

(i) vε → v in L2(Rn × (0, T );RN) as ε ↓ 0,
(ii) vε ∈ C0([0, T ];W 1,2(Ω,RN)) for any ε > 0,
(iii) for any ε > 0 we have

sup
t∈[0,T ]

‖vε(t)‖L2(Rn,RN ) ≤ sup
t∈[0,T ]

‖v(t)‖L2(Rn,RN ),

(iv) ∂tvε → ∂tv in L1(0, T ;L2(Ω,RN)) as ε ↓ 0,
(v) in the limit ε ↓ 0 we have for a.e. t ∈ [0, T ] that

{

Dvε(t)
∗⇁ Dv(t) weakly∗ in RM(Rn,RN×n),

|(Ln, Dvε(t))|(Ω) → |(Ln, Dv(t))|(Ω).
Proof. Assertions (i), (iii) and (iv) are standard properties of mollifications.

Next, we prove (ii). Note that vε(0) ∈ C∞(Rn,RN) . Hence vε(0) ∈ W 1,2(Ω,RN)
holds true as well. Since φε ∈ C∞

0 (Rn,RN) is independent of time and ∂tv ∈
L1(0, T ;L2(Rn,RN)), we have that

∂tvε = (∂tv) ∗ φε,

that

∂tDvε(x, t) =

ˆ

Rn

∂tv(y, t)⊗Dxφε(x− y) dy

and that ∂tvε, ∂tDvε ∈ L1(0, T ;L2(Ω,RN)). Indeed, by Young’s inequality for con-
volutions we obtain

‖∂tvε‖L1(0,T ;L2(Ω,RN )) ≤
ˆ T

0

‖φε‖L1(Rn)‖∂tv‖L2(Rn,RN ) dt

= ‖φε‖L1(Rn)‖∂tv‖L1(0,T ;L2(Rn,RN ))

= ‖∂tv‖L1(0,T ;L2(Rn,RN ))

and

‖∂tDvε‖L1(0,T ;L2(Ω,RN )) ≤
ˆ T

0

‖Dφε‖L1(Rn,Rn)‖∂tv‖L2(Rn,RN ) dt

= ‖Dφε‖L1(Rn,Rn)‖∂tv‖L1(0,T ;L2(Ω,RN ))

= c(n, ε)‖∂tv‖L1(0,T ;L2(Ω,RN ))

This yields claim (ii). Finally, we are concerned with claim (v). Observe that

sup
ε∈(0,1)

|Dvε(t)|(Rn) ≤ |Dv(t)|(Rn) for a.e. t ∈ [0, T ].
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Since vε(t) → v(t) in L2(Rn,RN) for a.e. t ∈ [0, T ], the limit of any weakly∗ conver-
gent subsequence of Dvε(t) is Dv(t), which proves the first part of (v). Then also
(Ln, Dvε(t)) → (Ln, Dv(t)) weakly∗ in RM(Ω,RNn+1). By lower semicontinuity, this
implies

|(Ln, Dv(t))|(Ω) ≤ lim inf
ε↓0

|(Ln, Dvε(t))|(Ω).

Moreover, we compute that for a.e. t ∈ [0, T ] and all ε > 0

|(Ln, Dvε(t))|(Ω) = |(1, Dv(t)) ∗ φεLn|(Ω) ≤ |(Ln, Dv(t))|(Ω).
This yields assertion (v). �

2.4. Mollification in time. Let h ∈ (0, T ], X be a separable Banach space
and vo ∈ X. We consider v ∈ Lr(0, T ;X) for some 1 ≤ r ≤ ∞ and define for any
t ∈ [0, T ] the mollification in time by

(2.2) JvKh(t) := e−
t
h vo +

1
h

ˆ t

0

e
s−t
h v(s) ds.

Sometimes we will also use the notation JvKvoh to make clear which initial datum is
used. By construction, this regularization formally solves the ordinary differential
equation

(2.3) ∂tJvKh = − 1
h
(JvKh − v)

with initial condition JvKh(0) = vo. The following lemma states some basic properties
of the mollifications J·Kh, cf. [12, Appendix B] or [24, Lemma 2.2] for the proofs of
the statements.

Lemma 2.7. Suppose that X is a separable Banach space and vo ∈ X. If
v ∈ Lr(0, T ;X) for some r ≥ 1, then the mollification JvKh defined in (2.2) fulfills
JvKh ∈ Lr(0, T ;X) and for any to ∈ (0, T ] there holds

∥

∥JvKh
∥

∥

Lr(0,to;X)
≤ ‖v‖Lr(0,to;X) +

[

h

r

(

1− e−
tor
h

)

]
1
r

‖vo‖X .

In the case r = ∞ the bracket [. . .]
1
r in the preceding inequality has to be interpreted

as 1. Moreover, in the case r <∞ we have JvKh → v in Lr(0, T ;X) as h ↓ 0. Finally,
if v ∈ C0([0, T ];X) and vo = v(0), then JvKh ∈ C0([0, T ];X), [v]h(0) = vo, and
moreover JvKh → v in C0([0, T ];X) as h ↓ 0. �

For maps v ∈ Lr(0, T ;X) with ∂tv ∈ Lr(0, T ;X) we have the following assertion.

Lemma 2.8. Let X be a separable Banach space and r ≥ 1. Assume that
v ∈ Lr(0, T ;X) with ∂tv ∈ Lr(0, T ;X). Then, for the mollification in time defined
by

JvKh(t) := e−
t
hv(0) + 1

h

ˆ t

0

e
s−t
h v(s) ds

the time derivative can be computed by

∂tJvKh(t) = 1
h

ˆ t

0

e
s−t
h ∂sv(s) ds,

and, moreover we have that
∥

∥∂tJvKh
∥

∥

Lr(0,T ;X)
≤ ‖∂tv‖Lr(0,T ;X)

holds true. �
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Moreover, for a proof of the following lemma for the case N = 1 cf. [13, Lem-
ma 2.6]. Note that the proof can easily be extended to the vectorial case.

Lemma 2.9. Let vo ∈ BV(Ω,RN) and v ∈ L1
w∗(0, T ; BV(Ω,R

N)). Then, the
time mollification according to (2.2) with initial values vo satisfies JvKh ∈ L1

w∗(0, T ;
BV(Ω,RN)) and

∣

∣DJvKh(t)
∣

∣(Ω) ≤
q
|Dv|(Ω)

y
h
(t) holds true for a.e. t ∈ [0, T ], whereq

|Dv|(Ω)
y
h

is the time mollification according to (2.2) with initial values |Dvo|(Ω).
2.5. Lipschitz continuity. Here we state a local Lipschitz continuity assertion

that we apply for the integrands f p, p ≥ 1 with m = Nn and for g with m = N
and p = po = 2; for the proof cf. [14, Lemma 2.11]. See also [1, Lemma 5.42] and
[29] for related results. Note that the following Lemma ensures in particular that the
Lipschitz constant does not blow up as p ↓ 1.

Lemma 2.10. Let po ≥ 1 and assume that h(x, ·) : Rm → R is convex for
a.e. x ∈ Ω and satisfies

|h(x, ξ)| ≤ L(1 + |ξ|p) for a.e. x ∈ Ω and all ξ ∈ R
m

for constants p ∈ [1, po] and L > 0. Then h fulfills the local Lipschitz continuity
condition

(2.4) |h(x, ξ)− h(x, η)| ≤ c(m, po)L(1 + |ξ|p−1 + |η|p−1)|ξ − η|

for a.e. x ∈ Ω and all η, ξ ∈ R
m.

2.6. The initial condition. Here, we show that variational solutions to (1.3)
and (1.4) attain the initial datum uo respectively up,o.

Lemma 2.11. Assume that uo is as in (1.12), that f satisfies hypotheses (1.1),
(1.2) and (1.8) and that g fulfills (1.10) and (1.11). Then any variational solution u
in the sense of Definition 1.1 attains the initial datum uo in the L2-sense, i.e.

lim
h↓0

1
h

ˆ h

0

‖u(t)− uo‖2L2(Ω,RN ) dt = 0.

Proof. Let h > 0. We extend uo to R
n by zero and consider the mollification

uo,
√
h := uo∗φ√

h, where φ√
h denotes the standard mollifier in R

n. Note that v ≡ uo,
√
h

is admissible in (1.13). Using also the growth conditions (1.1) and (1.10), we infer
that

1
4
‖u(τ)− uo‖2L2(Ω,RN ) ≤ 1

2
‖u(τ)− uo,

√
h‖2L2(Ω,RN ) +

1
2
‖uo − uo,

√
h‖2L2(Ω,RN )

≤ τL

ˆ

Ω

(

1 + |Duo,√h|
)

dx+ τM

ˆ

Ω

(1 + |uo,√h|2) dx+ ‖uo − uo,
√
h‖2L2(Ω,RN ).

We estimate the first term on the right-hand side of the preceding inequality by
Young’s inequality for convolutions and Hölder’s inequality. This yields

‖Duo,√h‖L1(Ω,RN ) ≤ ‖uo‖L1(Ω,RN )‖Dφ√
h‖L1(Rn)

≤ |Ω| 12‖uo‖L2(Ω,RN )
1√
h
‖Dφ‖L1(Rn)

= c(n, |Ω|) 1√
h
‖uo‖L2(Ω,RN ).
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Inserting this into the second last inequality, integrating over τ ∈ (0, h) and dividing
by h, we have that

1
4h

ˆ h

0

‖u(τ)− uo‖2L2(Ω,RN ) dτ ≤ h
2
(L+M)|Ω| + c(n, |Ω|)L

√
h‖uo‖L2(Ω,RN )

+ h
2
M‖uo,√h‖2L2(Ω,RN ) + ‖uo − uo,

√
h‖2L2(Ω,RN )

→ 0

in the limit h ↓ 0, since uo,
√
h → uo in L2(Ω,RN) as h ↓ 0. �

In order to prove a corresponding assertion for the case p > 1 (as well as in some
other proofs of the present paper), we need the following technical lemmas.

Lemma 2.12. Let p ≥ 1, ε > 0 and vo ∈ L2(Ω,RN). Then, for the regularization
vo,ε := vo∗φε, where vo is extended to R

n by zero and φε denotes the standard mollifier
in R

n we have that

(2.5)

ˆ

Ω

|Dvo,ε|p dx ≤ c(n, p, |Ω|)ε−(n+1)p‖vo‖pL2(Ω,RN )
.

Proof. By means of Young’s inequality for convolutions and Hölder’s inequality
we estimate

ˆ

Ω

|Dvo,ε|p dx =

ˆ

Ω

|vo ∗Dφε|p dx ≤ ‖vo‖pL1(Ω,RN )
‖Dφε‖pLp(Rn)

≤ |Ω| p2‖vo‖pL2(Ω,RN )
ε−(n+1)p‖Dφ‖p

Lp(Rn)

= c(n, p, |Ω|)ε−(n+1)p‖vo‖pL2(Ω,RN )
,

which yields the claim. �

Lemma 2.13. Let h > 0 and ε(h) = h
1

2(n+1)p . Assume that vo ∈ L2(Ω,RN) and
consider the regularization vo,h := vo ∗ φε(h), where vo is extended to R

n by zero and
φε(h) denotes the standard mollifier in R

n. Suppose that v ∈ Lp(0, T ;W 1,p(Ω,RN))
and let JvKh denote the mollification according to (2.2) with initial datum vo,h. Then
we have that DJvKh → Dv in Lp(ΩT ,R

N×n) in the limit h ↓ 0.

Proof. Consider JvKoh = JvKh − e−
t
hvo,h, i.e. the time regularization according to

(2.2) with zero initial values. By Lemma 2.7 we know that

(2.6) DJvKoh → Dv in Lp(ΩT ,R
N×n) as h ↓ 0.

Furthermore, we have that
¨

ΩT

|De−
t
h vo,h|p dx dt =

ˆ T

0

e−
pt
h dt

ˆ

Ω

|Dvo,h|p dx ≤ h
p

ˆ

Ω

|Dvo,h|p dx.

Using (2.5), we find that
ˆ

Ω

|Dvo,h|p dx ≤ c(n, p, |Ω|)ε(h)−(n+1)p‖vo‖pL2(Ω,RN )
.

Joining the two preceding estimates and recalling the definition of ε(h), we obtain
that

¨

ΩT

|De−
t
h vo,h|p dx dt ≤ c(n, p, |Ω|)

√
h‖vo‖pL2(Ω,RN )

→ 0

as h ↓ 0. Together with (2.6) this yields the claim of the lemma. �
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Lemma 2.14. Assume that up,o satisfies (1.16), f p fulfills (1.14) and (1.15) and
g fulfills (1.10) and (1.11). Then any variational solution u in the sense of Defini-
tion 1.3 attains the initial datum up,o in the C0−L2-sense, i.e.

lim
t↓0

‖u(t)− up,o‖L2(Ω,RN ) = 0.

Proof. Let h > 0 and ε = ε(h) := h
1

2(n+1)p . We extend up,o to R
n by zero

and consider the mollification up,o,h := up,o ∗ φε(h), where φε(h) denotes the standard
mollifier in R

n. Since v ≡ up,o,h is an admissible comparison map in (1.17), we deduce
that

1
4
‖u(τ)− up,o‖2L2(Ω,RN ) ≤ 1

2
‖u(τ)− up,o,h‖2L2(Ω,RN ) +

1
2
‖up,o − up,o,h‖2L2(Ω,RN )

≤ τL

ˆ

Ω

(

1 + |Dup,o,h|p
)

dx+ τM

ˆ

Ω

(1 + |up,o,h|2) dx+ ‖up,o − up,o,h‖2L2(Ω,RN )

for any τ ∈ [0, T ]. By Lemma 2.12, we obtain for the first term on the right-hand
side of the preceding inequality that

ˆ

Ω

|Dup,o,h|p dx ≤ c(n, p, |Ω|)ε−(n+1)p‖up,o‖L2(Ω,RN )

= c(n, p, |Ω|) 1√
h
‖up,o‖L2(Ω,RN ).

Inserting this in the second last inequality, integrating over τ ∈ (0, h) and dividing
by h yields

1
4h

ˆ h

0

‖u(τ)− up,o‖2L2(Ω,RN ) dτ

≤ h
2
(L+M)|Ω| + c(n, p, |Ω|, L)

√
h‖up,o‖L2(Ω,RN ) +

h
2
M‖up,o,h‖2L2(Ω,RN )

+ ‖up,o − up,o,h‖2L2(Ω,RN ).

The right-hand side of the preceding inequality vanishes as h ↓ 0, since up,o,h → up,o
in L2(Ω,RN) as h ↓ 0. Since u ∈ C0([0, T ];L2(Ω,RN)), this implies the claim. �

2.7. Energy bounds. Next, we show certain energy bounds for variational
solutions associated with the approximations f p with p > 1. Using v ≡ 0 as com-
parison map in (1.17) and the growth conditions (1.14) and (1.10), we deduce the
following lemma.

Lemma 2.15. Assume that up,o fulfills (1.16) and that f p satisfies the hypotheses
(1.14) and (1.15). Then any variational solution in the sense of Definition 1.3 satisfies
the energy bound

1
2
sup

t∈[0,T ]

‖u(t)‖2L2(Ω,RN ) +

¨

ΩT

[

f p(x,Du) + g(x, u)
]

dx dt

≤ 2
[

Lp +M
]

|ΩT |+ ‖up,o‖2L2(Ω,RN ).(2.7)

The next lemma provides a continuity property that will be crucial for the ap-
plication of the compactness result Lemma 2.1.

Lemma 2.16. For an exponent p ∈ (1, 2] we consider a Cauchy datum up,o as
in (1.16). Assume that

u ∈ C0
(

[0, T ];L2(Ω,RN)
)

∩ Lp
(

0, T ;W 1,p(Ω,RN)
)
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is a variational solution to (1.4) in the sense of Definition 1.3. Then, for any h ∈ (0, T )
and any ℓ ≥ 1 there holds
ˆ T−h

0

∥

∥u(t+h)− u(t)
∥

∥

W−ℓ,2(Ω,RN )
dt ≤ c

[

1 + ‖Du‖p−1
Lp(ΩT ,RN )

+ ‖u‖L2(ΩT ,RN )

]

√
h,

with a constant c = c(n,N, L,M, ℓ, |Ω|, T ).
Proof. Let h ∈ (0, T ) and set ε(h) := h

1
2(n+1)p . First, we extend up,o by zero to

a function on R
n and define mollifications up,o,h := up,o ∗ φε(h), where φε(h) denotes

the standard mollifier on R
n. We define regularizations JuKh according to (2.2)

with initial values up,o,h. Observe that JuKh ∈ Lp(0, T ;W 1,p(Ω,RN)) by Lemma 2.7,
∂tJuKh ∈ L1(0, T ;L2(Ω,RN)) by (2.3) and JuKh(0) = up,o,h ∈ L2(Ω,RN). Therefore
v = JuKh + ϕ, where ϕ ∈ C∞

0 (ΩT ,R
N), is an admissible comparison map in the

variational inequality (1.17). Thus, we have that

Ih := −
¨

ΩT

∂t
(

JuKh + ϕ
)

·
(

JuKh − u+ ϕ
)

dx dt

≤
¨

ΩT

[

f p
(

x,DJuKh +Dϕ
)

− f p(x,Du)
]

dx dt(2.8)

+

¨

ΩT

[

g
(

x, JuKh + ϕ
)

− g(x, u)
]

dx dt + 1
2
‖up,o,h − up,o‖2L2(Ω,RN )

=: IIh + IIIh +
1
2
‖up,o,h − up,o‖2L2(Ω,RN ).

Using the fact that ϕ(0) = 0 = ϕ(T ) we re-write Ih with an integration by parts as
follows

Ih = −
¨

ΩT

∂tJuKh ·
(

JuKh − u
)

dx dt +

¨

ΩT

∂tϕ · u dx dt ≥
¨

ΩT

∂tϕ · u dx dt.

In the last inequality we have employed the identity (2.3). Furthermore, we estimate
IIh using Lemma 2.10 with the choices m = Nn and po = 2. This yields

IIh =

¨

ΩT

[

f p
(

x,DJuKh+Dϕ
)

− f p
(

x,DJuKh
)

+ f p
(

x,DJuKh
)

− f p(x,Du)
]

dx dt

≤ c

¨

ΩT

(

1 +
∣

∣DJuKh +Dϕ
∣

∣

p−1
+
∣

∣DJuKh
∣

∣

p−1)|Dϕ| dx dt

+ c

¨

ΩT

(

1 +
∣

∣DJuKh
∣

∣

p−1
+ |Du|p−1

)
∣

∣DJuKh −Du
∣

∣dx dt,

where c = c(Nn)Lp. By Lemma 2.13 we have that DJuKh → Du in Lp(ΩT ,R
N×n) as

h ↓ 0. In conclusion, we infer that

lim sup
h↓0

IIh ≤ c(Nn)Lp

¨

ΩT

(

1 + |Du|p−1 + |Dϕ|p−1
)

|Dϕ| dx dt.

Similarly, applying Lemma 2.10 with m = N and po = p = 2, we deduce that

IIIh =

¨

ΩT

[

g
(

x, JuKh + ϕ
)

− g
(

x, JuKh
)

+ g
(

x, JuKh
)

− g(x, u)
]

dx dt

≤ c

¨

ΩT

(

1 +
∣

∣JuKh + ϕ
∣

∣ +
∣

∣JuKh
∣

∣

)

|ϕ| dx dt

+ c

¨

ΩT

(

1 +
∣

∣JuKh
∣

∣ + |u|
)
∣

∣JuKh − u
∣

∣dx dt,
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where c = c(N)M . Since JuKh → u in L2(ΩT ,R
N) as h ↓ 0 by Lemma 2.7 and the

fact that up,o,h → up,o in L2(Ω,RN) as h ↓ 0, we conclude that

lim sup
h↓0

IIIh ≤ c(N)M

¨

ΩT

(

1 + |u|+ |ϕ|
)

|ϕ| dx dt.

Furthermore we have that

lim
h↓0

1
2
‖up,o,h − up,o‖2L2(Ω,RN ) = 0.

Inserting the preceding computations into (2.8), we have that

¨

ΩT

∂tϕ · u dx dt ≤ c(Nn, po)L

¨

ΩT

(

1 + |Du|p−1 + |Dϕ|p−1
)

|Dϕ| dx dt

+ c(N)M

¨

ΩT

(

1 + |u|+ |ϕ|
)

|ϕ| dx dt.

Repeating the same computation for −ϕ instead of ϕ, we obtain that

∣

∣

∣

∣

¨

ΩT

∂tϕ · u dx dt
∣

∣

∣

∣

≤ c1

¨

ΩT

(

1 + |Du|p−1 + |Dϕ|p−1
)

|Dϕ| dx dt

+ c2

¨

ΩT

(

1 + |u|+ |ϕ|
)

|ϕ| dx dt

≤ c1

[

|ΩT |1−
1
p + ‖Du‖p−1

Lp(ΩT ,RNn)
+ ‖Dϕ‖p−1

Lp(ΩT ,RNn)

]

‖Dϕ‖Lp(ΩT ,RNn)(2.9)

+ c2

[

|ΩT |
1
2 + ‖u‖L2(ΩT ,RN ) + ‖ϕ‖L2(ΩT ,RN )

]

‖ϕ‖L2(ΩT ,RN )

≤ c1 |ΩT |
1
p
− 1

2

[

|ΩT |1−
1
p + ‖Du‖p−1

Lp(ΩT ,RNn)
+ ‖Dϕ‖p−1

Lp(ΩT ,RNn)

]

‖Dϕ‖L2(ΩT ,RNn)

+ c2

[

|ΩT |
1
2 + ‖u‖L2(ΩT ,RN ) + ‖ϕ‖L2(ΩT ,RN )

]

‖ϕ‖L2(ΩT ,RN )

holds true for any ϕ ∈ C∞
0 (ΩT ,R

N) with c1 = c(Nn)Lp and c2 = c(N)M . An

approximation argument yields the same estimate for any function ϕ ∈ C0,1
0 (ΩT ,R

N).
Now, for 0 < s1 < s2 < T and 0 < σ < min{s1, T − s2} we define

ζσ(t) :=



























0, for t ∈ [0, s1 − σ],
1
σ
(t− s1 + σ) for t ∈ (s1 − σ, s1),

1 for t ∈ [s1, s2],

− 1
σ
(t− s2 − σ) for t ∈ (s2, s2 + σ),

0, for t ∈ [s2 + σ, T ],

and choose ϕ(x, t) = ψ(x)ζσ(t) with ψ ∈ C∞
0 (Ω,RN) in (2.9) with the result that

∣

∣

∣

∣

ˆ

Ω

(

1
σ

ˆ s1

s1−σ

u(x, t) dt− 1
σ

ˆ s2+σ

s2

u(x, t) dt

)

· ψ(x) dx
∣

∣

∣

∣
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≤ c1 |ΩT |
1
p
− 1

2

[

|ΩT |1−
1
p + ‖Du‖p−1

Lp(ΩT ,RNn)
+ T 1− 1

p‖Dψ‖p−1
Lp(Ω,RNn)

]

·
(

s2 − s1 + 2σ
)

1
2‖Dψ‖L2(Ω,RNn)

+ c2

[

|ΩT |
1
2 + ‖u‖L2(ΩT ,RN ) + T

1
2‖ψ‖L2(Ω,RN )

]

(

s2 − s1 + 2σ
)

1
2‖ψ‖L2(Ω,RN )

holds true. By Sobolev’s embedding we thus obtain for ℓ ≥ 1 that
∣

∣

∣

∣

ˆ

Ω

(

1
σ

ˆ s1

s1−σ

u(x, t) dt− 1
σ

ˆ s2+σ

s2

u(x, t) dt

)

· ψ(x) dx
∣

∣

∣

∣

≤ c
[

1 + ‖Du‖p−1
Lp(ΩT ,RNn)

+ ‖u‖L2(ΩT ,RN ) + ‖ψ‖L2(Ω,RN ) + ‖Dψ‖p−1
Lp(Ω,RNn)

]

·
(

s2 − s1 + 2σ
)

1
2‖ψ‖W ℓ,2(Ω,RN ),

where c = c(n,N, L,M, ℓ, |Ω|, T ). Using this estimate for δψ with δ > 0 instead of
ψ, dividing by δ > 0 and letting δ ↓ 0, the preceding estimate simplifies to

∣

∣

∣

∣

ˆ

Ω

(

1
σ

ˆ s1

s1−σ

u(x, t) dt− 1
σ

ˆ s2+σ

s2

u(x, t) dt

)

· ψ(x) dx
∣

∣

∣

∣

≤ c
[

1 + ‖Du‖p−1
Lp(ΩT ,RNn)

+ ‖u‖L2(ΩT ,RN )

]

(

s2 − s1 + 2σ
)

1
2‖ψ‖W ℓ,2(Ω,RN ).

Passing to the limit σ ↓ 0 we find that for every 0 < s1 < s2 < T there holds
∣

∣

∣

∣

ˆ

Ω

(

u(x, s2)− u(x, s1)
)

· ψ(x) dx
∣

∣

∣

∣

≤ c
[

1 + ‖Du‖p−1
Lp(ΩT ,RNn)

+ ‖u‖L2(ΩT ,RN )

]

(

s2 − s1
)

1
2‖ψ‖W ℓ,2(Ω,RN )

for any ψ ∈ C∞
0 (Ω,RN). By density of C∞

0 (Ω,RN) in W ℓ,2
0 (Ω,RN) the last inequality

extends to any ψ ∈ W ℓ,2
0 (Ω,RN). This shows that for any h ∈ (0, T ) we have that

ˆ T−h

0

∥

∥u(t+h)− u(t)
∥

∥

W−ℓ,2(Ω,RN )
dt ≤ c

[

1 + ‖Du‖p−1
Lp(ΩT ,RN )

+ ‖u‖L2(ΩT ,RN )

]

√
h

holds true with a constant c = c(n,N, L,M, ℓ, |Ω|, T ). �

3. Existence of variational solutions for problems with
superlinear growth: The case of regular initial data

In this section, we first consider a regular Cauchy datum uo. By regular we mean
that uo satisfies

(3.1) uo ∈ L2(Ω,RN) ∩W 1,p(Ω,RN)

and use the method of minimizing movements to show the existence of variational
solutions to the gradient flow associated with

(3.2) ∂tu− div(Dξf
p(x,Du)) = −Dug(x, u) in ΩT

in the following theorem. Subsequently, we prove an existence result with a general
Cauchy datum in L2(Ω,RN), cf. Theorem 4.1.
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Theorem 3.1. Suppose that uo is as in (3.1), that f p satisfies hypotheses (1.14)
and (1.15) and g satisfies hypotheses (1.10) and (1.11). Then there exists a vari-
ational solution u ∈ C0([0, T ];L2(Ω,RN)) ∩ Lp(0, T ;W 1,p(Ω,RN)) to the gradient
flow associated with (3.2) in the sense of Definition 1.3. Furthermore, u satisfies the
energy bound

1
2

¨

ΩT

|∂tu|2 dx dt + νp sup
t∈[0,T ]

ˆ

Ω×{t}
|Du|p dx dt

≤ 2
[

(Lp +M)|Ω| + Lp‖Duo‖pLp(Ω,RNn)
+M‖uo‖2L2(Ω,RN )

]

.(3.3)

The proof of Theorem 3.1 is divided into several steps.

3.1. A sequence of minimizers to elliptic variational functionals. First,
we fix a step size h ∈ (0, 1] and consider such values i ∈ N0 that fulfill ih ≤ T . We in-
ductively construct minimizers ui ∈ L2(Ω,RN)∩W 1,p(Ω,RN) to certain elliptic vari-
ational functionals. More precisely, let u0 = uo. If ui−1 ∈ L2(Ω,RN) ∩W 1,p(Ω,RN)
for some i ∈ N has already been constructed, define ui as the minimizer of

Ii[v] :=

ˆ

Ω

[

f p(x,Dv) + g(x, v)
]

dx+ 1
2h

ˆ

Ω

|v − ui−1|2 dx

in the class of functions v ∈ L2(Ω,RN) ∩W 1,p(Ω,RN). Obviously, this class is non-
empty. We remark that while this is not the point of view in the present paper, each
Ii is a Moreau-Yosida approximation of Ip. The existence of a minimizer to Ii in
L2(Ω,RN) ∩W 1,p(Ω,RN) is ensured by the Direct Method of the Calculus of Vari-
ations. Indeed, suppose that (uk)k∈N is a minimizing sequence, i.e. limk→∞ Ii[uk] =
infv∈L2(Ω,RN )∩W 1,p(Ω,RN ) Ii[v]. In particular (Ii[uk])k∈N is bounded, since Ii is non-
negative by (1.14) and (1.10). If p ≤ 2, we conclude by the coercivity condition
(1.14)1 and Hölder’s inequality that (uk)k∈N is bounded in L2(Ω,RN)∩W 1,p(Ω,RN).
If p > 2, we argue by Poincaré’s inequality. More precisely, since Ω is a bounded
Lipschitz domain, there exists a constant c = c(n,N, p,Ω) such that for any u ∈
W 1,p(Ω,RN)

ˆ

Ω

|u− uΩ|p dx ≤ c

ˆ

Ω

|Du|p dx

holds true, where uΩ denotes the mean value uΩ := −
´

Ω
u dx. Using Poincaré’s in-

equality and Hölder’s inequality, we infer that

‖uk‖Lp(Ω,RN ) ≤ |Ω| 1p− 1
2
(

‖uk − ui−1‖L2(Ω,RN ) + ‖ui−1‖L2(Ω,RN )

)

+ c‖Duk‖Lp(Ω,RNn).

The right-hand side of the preceding inequality is bounded by (1.14)1, since (Ii[uk])k∈N
is bounded and since ui−1 ∈ L2(Ω,RN) is fixed. Hence (uk)k∈N is bounded in
L2(Ω,RN) ∩ W 1,p(Ω,RN). Since (1.14), (1.15) and (1.10) together yield that Ii is
lower semicontinuous with respect to weak convergence in L2(Ω,RN)∩W 1,p(Ω,RN),
there exists a minimizer u of Ii in the class L2(Ω,RN) ∩W 1,p(Ω,RN).

3.2. Energy estimates. Observe that ui−1 is an admissible comparison map
for the variational integral Ii for any i ∈ N. Using the minimality of ui with respect
to Ii, we obtain that

Ii[ui] =

ˆ

Ω

[

f p(x,Dui) + g(x, ui)
]

dx+ 1
2h

ˆ

Ω

|ui − ui−1|2 dx

≤
ˆ

Ω

[

f p(x,Dui−1) + g(x, ui−1)
]

dx = Ii[ui−1].
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Let k ∈ N with kh ≤ T . Iterating this estimate for i = 1, . . . , k and using the growth
conditions (1.14) and (1.10), we conclude that

ˆ

Ω

[

f p(x,Duk) + g(x, uk)
]

dx+ 1
2h

k
∑

i=1

ˆ

Ω

|ui − ui−1|2 dx

≤
ˆ

Ω

[

f p(x,Duo) + g(x, uo)
]

dx

≤ (Lp +M)|Ω| + Lp‖Duo‖pLp(Ω,RNn)
+M‖uo‖2L2(Ω,RN ) =: Ψ,(3.4)

where the definition of the quantity Ψ is obvious. Discarding the non-negative first
term on the left-hand side of (3.4), we compute that

ˆ

Ω

|uℓ|2 dx ≤
ˆ

Ω

2

[ ℓ
∑

i=1

|ui − ui−1|
]2

dx+ 2

ˆ

Ω

|uo|2 dx

≤ 2ℓ

ℓ
∑

i=1

ˆ

Ω

|ui − ui−1|2 dx+ 2

ˆ

Ω

|uo|2 dx

≤ 4ℓhΨ+ 2‖uo‖2L2(Ω,RN ) ≤ 4TΨ+ 2‖uo‖2L2(Ω,RN ).(3.5)

3.3. The limit map. From now on, we consider only such values hℓ ∈ (0, 1]
that are given by hℓ := T/ℓ for some ℓ ∈ N. We assemble the minimizers ui to a
function u(ℓ) : Ω× (−hℓ, T ] → R

N that is piecewise constant with respect to time by
setting

(3.6) u(ℓ)(·, t) := ui for t ∈ ((i− 1)hℓ, ihℓ], i ∈ {0, . . . , hℓ}.
From (1.10), (1.14), (3.4) and (3.5) we infer the energy estimate

sup
t∈[0,T ]

‖u(ℓ)(t)‖L2(Ω,RN ) + νp sup
t∈[0,T ]

ˆ

Ω×{t}
|Du(ℓ)|p dx

≤ (1 + 4T )Ψ + 2‖uo‖2L2(Ω,RN ).(3.7)

We need to conclude that the sequence (u(ℓ))ℓ∈N is bounded in L∞(0, T ;L2(Ω,RN))∩
L∞(0, T ;W 1,p(Ω,RN)). If p ≤ 2, this obviously holds true by (3.7). If p > 2, we use
Poincaré’s inequality and Hölder’s inequality to infer that

sup
t∈[0,T ]

‖u(ℓ)(t)‖Lp(Ω,RN )

≤ sup
t∈[0,T ]

‖(u(ℓ)(t))Ω‖Lp(Ω,RN ) + sup
t∈[0,T ]

‖u(ℓ)(t)− (u(ℓ)(t))Ω‖Lp(Ω,RN )

≤ |Ω| 1p−1 sup
t∈[0,T ]

∣

∣

∣

∣

ˆ

Ω

u(ℓ)(t) dx

∣

∣

∣

∣

+ c sup
t∈[0,T ]

‖Du(ℓ)(t)‖Lp(Ω,RNn)

≤ |Ω| 1p− 1
2 sup
t∈[0,T ]

‖u(ℓ)(t)‖L2(Ω,RN ) + c sup
t∈[0,T ]

‖Du(ℓ)(t)‖Lp(Ω,RNn),

where c = c(n,N, p,Ω) and (u(ℓ)(t))Ω := −
´

Ω
u(ℓ)(t) dx. Together with estimate (3.7)

the preceding inequality implies that (u(ℓ))ℓ∈N is bounded in L∞(0, T ;L2(Ω,RN)) ∩
L∞(0, T ;W 1,p(Ω,RN)). Hence, there exists a subsequence K ⊂ N and a limit map
u ∈ L∞(0, T ;L2(Ω,RN)) ∩ Lp(0, T ;W 1,p(Ω,RN)) such that

(3.8)

{

u(ℓ) ∗⇁ u weakly∗ in L∞(0, T ;L2(Ω,RN)),

u(ℓ) ∗⇁ u weakly∗ in L∞(0, T ;W 1,p(Ω,RN))
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in the limit K ∋ ℓ → ∞. Next, we want to improve the regularity of u. To this end,
we define a second function ũ(ℓ) : Ω×(−hℓ, T ] → R

N by linearly interpolating in time
the minimizers ui−1 and ui on the interval ((i− 1)hℓ, ihℓ], i.e. by letting

ũ(ℓ)(·, t) :=
(

i− t
hℓ

)

ui−1 +
(

1− i+ t
hℓ

)

ui for t ∈ ((i− 1)hℓ, ihℓ], i ∈ {1, . . . , hℓ}

and ũ(ℓ)(·, t) := uo for t ∈ (−hℓ, 0]. Observe that for t ∈ ((i − 1)hℓ, ihℓ] the time
derivative of ũ(ℓ) is given by

∂tũ
(ℓ)(·, t) = 1

hℓ
(ui−1 − ui) ∈ L2(Ω,RN).

Together with the coercivity conditions (1.10), (1.14) and the energy estimates (3.4)
and (3.5) this implies that

1
2

¨

ΩT

|∂tũ(ℓ)|2 dx dt + sup
t∈[0,T ]

‖ũ(ℓ)(t)‖L2(Ω,RN ) + νp sup
t∈[0,T ]

ˆ

Ω×{t}
|Dũ(ℓ)|p dx

≤ (2 + 4T )Ψ + 2‖uo‖2L2(Ω,RN ).(3.9)

Hence, using Poincaré’s inequality in the same way as in the case of u(ℓ), by (3.9) also
the sequence (ũ(ℓ))ℓ∈N is bounded in L∞(0, T ;W 1,p(Ω,RN)). Furthermore, by (3.9)
the sequence of time derivatives (∂tũ

(ℓ))ℓ∈N is bounded in L2(ΩT ,R
N) and there-

fore (ũ(ℓ))ℓ∈N is bounded in W 1,min{2,p}(ΩT ,R
N). Note that we may apply Rellich’s

theorem, since ΩT is a bounded Lipschitz domain. In conclusion, we obtain that
there exists a subsequence K ⊂ N and a limit map ũ ∈ L∞(0, T ;W 1,p(Ω,RN)) with
∂tũ ∈ L2(ΩT ,R

N) such that

(3.10)











ũ(ℓ) → ũ strongly in Lmin{2,p}(ΩT ,R
N),

ũ(ℓ) ∗⇁ ũ weakly∗ in L∞(0, T ;W 1,p(Ω,RN)),

∂tũ
(ℓ) ⇁ ∂tũ weakly in L2(ΩT ,R

N)

in the limit K ∋ ℓ→ ∞. Since

|(ũ(ℓ) − u(ℓ))(t)| ≤ |ui−1 − ui| for t ∈ ((i− 1)hℓ, ihℓ]

we conclude from (3.4) that

¨

ΩT

|(ũ(ℓ) − u(ℓ))(t)|2 dx dt ≤ hℓ

ℓ
∑

i=1

ˆ

Ω

|ui−1 − ui|2 dx ≤ 2h2ℓΨ

and further by means of Hölder’s inequality that
¨

ΩT

|(ũ(ℓ) − u(ℓ))(t)|min{2,p} dx dt ≤ |ΩT |1−
min{2,p}

2 (2h2ℓΨ)
min{2,p}

2 .

Joining this with (3.10)1 implies that also u(ℓ) → ũ strongly in Lmin{2,p}(ΩT ,R
N) as

K ∋ ℓ→ ∞ and hence u = ũ. At this stage, we are able to deduce the energy bound
(3.3). To this end note that (3.4) leads to

1
2

¨

ΩT

|∂tũ(ℓ)|2 dx dt + νp sup
t∈[0,T ]

ˆ

Ω×{t}
|Dũ(ℓ)|p dx

≤ 2
[

(Lp +M)|Ω| + Lp‖Duo‖pLp(Ω,RNn)
+M‖uo‖2L2(Ω,RN )

]

.

By weak lower semicontinuity, (3.3) follows from taking the limit K ∋ ℓ→ ∞ in the
preceding inequality.
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3.4. Minimizing property of the approximations. First, observe that u(ℓ)

is a minimizer of the variational functional

I
(ℓ)[v] :=

¨

ΩT

[

f p(x,Dv) + g(x, v) + 1
2hℓ

|v − u(ℓ)(t− hℓ)|
]

dx dt

in the class of functions v ∈ L2(ΩT ,R
N) ∩ Lp(0, T ;W 1,p(Ω,RN)). Indeed, using the

definitions of I(ℓ) and u(ℓ) and the minimality of ui with respect to Ii, we compute
that

I
(ℓ)
[

u(ℓ)
]

=
ℓ

∑

i=1

ˆ hℓ

(i−1)hℓ

ˆ

Ω

[

f p(x,Dui) + g(x, ui) +
1

2hℓ
|ui − ui−1|2

]

dx dt

=
ℓ

∑

i=1

ˆ hℓ

(i−1)hℓ

Ii[ui] dt ≤
ℓ

∑

i=1

ˆ hℓ

(i−1)hℓ

Ii[v(t)] dt

=

ℓ
∑

i=1

ˆ hℓ

(i−1)hℓ

ˆ

Ω

[

f p(x,Dv) + g(x, v) + 1
2hℓ

|v − ui−1|2
]

dx dt = I
(ℓ)[v]

holds true for any map v ∈ L2(ΩT ,R
N) ∩ Lp(0, T ;W 1,p(Ω,RN)). We re-write the

preceding inequality as

¨

ΩT

[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

dx dt

≤
¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
2hℓ

¨

ΩT

[

|v − u(ℓ)(t− hℓ)|2 − |u(ℓ) − u(ℓ)(t− hℓ)|2
]

dx dt

=

¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
hℓ

¨

ΩT

[

1
2
|v − u(ℓ)|2 + (v − u(ℓ)) · (u(ℓ) − u(ℓ)(t− hℓ))

]

dx dt.

Next, using the (admissible) convex combination w(ℓ) := u(ℓ) + s(v − u(ℓ)) with s ∈
(0, 1) as comparison map in the preceding inequality, we deduce by the convexity
assumptions (1.11) and (1.15) that

¨

ΩT

[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

dx dt

≤
¨

ΩT

[

f p
(

x,Du(ℓ) + s(Dv −Du(ℓ))
)

+ g
(

x, u(ℓ) + s(v − u(ℓ))
)]

dx dt

+ 1
hℓ

¨

ΩT

[

s2

2
|v − u(ℓ)|2 + s(v − u(ℓ)) · (u(ℓ) − u(ℓ)(t− hℓ))

]

dx dt

≤
¨

ΩT

[

(1− s)
[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

+ s
[

f p(x,Dv) + g(x, v)
]]

dx dt

+ 1
hℓ

¨

ΩT

[

s2

2
|v − u(ℓ)|2 + s(v − u(ℓ)) · (u(ℓ) − u(ℓ)(t− hℓ))

]

dx dt.
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Reabsorbing the first term on the right-hand side of the preceding inequality into the
left-hand side and dividing the result by s > 0, we infer that

¨

ΩT

[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

dx dt ≤
¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
hℓ

¨

ΩT

[

s
2
|v − u(ℓ)|2 + (v − u(ℓ)) · (u(ℓ) − u(ℓ)(t− hℓ))

]

dx dt.

We extend v to negative times t < 0 by v(t) = v(0) ∈ L2(Ω,RN). Passing to the
limit s ↓ 0 in the preceding inequality, we find that the variational inequality

¨

ΩT

[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

dx dt

≤
¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
hℓ

¨

ΩT

(v − u(ℓ)) · (u(ℓ) − u(ℓ)(t− hℓ))
]

dx dt

=

¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt+ 1
hℓ

¨

ΩT

(v − u(ℓ)) · (v − v(t− hℓ)) dx dt

+ 1
2hℓ

¨

ΩT

∣

∣v − u(ℓ)
∣

∣

2
(t− hℓ)−

∣

∣v − u(ℓ)
∣

∣

2
dx dt

− 1
2hℓ

¨

ΩT

∣

∣v − v(t− hℓ)− u(ℓ) + u(ℓ)(t−hℓ)
∣

∣

2
dx dt

≤
¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt + 1
hℓ

¨

ΩT

(v − u(ℓ)) · (v − v(t−hℓ)) dx dt(3.11)

− 1
2hℓ

¨

Ω×[T−hℓ,T ]

|v − u(ℓ)|2 dx dt + 1
2hℓ

¨

Ω×[−hℓ,0]

|v − uo|2 dx dt

holds true for any comparison function v ∈ L2(ΩT ,R
N)∩Lp(0, T ;W 1,p(Ω,RN)) with

v(0) ∈ L2(Ω,RN).

3.5. Variational inequality for the limit map. In order to show that u
is a variational inequality to (3.2), we pass to the limit K ∋ ℓ → ∞ in (3.11). As
comparison map we choose v ∈ Lp(0, T ;W 1,p(Ω,RN)) with ∂tv ∈ L1(0, T ;L2(Ω,RN))
and v(0) ∈ L2(Ω,RN), which we extend to negative times t ∈ (−hℓ, 0] by v(t) = v(0).
By (3.8)2 and lower semicontinuity we obtain that

¨

ΩT

[

f p(x,Du) + g(x, u)
]

dx dt

≤ lim inf
K∋ℓ→∞

¨

ΩT

[

f p
(

x,Du(ℓ)
)

+ g
(

x, u(ℓ)
)]

dx dt.(3.12)

Next, note that 1
hℓ
(v−v(t−hℓ)) → ∂tv strongly in L1(0, T ;L2(Ω,RN)) as K ∋ ℓ→ ∞,

since ∂tv ∈ L1(0, T ;L2(Ω,RN)). Combining this with (3.8)1, we have that

(3.13)

¨

ΩT

∂tv · (v − u) dx dt = lim
K∋ℓ→∞

1
hℓ

¨

ΩT

(v − u(ℓ)) · (v − v(t− hℓ)) dx dt.

Since v ∈ C0([0, T ];L2(Ω,RN)), we obtain

lim
ℓ→∞

1
2hℓ

¨

Ω×[T−hℓ,T ]

|v − v(T )|2 dx dt = 0.
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This allows us to replace in the second last integral in (3.11) the function v by its
time slice v(T ). Moreover, since u(ℓ) = u(ℓ)(T ) on (T −hℓ, T ] by definition, it remains
to consider

lim
K∋ℓ→∞

ˆ

Ω

|v(T )− u(ℓ)(T )|2 dx.

To this end, observe that
ˆ

Ω

u(T ) · w dx =

¨

ΩT

∂tu · w dx dt+

ˆ

Ω

uo · w dx

= lim
ℓ→∞

¨

ΩT

∂tũ
(ℓ) · w dx dt +

ˆ

Ω

uo · w dx

= lim
ℓ→∞

ˆ

Ω

ũ(ℓ)(T ) · w dx.

holds true for any w ∈ L2(Ω,RN). Since ũ(ℓ)(T ) = u(ℓ)(T ), this yields u(ℓ)(T )⇁ u(T )
weakly in L2(Ω,RN) as K ∋ ℓ→ ∞. Thus, by lower semicontinuity we conclude that

(3.14)

ˆ

Ω

|v(T )− u(T )|2 dx ≤ lim inf
K∋ℓ→∞

ˆ

Ω

|v(T )− u(ℓ)(T )|2 dx.

Finally, note that by v(t) = v(0) for t ∈ (−hℓ, 0] we have that

(3.15) 1
2hℓ

¨

Ω×[−hℓ,0]

|v − uo|2 dx dt = 1
2

ˆ

Ω

|v(0)− uo|2 dx dt.

Joining (3.12), (3.13), (3.14) and (3.15) we find after passing to the limit K ∋ ℓ→ ∞
that

¨

ΩT

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt+

¨

ΩT

∂tv · (v − u) dx dt

− 1
2
‖(v − u)(T )‖L2(Ω,RN ) +

1
2
‖v(0)− uo‖L2(Ω,RN )

holds true for any v ∈ Lp(0, T ;W 1,p(Ω,RN)) with ∂tv ∈ L1(0, T ;L2(Ω,RN)) and
v(0) ∈ L2(Ω,RN). By means of Lemma B.1, this shows that u is the required
variational inequality to (3.2), which concludes the proof of Theorem 3.1. �

4. Existence of variational solutions for problems with
superlinear growth: the case of L

2-initial data

Theorem 4.1. Assume that initial values uo ∈ L2(Ω,RN) are given, that f p

fulfills hypotheses (1.14) and (1.15) and g satisfies (1.10) and (1.11). Then there
exists a variational solution u ∈ C0([0, T ];L2(Ω,RN)) ∩ Lp(0, T ;W 1,p(Ω,RN)) to
(3.2) in the sense of Definition 1.3.

Proof. Let ε > 0. We extend uo to R
n by zero and consider regularizations

uo,ε := uo ∗φε, where φε denotes the standard mollifier. Note that uo,ε ∈ L2(Ω,RN)∩
W 1,p(Ω,RN). By Theorem 3.1 for each ε ∈ (0, 1) there exists a variational solution
uε ∈ C0([0, T ];L2(Ω,RN)) ∩ Lp(0, T ;W 1,p(Ω,RN)) to (3.2) with initial datum uo,ε,
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i.e. uε satisfies the variational inequality
¨

Ωτ

[

f p(x,Duε) + g(x, uε)
]

dx dt

≤
¨

Ωτ

∂tv · (v − uε) dx dt+

¨

Ωτ

[

f p(x,Dv) + g(x, v)
]

dx dt

− 1
2
‖(v − uε)(τ)‖2L2(Ω,RN ) +

1
2
‖v(0)− uo,ε‖2L2(Ω,RN )(4.1)

for all τ ∈ [0, T ] and any comparison map v ∈ Lp(0, T ;W 1,p(Ω,RN)) with ∂tv ∈
L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN). From Lemma 2.15, (1.10) and (1.14) we
infer that the energy bound

1
2
sup

t∈[0,T ]

‖uε(t)‖2L2(Ω,RN ) + νp
¨

ΩT

|Duε|p dx dt

≤ 2
[

Lp +M
]

|ΩT |+ ‖uo,ε‖2L2(Ω,RN )(4.2)

holds true for any ε ∈ (0, 1). This implies that the sequence (uε)ε∈(0,1) is bounded
in L∞(0, T ;L2(Ω,RN)). If p ≤ 2, we immediately know from (4.2) that (uε)ε∈(0,1)
is bounded in Lp(0, T ;W 1,p(Ω,RN)) as well. If p > 2, we conclude from Poincaré’s
inequality and Hölder’s inequality that

sup
t∈[0,T ]

‖uε(t)‖Lp(Ω,RN ) ≤ |Ω| 1p− 1
2 sup
t∈[0,T ]

‖uε(t)‖L2(Ω,RN ) + c sup
t∈[0,T ]

‖Duε‖Lp(Ω,RN ),

for a constant c = c(n, p,Ω). Since the right-hand side of the preceding inequality
is bounded by (4.2), the sequence (uε)ε∈(0,1) is bounded in Lp(0, T ;W 1,p(Ω,RN)).
Hence, there exists a (not relabelled) subsequence and a limit map u ∈ L∞(0, T ;L2(Ω,
R

N)) ∩ Lp(0, T ;W 1,p(Ω,RN)), such that

(4.3)

{

uε
∗⇁ u weakly∗ in L∞(0, T ;L2(Ω,RN)),

uε ⇁ u weakly in Lp(0, T ;W 1,p(Ω,RN))

as ε ↓ 0. Next, we want to pass to the limit ε ↓ 0 in (4.1). Since this is not directly
possible because of the boundary term ‖(v− uε)(τ)‖2L2(Ω,RN ), we integrate (4.1) over

τ ∈ [to, to + δ] for some δ > 0 and to ∈ [0, T − δ] and divide the result by δ. This
yields

¨

Ωto

[

f p(x,Duε) + g(x, uε)
]

dx dt− 1
2
−
ˆ to+δ

to

‖(v − uε)(τ)‖2L2(Ω,RN ) dτ

≤ −
ˆ to+δ

to

¨

Ωτ

∂tv · (v − uε) dx dt dτ +

¨

Ωto+δ

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
2
‖v(0)− uo,ε‖2L2(Ω,RN ).(4.4)

By uε ⇁ u weakly in L2(ΩT ,R
N), (4.3)2, (1.14), (1.15) and (1.10) we can use the

lower semicontinuity of the the left-hand side in order to pass to the limit. Next,
since uo,ε → uo in L2(Ω,RN), we conclude that

lim
ε↓0

‖v(0)− uo,ε‖2L2(Ω,RN ) = ‖v(0)− uo‖2L2(Ω,RN ).

Further, by (4.3)1 and ∂tv ∈ L1(0, T ;L2(Ω,RN)) we have that

lim
ε↓0

¨

Ωτ

∂tv · (v − uε) dx dt =

¨

Ωτ

∂tv · (v − u) dx dt.
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Since

sup
ε∈(0,1)

sup
τ∈[0,T ]

¨

Ωτ

∂tv · (v − uε) dx dt ≤ ‖∂tv‖L1(0,T ;L2(Ω,RN ))‖v − uε‖L∞(0,T ;L2(Ω,RN )),

which is finite by ∂tv ∈ L1(0, T ;L2(Ω,RN)) and (4.3)1, we may apply the dominated
convergence theorem. Thus, combining the preceding computations and passing to
the limit ε ↓ 0 in (4.4), we obtain that

¨

Ωto

[

f p(x,Du) + g(x, u)
]

dx dt− 1
2
−
ˆ to+δ

to

‖(v − u)(τ)‖2L2(Ω,RN ) dτ

≤ −
ˆ to+δ

to

¨

Ωτ

∂tv · (v − u) dx dt dτ +

¨

Ωto+δ

[

f p(x,Dv) + g(x, v)
]

dx dt

+ 1
2
‖v(0)− uo‖2L2(Ω,RN ).

Here, we pass to the limit δ ↓ 0 and infer that
¨

Ωto

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

Ωto

∂tv · (v − u) dx dt+

¨

Ωto

[

f p(x,Dv) + g(x, v)
]

dx dt

− 1
2
‖(v − u)(τ)‖2L2(Ω,RN ) +

1
2
‖v(0)− uo‖2L2(Ω,RN )

for any to ∈ [0, T ] and any comparison map v ∈ Lp(0, T ;W 1,p(Ω,RN)) with ∂tv ∈
L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN). Since u ∈ C0([0, T ];L2(Ω,RN)) by
Lemma A.1, it is the desired variational solution to (3.2) in the sense of Defini-
tion 1.3. �

5. Proof of the main result

We consider a sequence (pi)i∈N with pi > 1 for any i ∈ N and pi ↓ 1 as i → ∞.
Without loss of generality let pi ≤ 2 for every i ∈ N. We assume that the Cauchy
data ui,o satisfy (1.16) with exponent pi. For each i ∈ N the mapping

ui ∈ C0([0, T ];L2(Ω,RN)) ∩ Lpi(0, T ;W 1,pi(Ω,RN))

denotes the unique variational solution to (1.4) with exponent pi and Cauchy datum
ui,o in the sense of Definition 1.3. From Lemma 2.15 and the growth conditions (1.14)
and (1.10) we infer the energy bound

1
2
sup

t∈[0,T ]

‖ui(t)‖2L2(Ω,RN ) + νpi
¨

ΩT

|Dui|pi dx dt ≤ 2
[

Lpi +M
]

|ΩT |+ ‖ui,o‖2L2(Ω,RN ).

By means of (1.18) and Hölder’s inequality we therefore conclude that

(5.1) (ui)i∈N is bounded in L∞(0, T ;L2(Ω,RN)) ∩ L1(0, T ;W 1,1(Ω,RN)).

Thus, there exists a (not relabelled) subsequence and a map u ∈ L∞(0, T ;L2(Ω,RN))
such that

(5.2) ui
∗⇁ u weakly∗ in L∞(0, T ;L2(Ω,RN)).
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By Lemma 2.2 we have that u ∈ L1
w∗(0, T ; BV(Ω,R

N)). Next, Lemma 2.16 yields
that

ˆ T−h

0

‖ui(t + h)− ui(t)‖W−ℓ,2(Ω,RN ) dt

≤ c
[

1 + ‖Dui‖pi−1
Lpi(ΩT ,RN )

+ ‖ui‖L2(ΩT ,RN )

]
√
h

holds true for any ℓ ≥ 1 and h ∈ (0, 1) with a constant c = c(n,N, L,M, ℓ, |Ω|, T ).
For ℓ ≥ n

2
we infer from Lemma 2.1 with the choice

(X,B, Y, p) =
(

W 1,1(Ω,RN), L1(Ω,RN),W−ℓ,2(Ω,RN), 1
)

that there exists a further (not relabelled) subsequence such that

(5.3) ui → u in L1(ΩT ,R
N) and a.e. in ΩT as i→ ∞.

Together with (5.1) this implies that Dui
∗⇁ Du weakly∗ in RM(Ω,RN×n) as i→ ∞.

Since any function w ∈ L2(0, T ;W 1,2(Ω,RN)) with ∂tw ∈ L1(0, T ;L2(Ω,RN)) and
w(0) ∈ L2(Ω,RN)) is an admissible comparison map in (1.17) for any pi, i ∈ N, we
obtain variational inequalities

¨

Ωτ

[

f pi(x,Dui) + g(x, ui)
]

dx dt

≤
¨

Ωτ

∂tw · (w − ui) dx dt+

¨

Ωτ

[

f pi(x,Dw) + g(x, w)
]

dx dt

− 1
2
‖(w − ui)(τ)‖2L2(Ω,RN ) +

1
2
‖w(0)− ui,o‖2L2(Ω,RN )

for any τ ∈ [0, T ]. Our next goal is to pass to the limit i → ∞ in the preceding
inequality. Integrating over τ ∈ (to, to + δ) for some δ ∈ (0, T ), to ∈ [0, T − δ] and
dividing the result by δ leads to

¨

Ωto

f pi(x,Dui) dx dt

≤ −
ˆ to+δ

to

¨

Ωτ

∂tw · (w − ui) dx dt dτ +

¨

Ωto+δ

f pi(x,Dw) dx dt

+

¨

Ωto+δ

g(x, w) dx dt−
¨

Ωto

g(x, ui) dx dt

− 1
2
−
ˆ to+δ

to

‖(w − ui)(τ)‖2L2(Ω,RN ) dτ +
1
2
‖w(0)− ui,o‖2L2(Ω,RN ).

By Reshetnyak’s lower semicontinuity theorem, i.e. Theorem 2.3, Fatou’s lemma and
Hölder’s inequality we infer that

ˆ to

0

F [u(t)] dt ≤ lim inf
i→∞

ˆ to

0

F [ui] dt = lim inf
i→∞

¨

Ωto

f(x,Dui) dx dt

≤ lim inf
i→∞

[
¨

Ωto

f pi(x,Dui) dx dt

]
1
pi

.
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Combining this with the second last inequality, we conclude that
ˆ to

0

F [u(t)] dt ≤ lim inf
i→∞

[

−
ˆ to+δ

to

¨

Ωτ

∂tw · (w − ui) dx dt dτ

+

¨

Ωto+δ

f pi(x,Dw) dx dt

+

¨

Ωto+δ

g(x, w) dx dt−
¨

Ωto

g(x, ui) dx dt

− 1
2
−
ˆ to+δ

to

‖(w − ui)(τ)‖2L2(Ω,RN )dτ +
1
2
‖w(0)− ui,o‖2L2(Ω,RN )

]
1
pi

.(5.4)

At this stage, we consider the terms appearing on the right-hand side of the preced-
ing inequality separately. By ∂tw ∈ L1(0, T ;L2(Ω,RN)), (5.2) and the dominated
convergence theorem, we have that

(5.5) lim
i→∞

−
ˆ to+δ

to

¨

Ωτ

∂tw · (w − ui) dx dt dτ = −
ˆ to+δ

to

¨

Ωτ

∂tw · (w − u) dx dt dτ.

Next, dominated convergence yields

(5.6) lim
i→∞

¨

Ωto+δ

f pi(x,Dw) dx dt =

¨

Ωto+δ

f(x,Dw) dx dt.

By (5.3) and Fatou’s lemma, which we may apply by (1.10), we have that

(5.7)

¨

Ωto

g(x, u) dx =

¨

Ωto

lim
i→∞

g(x, ui) dx dt ≤ lim inf
i→∞

¨

Ωto

g(x, ui) dx dt.

Moreover, by (5.2) and lower semicontinuity we infer that

(5.8) 1
2
−
ˆ to+δ

to

‖(w − u)(τ)‖2L2(Ω,RN ) dτ ≤ lim inf
i→∞

1
2
−
ˆ to+δ

to

‖(w − ui)(τ)‖2L2(Ω,RN ) dτ.

Finally, by assumption (1.18) we conclude that

(5.9) lim
i→∞

1
2
‖w(0)− ui,o‖2L2(Ω,RN ) =

1
2
‖w(0)− uo‖2L2(Ω,RN ).

Inserting (5.5), (5.6), (5.7), (5.8) and (5.9) into (5.4) implies that
ˆ to

0

F [u(t)] dt+

¨

Ωto

g(x, u) dx dt

≤ −
ˆ to+δ

to

¨

Ωτ

∂tw · (w − u) dx dt dτ +

¨

Ωto+δ

[

f(x,Dw) + g(x, w)
]

dx dt

− 1
2
−
ˆ to+δ

to

‖(w − u)(τ)‖2L2(Ω,RN )dτ +
1
2
‖w(0)− uo‖2L2(Ω,RN )(5.10)

holds true for any w ∈ L2(0, T ;W 1,2(Ω,RN)) with ∂tw ∈ L1(0, T ;L2(Ω,RN)) and
w(0) ∈ L2(Ω,RN)).

Next, we need to show that (5.10) holds true for general comparison maps v ∈
L1
w∗(0, T ; BV(Ω,R

N)) with ∂tv ∈ L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN) as well.
To this end, using the extension operator from Lemma 2.5, we extend v to R

n and
then consider regularizations vε := v ∗ φε of the extensions, where φε denotes the
standard mollifier in R

n. By Lemma 2.6 (ii) w := vε is an admissible comparison
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map in (5.10). In the following, we compute the limit ε ↓ 0 of the appearing terms
separately. First, we have that

∣

∣

∣

∣

¨

Ωτ

∂tvε · (vε − u)− ∂tv · (v − u) dx dt

∣

∣

∣

∣

≤ ‖∂tvε − ∂tv‖L1(0,T ;L2(Ω,RN ))‖vε − u‖L∞(0,T ;L2(Ω,RN ))

+

ˆ τ

0

‖∂tv‖L2(Ω,RN )‖vε − v‖L2(Ω,RN ) dt.

Observe that the first term on the right-hand side of the preceding inequality vanishes
in the limit ε ↓ 0 by Lemma 2.6 (iv). Now, we turn our attention to the second inte-
gral. We know that v(t) ∈ L2(Ω,RN) for all t ∈ [0, T ], since v ∈ C0(0, T ;L2(Ω,RN)).
Therefore, for any t ∈ [0, T ] we have that vε(t) → v(t) in L2(Ω,RN) as ε ↓ 0. Hence,
for a.e. t ∈ [0, T ] there holds

lim
ε↓0

‖∂tv(t)‖L2(Ω,RN )‖vε(t)− v(t)‖L2(Ω,RN ) = 0.

Furthermore, by Lemma 2.6 (iv) we know that

sup
ε∈(0,1)

‖∂tv‖L2(Ω,RN )‖vε − v‖L2(Ω,RN )

≤ 2‖∂tv‖L2(Rn,RN ) sup
t∈[0,T ]

‖v(t)‖L2(Rn,RN ) ∈ L1([0, T ]).

Therefore, by the dominated convergence theorem, also the second term vanishes in
the limit ε ↓ 0. Hence, another application of the dominated convergence theorem
yields

(5.11) lim
ε↓0

−
ˆ to+δ

to

¨

Ωτ

∂tvε · (vε − u) dx dt = −
ˆ to+δ

to

¨

Ωτ

∂tv · (v − u) dx dt dτ.

Next, since |Dv(t)|(∂Ω) = 0 for a.e. t ∈ [0, T ] by Lemma 2.5 (i), we have that

F [v(t)] =

ˆ

Ω

f(x,∇v(t)) dx+
ˆ

Ω

f∞
(

x,
Dsv

|Dsv|

)

d|Dsv|.

Therefore, from Lemma 2.6 (v) and Reshetnyak’s continuity theorem, i.e. Theo-
rem 2.4, we infer that

lim
ε↓0

ˆ

Ω

f(x,Dvε(t)) dx = F [v(t)]

for a.e. t ∈ [0, T ]. Furthermore, for any ε ∈ (0, 1) we have that

F [vε(t)] =

ˆ

Ω

f(x,Dvε(t)) dx ≤ L

ˆ

Ω

(

1 + |Dvε(t)|
)

dx ≤ L(|Ω|+ |Dv(t)|(Rn)).

Thus, by the dominated convergence theorem, we find that

(5.12) lim
ε↓0

¨

Ωto+δ

f(x,Dvε) dx dt =

ˆ to+δ

0

F [v(t)] dt.

Since vε → v in L2(ΩT ,R
N) by Lemma 2.6 (i), we deduce from Lemma 2.10 with

m = N and po = p = 2 that

(5.13) lim
ε↓0

¨

Ωto+δ

g(x, vε) dx dt =

¨

Ωto+δ

g(x, v) dx dt.
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Finally, by Lemma 2.6 (i), we conclude that

(5.14) lim
ε↓0

−
ˆ to+δ

to

‖(vε − u)(τ)‖2L2(Ω,RN ) dτ = −
ˆ to+δ

to

‖(v − u)(τ)‖2L2(Ω,RN ) dτ

and by v(0) ∈ L2(Ω,RN) that

(5.15) lim
ε↓0

‖vε(0)− uo‖2L2(Ω,RN ) = ‖v(0)− uo‖2L2(Ω,RN ).

Hence, passing to the limit ε ↓ 0 in (5.10) with the choice w = vε, by (5.11), (5.12),
(5.13), (5.14) and (5.15) we infer that

ˆ to

0

F [u(t)] dt+

¨

Ωto

g(x, v) dx dt

≤ −
ˆ to+δ

to

¨

Ωτ

∂tv · (v − u) dx dt dτ +

ˆ to+δ

0

F [v(t)] dt +

¨

Ωto+δ

g(x, v) dx dt

− 1
2
−
ˆ to+δ

to

‖(v − u)(τ)‖2L2(Ω,RN ) dτ +
1
2
‖v(0)− uo‖2L2(Ω,RN )

for any function v ∈ L1
w∗(0, T ; BV(Ω,R

N)) with ∂tv ∈ L1(0, T ;L2(Ω,RN)) and v(0) ∈
L2(Ω,RN)). Finally, we let δ ↓ 0 in the preceding inequality, which yields

ˆ to

0

F [u] dt+

¨

Ωto

g(x, v) dx dt

≤
¨

Ωto

∂tv · (v − u) dx dt+

ˆ to

0

F [v(t)] dt +

¨

Ωto

g(x, v) dx dt

− 1
2
‖(v − u)(to)‖2L2(Ω,RN ) +

1
2
‖v(0)− uo‖2L2(Ω,RN )

for a.e. to ∈ [0, T ]. Hence, u is a variational solution to (1.3) in the sense of Defini-
tion 1.1. Therefore, by means of Lemma A.3 we find that u ∈ C0([0, T ];L2(Ω,RN))
and by Lemma A.5 u is unique. As a consequence, we have that the convergence
assertions (5.2), (5.3) and Dui ⇁ Du weakly∗ in RM(Ω,RN×n) actually hold true
for the whole sequence (ui)i∈N. This concludes the proof of Theorem 1.5. �

Appendix A. Continuity and uniqueness

In Definition 1.3 we require variational solutions u to be in C0([0, T ];L2(Ω,RN)).
However, the following lemma shows that any map u ∈ L∞(0, T ;L2(Ω,RN)) satisfy-
ing (1.17) is a variational solution in the sense of Definition 1.3. Its proof is similar
to the proof of [15, Lemma 3.2].

Lemma A.1. Suppose that up,o fulfills (1.16) and that u ∈ L∞(0, T ;L2(Ω,RN))∩
Lp(0, T ;W 1,p(Ω,RN)) satisfies the variational inequality (1.17) with exponent p and
initial datum up,o for a.e. τ ∈ [0, T ] and any map v ∈ Lp(0, T ;W 1,p(Ω,RN)) with
∂tv ∈ L1(0, T ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN). Then, u ∈ C0([0, T ];L2(Ω,RN)).

Proof. Let h > 0 and ε = ε(h) := h
1

2(n+1)p . We consider the mollification JuKh
defined according to (2.2) with initial values up,o,h := up,o∗φε(h), where up,o is extended
to R

n by zero and φε denotes the standard mollifier in R
n. By Lemma 2.7 we have

that JuKh ∈ Lp(0, T ;W 1,p(Ω,RN)) with initial values JuKh(0) = up,o,h ∈ L2(Ω,RN).
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Moreover, ∂tJuKh ∈ L1(0, T ;L2(Ω,RN)) by (2.3). Noting that by (2.3) we have
¨

Ωτ

∂tJuKh ·
(

JuKh − u
)

dx dt = − 1
h

¨

Ωτ

∣

∣JuKh − u
∣

∣

2
dx dt ≤ 0,

by (1.17) with the choice JuKh as comparison map, we find that

1
2

∥

∥

(

JuKh − u
)

(τ)
∥

∥

2

L2(Ω,RN )
≤
¨

Ωτ

f p
(

x,DJuKh
)

− f p(x,Du) dx dt

+

¨

Ωτ

g
(

x, JuKh
)

− g(x, u) dx dt

+ 1
2
‖up,o,h − up,o‖2L2(Ω,RN )

for a.e. τ ∈ [0, T ]. Taking the supremum over τ ∈ [0, T ] and using Lemma 2.10 for f
with m = Nn, po = p and for g with m = N , p = po = 2, we obtain that

1
2

sup
τ∈[0,T ]

∥

∥

(

JuKh − u
)

(τ)
∥

∥

2

L2(Ω,RN )

≤ c(Nn, p)Lp

¨

ΩT

(

1 +
∣

∣DJuKh
∣

∣

p−1
+ |Du|p−1

)
∣

∣DJuKh −Du
∣

∣dx dt

+ c(N)M

¨

ΩT

(

1 +
∣

∣JuKh
∣

∣+ |u|
)
∣

∣JuKh − u
∣

∣dx dt + 1
2
‖up,o,h − up,o‖2L2(Ω,RN ).

In the last inequality we pass to the limit h ↓ 0, taking into account that up,o,h → up,o
in L2(Ω,RN), that DJuKh → Du in Lp(ΩT ,R

Nn) by Lemma 2.13, and that JuKh → u
in L2(ΩT ,R

N) by Lemma 2.7. The latter holds true, since on the one hand the time
regularization JuKup,o

h of u with initial value up,o strongly converges in L2(ΩT ,R
N),

while on the other hand
∥

∥JuKh − JuKup,o

h

∥

∥

2

L2(ΩT ,RN )
=

¨

ΩT

e−
2t
h |up,o − up,o,h|2 dx dt

≤ T‖up,o − up,o,h‖2L2(Ω,RN ).

Therefore, we conclude that

lim
h↓0

sup
τ∈[0,T ]

∥

∥

(

JuKh − u
)

(τ)
∥

∥

2

L2(Ω,RN )
≤ 0,

which means that
lim
h↓0

∥

∥JuKh − u
∥

∥

L∞(0,T ;L2(Ω,RN ))
= 0.

Observe that the assertions JuKh(0) ∈ L2(Ω,RN) and ∂tJuKh ∈ L1(0, T ;L2(Ω,RN))
together imply that JuKh ∈ C0([0, T ];L2(Ω,RN)) for any h > 0. Thus, we have shown
that u is the limit of functions in C0([0, T ];L2(Ω,RN)) with respect to the norm in
L∞(0, T ;L2(Ω,RN)). Consequently, we have that u ∈ C0([0, T ];L2(Ω,RN)). �

In order to prove a corresponding result for the case p = 1, we need the following
technical lemma.

Lemma A.2. Assume that u ∈ L1
w∗(0, T ; BV(R

n,RN)), uo ∈ L2(Rn,RN) and
that JuKh denotes the time mollification according to (2.2) with initial datum uo,h :=

uo ∗φε(h), where ε(h) := h
1

2(n+1) and φε(h) denotes the standard mollifier in R
n. Then,

there exists a (not relabelled) subsequence such that
∣

∣(Ln, DJuKh(t))
∣

∣(Ω) → |(Ln, Du(t))|(Ω)
in the limit h ↓ 0 holds true for a.e. t ∈ [0, T ].
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Proof. First, note that by Lemma 2.9 we have that JuKh ∈ L1
w∗(0, T ; BV(R

n,RN)).
Next, observe that

∣

∣(Ln, DJuKh(t))
∣

∣(Ω) =
∣

∣D(x0,x)(x0, JuKh(t))
∣

∣(Ω), since the addi-

tional n+N entries in D(x0,x)(x0, JuKh) ∈ R
(N+1)×(n+1) are zeroes. A straightforward

calculation shows that x0 = Jx0Kh with initial values x0. Hence, D(x0,x)(x0, JuKh(t)) =
D(x0,x)J(x0, u)Kh(t), where the time mollification on the right-hand side is defined
with initial values (x0, uo,h). Therefore, we need to prove that

lim
h↓0

∣

∣D(x0,x)J(x0, u)Kh(t)
∣

∣(Ω) = |D(x0,x)(x0, u(t))|(Ω) = |(Ln, Du(t))|(Ω).

To this end, note that J(x0, u)Kh(t) → (x0, u(t)) in L1(Ω,RN+1) for a.e. t ∈ [0, T ] by
Lemma 2.7 and since uo,h → uo in L2(Ω,RN). Therefore, by Theorem 2.3 applied to
the total variation, we find that

(A.1) |D(x0,x)(x0, u(t))|(Ω) ≤ lim inf
h→∞

∣

∣D(x0,x)J(x0, u)Kh(t)
∣

∣(Ω).

Further, let δ > 0 and assume that Ωδ := {x ∈ R
n : dist(x,Ω) < δ} denotes the

outer parallel set of Ω at distance δ. Since Ωδ is open, we infer from Lemma 2.9 that
∣

∣D(x0,x)J(x0, u)Kh(t)
∣

∣(Ω) = lim
δ↓0

∣

∣D(x0,x)J(x0, u)Kh(t)
∣

∣(Ωδ)

≤ lim
δ↓0

q
|D(x0,x)(x0, u)|(Ωδ)

y
h
(t) =

q
|D(x0,x)(x0, u)|(Ω)

y
h
(t)(A.2)

Here, the mollification on the right-hand side is defined according to (2.2) with initial
values |D(x0,x)(x0, uo,h)|(Ω). We claim that there exists a (not relabelled) subsequence
such that q

|D(x0,x)(x0, u)|(Ω)
y
h
→ |D(x0,x)(x0, u)|(Ω)

in L1(0, T ) as h ↓ 0. Indeed, applying Lemma 2.7 with X = R to the time mollifica-
tion with zero initial datum, we find that

q
|D(x0,x)(x0, u)|(Ω)

yo

h
→ |D(x0,x)(x0, u)|(Ω)

in L1(0, T ) as h ↓ 0. Furthermore, by means of Lemma 2.12, we estimate
∥

∥

q
|D(x0,x)(x0, u)|(Ω)

yo

h
−

q
|D(x0,x)(x0, u)|(Ω)

y
h

∥

∥

L1(0,T )

=

ˆ T

0

e−
t
h |D(x0,x)(x0, uo,h)|(Ω) dt ≤ h

ˆ

Ω

√

1 + |Duo,h|2 dx

≤ h
(

|Ω|+ c(n, |Ω|)ε(h)−n−1‖uo‖L2(Ω,RN )

)

= h|Ω|+ c(n, |Ω|)
√
h‖uo‖L2(Ω,RN ).

Combining the preceding two observations yields the asserted convergence. Passing to
a subsequence, we may assume that

q
|D(x0,x)(x0, u)|(Ω)

y
h
(t) → |D(x0,x)(x0, u(t))|(Ω)

for a.e. t ∈ [0, T ] in the limit h ↓ 0. Using this fact in the right-hand side of (A.2)
and combining the resulting estimate with (A.1) yields the claim of the lemma. �

Lemma A.3. Assume that uo ∈ L2(Ω,RN) and that u ∈ L∞(0, T ;L2(Ω,RN))∩
L1
w∗(0, T ; BV(Ω,R

N)) is a variational solution to (1.3) with initial datum uo in the
sense of Definition 1.1. Then, u ∈ C0([0, T ];L2(Ω,RN)).

Proof. Let h > 0 and ε = ε(h) := h
1

2(n+1) . By means of Lemma 2.5 we extend u to
R

n× (0, T ). We consider the mollification JuKh defined according to (2.2) with initial
values uo,h := uo ∗φε(h), where uo is extended to R

n by zero and φε denotes the stan-
dard mollifier in R

n. By Lemma 2.9 we have that JuKh ∈ L1
w∗(0, T ; BV(Ω,R

N)) with
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initial values JuKh(0) = uo,h ∈ L2(Ω,RN). Moreover, ∂tJuKh ∈ L1(0, T ;L2(Ω,RN))
by (2.3). Noting that by (2.3) we have

¨

Ωτ

∂tJuKh ·
(

JuKh − u
)

dx dt = − 1
h

¨

Ωτ

∣

∣JuKh − u
∣

∣

2
dx dt ≤ 0,

by (1.13) with the choice JuKh as comparison map, we find that

1
2

∥

∥

(

JuKh − u
)

(τ)
∥

∥

2

L2(Ω,RN )

≤
ˆ T

0

F [JuKh]−F [u] dt+

¨

Ωτ

g
(

x, JuKh
)

− g(x, u) dx dt+ 1
2
‖uo,h − uo‖2L2(Ω,RN )

for a.e. τ ∈ [0, T ]. Observe that the last two terms on the right-hand side of the
preceding inequality can be treated in exactly the same way as the corresponding
terms in the proof of Lemma A.1. It remains to show that the first term on the
right-hand side of the preceding inequality vanishes in the limit h ↓ 0 (for a suitable
subsequence). By Lemma A.2 there exists a (not relabelled) subsequence such that
for a.e. t ∈ [0, T ]

lim
h↓0

|(Ln, DJuKh(t))|(Ω) = |(Ln, Du(t))|(Ω).

Hence, by Theorem 2.4 we find that F [JuKh(t)] → F [u(t)] as h ↓ 0 for a.e. t ∈ [0, T ].
Moreover, by the growth conditions (1.1) and (1.7) and Lemma 2.9 we have that

F [JuKh(t)] ≤
ˆ

Ω

L(1 + |∇JuKh(t)|) dx+
ˆ

Ω

L d|DsJuKh(t)|

= L
(

|Ω|+ |DJuKh(t)|
)

(Ω)

≤ L
(

|Ω|+
q
|Du|(Ω)

y
h
(t)

)

,(A.3)

where the mollification on the right-hand side of the preceding inequality is defined
according to (2.2) with initial datum |Duo,h|(Ω). Since by Lemma 2.7 we know for
the time mollification with zero initial values that

q
|Du|(Ω)

yo

h
→ |Du|(Ω) in L1(0, T )

as h ↓ 0 and by Lemma 2.12 we obtain that

∥

∥

q
|Du|(Ω)

y
h
−

q
|Du|(Ω)

yo

h

∥

∥

L1(0,T )
=

ˆ T

0

e−
t
h dt

ˆ

Ω

|Duo,h| dx

≤ hc(n, |Ω|)ε(h)−n−1‖uo‖L2(Ω,RN )

= c(n, |Ω|)
√
h‖uo‖L2(Ω,RN ),

we conclude that
q
|Du|(Ω)

y
h
→ |Du|(Ω) in L1(0, T ) in the limit h ↓ 0. Recalling

(A.3) and using this fact, by a version of the dominated convergence theorem we
deduce that

lim
h↓0

ˆ τ

0

F
[

JuKh
]

dt =

ˆ τ

0

F [u] dt

for any τ ∈ [0, T ]. This yields the claimed convergence. Therefore, taking the
supremum over τ ∈ [0, T ], we infer that

lim
h↓0

∥

∥JuKh − u
∥

∥

L∞(0,T ;L2(Ω,RN ))
= 0.

This means that u is the limit of maps JuKh ∈ C0([0, T ];L2(Ω,RN)) with respect to
the norm in L∞(0, T ;L2(Ω,RN)). Therefore, we find that u ∈ C0([0, T ];L2(Ω,RN)).

�

The proof of the following lemma is similar to the proof of [15, Lemma 3.3].
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Lemma A.4. There is at most one variational solution to (1.4) with initial
values up,o ∈ L2(Ω,RN) in the sense of Definition 1.3.

Proof. Let h > 0 and ε(h) := h
1

2(n+1)p . Assume that u1, u2 ∈ C0([0, T ];L2(Ω,
R

N)) ∩ Lp(0, T ;W 1,p(Ω,RN)) are both variational solutions in the sense of Defini-
tion 1.3. For v := 1

2
(u1 + u2) we consider mollifications JvKh according to (2.2) with

initial datum up,o,h := up,o ∗ φε(h), where up,o is extended to R
n outside of Ω by zero

and φε(h) denotes the standard mollifier in R
n. Observe that these mollifications are

admissible comparison maps in the variational inequality (1.17) for u1 and u2, since
JvKh(0) = up,o,h ∈ L2(Ω,RN) and JvKh ∈ Lp(0, T ;W 1,p(Ω,RN)) by Lemma 2.7 and
∂tJvKh ∈ L1(0, T ;L2(Ω,RN)) by (2.3). Adding both inequalities and recalling that
u1 + u2 = 2v, we obtain that

1
2

∥

∥

(

JvKh − u1
)

(τ)
∥

∥

2

L2(Ω,RN )
+ 1

2

∥

∥

(

JvKh − u2
)

(τ)
∥

∥

2

L2(Ω,RN )

≤
¨

Ωτ

2f p
(

x,DJvKh
)

− f p(x,Du1)− f p(x,Du2) dx dt(A.4)

+

¨

Ωτ

2g
(

x, JvKh
)

− g(x, u1)− g(x, u2) dx dt

+ 2

¨

Ωτ

∂tJvKh ·
(

JvKh − v
)

dx dt + ‖up,o,h − up,o‖2L2(Ω,RN )

for a.e. τ ∈ [0, T ]. First note that up,o,h → up,o in L2(Ω,RN) as h ↓ 0. By Lemma 2.13
we have that DJvKh → Dv in Lp(ΩT ,R

Nn) as h ↓ 0. Further, applying Lemma 2.10
to f p with m = Nn and po = p and using the convexity condition (1.15), we conclude
that

lim
h↓0

¨

Ωτ

2f p
(

x,DJvKh
)

dx dt =

¨

Ωτ

2f p
(

x, 1
2
Du1 +

1
2
Du2

)

dx dt

≤
¨

Ωτ

f p(x,Du1) + f p(x,Du2) dx dt.

Similarly, we infer from the fact that JvKh → v in L2(ΩT ,R
N), cf. the proof of

Lemma A.1, from Lemma 2.10 with m = N , po = p = 2 and from (1.11) that

lim
h↓0

¨

Ωτ

2g
(

x, JvKh
)

dx dt =

¨

Ωτ

2g
(

x, 1
2
u1 +

1
2
u2
)

dx dt

≤
¨

Ωτ

g(x, u1) + g(x, u2) dx dt.

Next, by (2.3) we obtain that

2

¨

Ωτ

∂tJvKh ·
(

JvKh − v
)

dx dt = −2

h

¨

Ωτ

∣

∣JvKh − v
∣

∣

2
dx dt ≤ 0.

Finally, we deduce that JvKh → v in L∞(0, T ;L2(Ω,RN)). To this end note that we

have for the time mollification JvKup,o

h = e−
t
h (up,o − up,o,h) + JvKh with initial datum

up,o that JvKup,o

h → v in L∞(0, T ;L2(Ω,RN)) by Lemma 2.7. Thus, it remains to
compute

sup
t∈[0,T ]

∥

∥e−
t
h (up,o − up,o,h)

∥

∥

L2(Ω,RN )
= ‖up,o − up,o,h‖L2(Ω,RN ) → 0
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as h ↓ 0, which yields the claim. Hence, we conclude that for j ∈ {1, 2}

lim
h↓0

∥

∥

(

JvKh − uj
)

(τ)
∥

∥

2

L2(Ω,RN )
= 1

4
‖(u1 − u2)(τ)‖2L2(Ω,RN ).

Combining the preceding computations and passing to the limit h ↓ 0 in (A.4), we
infer that

1
4
‖(u1 − u2)(τ)‖2L2(Ω,RN ) ≤ 0

for a.e. τ ∈ [0, T ], which implies that u1 = u2 a.e. in ΩT . �

A corresponding uniqueness result holds true in the case p = 1.

Lemma A.5. There is at most one variational solution to (1.3) with initial
values uo ∈ L2(Ω,RN) in the sense of Definition 1.1.

Proof. Let h > 0 and ε(h) := h
1

2(n+1) . Assume that u1, u2 ∈ L∞(0, T ;L2(Ω,RN))∩
L1
w∗(0, T ; BV(Ω,R

N)) are both variational solutions in the sense of Definition 1.3. By
Lemma A.3 we conclude that u1, u2 ∈ C0([0, T ];L2(Ω,RN)). Further, by Lemma 2.5
we extend u1, u2 to R

n × (0, T ). For v := 1
2
(u1 + u2) we consider mollifications JvKh

according to (2.2) with initial datum uo,h := uo∗φε(h), where uo is extended to R
n out-

side of Ω by zero and φε(h) denotes the standard mollifier in R
n. Observe that these

mollifications are admissible comparison maps in the variational inequality (1.13) for
u1 and u2, since JvKh(0) = uo,h ∈ L2(Ω,RN) and JvKh ∈ L1

w∗(0, T ; BV(Ω,R
N)) by

Lemma 2.9 and ∂tJvKh ∈ L1(0, T ;L2(Ω,RN)) by (2.3). Adding both inequalities,
using (2.3) to conclude that the term involving the time derivative is non-positive
and recalling that u1 + u2 = 2v, we obtain that

1
2

∥

∥

(

JvKh − u1
)

(τ)
∥

∥

2

L2(Ω,RN )
+ 1

2

∥

∥

(

JvKh − u2
)

(τ)
∥

∥

2

L2(Ω,RN )

≤
ˆ τ

0

2F
[

JvKh
]

−F [u1]−F [u2] dt(A.5)

+

¨

Ωτ

2g
(

x, JvKh
)

− g(x, u1)− g(x, u2) dx dt+ ‖uo,h − uo‖2L2(Ω,RN )

for a.e. τ ∈ [0, T ]. The last two terms on the right-hand side of (A.5) can be treated
exactly as the corresponding terms in the proof of Lemma A.4. Thus, it remains
to show that the limit of the first term appearing on the right-hand side of (A.5) is
non-positive. By Lemma A.2 we obtain that

lim
h↓0

|(Ln, DJvKh(t))|(Ω) = |(Ln, Dv(t))|(Ω)

for a.e. t ∈ [0, T ] and a (not relabelled) subsequence. Hence, by Theorem 2.4 we find
that

lim
h↓0

F
[

JvKh(t)
]

= F [v(t)]

for a.e. t ∈ [0, T ]. Moreover, by (1.1), (1.7) and Lemma 2.9 we conclude that

F [JvKh(t)] ≤
ˆ

Ω

L(1 + |∇JvKh(t)|) dx+
ˆ

Ω

L d|DsJvKh(t)|

= L
(

|Ω|+ |DJvKh(t)|
)

(Ω)

≤ L
(

|Ω|+
q
|Dv|(Ω)

y
h
(t)

)

,(A.6)

where the mollification on the right-hand side of the preceding inequality is defined
according to (2.2) with initial datum |Duo,h|(Ω). Since by Lemma 2.7 we know for
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the time mollification with zero initial values that
q
|Dv|(Ω)

yo

h
→ |Dv|(Ω) in L1(0, T )

as h ↓ 0 and by Lemma 2.12 we obtain that

∥

∥

q
|Dv|(Ω)

y
h
−

q
|Dv|(Ω)

yo

h

∥

∥

L1(0,T )
=

ˆ T

0

e−
t
h dt

ˆ

Ω

|Duo,h| dx

≤ hc(n, |Ω|)ε(h)−n−1‖uo‖L2(Ω,RN )

= c(n, |Ω|)
√
h‖uo‖L2(Ω,RN ).

Thus, we conclude that
q
|Dv|(Ω)

y
h
→ |Dv|(Ω) in L1(0, T ) in the limit h ↓ 0. Hence,

using (A.6), a version of the dominated convergence theorem and the convexity of
F , we deduce that

lim
h↓0

ˆ τ

0

2F
[

JvKh
]

−F [u1]−F [u2] dt

=

ˆ τ

0

2F
[

1
2
u1 +

1
2
u2
]

−F [u1]−F [u2] dt ≤ 0

for any τ ∈ [0, T ]. Inserting this into (A.5), we infer that

0 ≥ lim
h↓0

∥

∥

(

JvKh − uj
)

(τ)
∥

∥

2

L2(Ω,RN )
= 1

4
‖(u1 − u2)(τ)‖2L2(Ω,RN )

holds true for a.e. τ ∈ [0, T ]. Hence, u1 = u2 a.e. in ΩT . �

Appendix B. Localization

Here, we establish that any map u ∈ C0([0, T ];L2(Ω,RN))∩Lp(0, T ;W 1,p(Ω,RN))
satisfying the variational inequality (1.17) on the whole time interval [0, T ] is a vari-
ational solution in the sense of Definition 1.3 for any sub-cylinder Ωτ ⊂ ΩT . For the
proof strategy cf. [15, Sec. 3.3.1] The precise statement is as follows.

Lemma B.1. Assume that up,o is given as in (1.16), f p fulfills (1.14) and (1.15)
and g fulfills (1.10) and (1.11). Further, suppose that

¨

ΩT

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

ΩT

∂tv · (v − u) dx dt+

¨

ΩT

[

f p(x,Dv) + g(x, v)
]

dx dt(B.1)

− 1
2
‖(v − u)(T )‖2L2(Ω,RN ) +

1
2
‖v(0)− up,o‖2L2(Ω,RN )

holds true for any map v ∈ Lp(0, T ;W 1,p(Ω,RN)) with ∂tv ∈ L1(0, T ;L2(Ω,RN))
and v(0) ∈ L2(Ω,RN). Then, u is a variational solution in the sense of Definition 1.3
for any sub-cylinder Ωτ ⊂ ΩT .

Proof. Let h > 0 and ε(h) := h
1

2(n+1)p . In the following, JuKh denotes the
mollification according to (2.2) with initial values up,o,h := up,o ∗ φε(h), where up,o is
extended to R

n by zero and φε(h) is the standard mollifier in R
n. Note that JuKh is

an admissible comparison map in (B.1). Furthermore, we consider an arbitrary map
v ∈ Lp(0, τ ;W 1,p(Ω,RN)) with ∂tv ∈ L1(0, τ ;L2(Ω,RN)) and v(0) ∈ L2(Ω,RN) and
for θ ∈ (0, τ) the cut-off function

ξθ(t) := χ[0,τ−θ](t) +
τ−t
θ
χ(τ−θ,τ ](t).
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Since ṽ := ξθv + (1 − ξθ)JuKh is an admissible comparison map in (B.1), we obtain
that

¨

ΩT

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

ΩT

∂tṽ · (ṽ − u) dx dt+

¨

ΩT

[

f p(x,Dṽ) + g(x, ṽ)
]

dx dt

− 1
2
‖(JuKh − u)(T )‖2L2(Ω,RN ) +

1
2
‖v(0)− up,o‖2L2(Ω,RN ).

In order to pass to the limit θ ↓ 0, we analyze the terms appearing on the right-hand
side of the preceding inequality separately. We re-write the first term as
¨

ΩT

∂tṽ · (ṽ − u) dx dt

=

¨

Ω×(0,τ−θ)

∂tv · (v − u) dx dt+

¨

Ω×(τ,T )

∂tJuKh ·
(

JuKh − u
)

dx dt

+

¨

Ω×(τ−θ,τ)

ξ′θξθ
∣

∣v − JuKh
∣

∣

2
dx dt

+

¨

Ω×(τ−θ,τ)

ξ′θ
(

JuKh − u
)

·
(

v − JuKh
)

dx dt

+

¨

Ω×(τ−θ,τ)

[

ξθ∂tv + (1− ξθ)∂tJuKh
][

ξθ(v − u) + (1− ξθ)
(

JuKh − u
)]

dx dt

=: Iθ + II + IIIθ + IVθ +Vθ,

where the meaning of Iθ, II and IIIθ −Vθ is obvious in this context. Note that

lim
θ↓0

Iθ =

¨

Ωτ

∂tv · (v − u) dx dt.

By (2.3) we have that

II =

¨

Ω×(τ,T )

− 1
h

∣

∣JuKh − u
∣

∣

2
dx dt ≤ 0.

Since u, JuKh, v ∈ C0([0, τ ];L2(Ω,RN)), we conclude that
ˆ

(τ−θ,τ)

ξ′θξθ dt min
t∈(τ−θ,τ)

∥

∥

(

v − JuKh
)

(t)
∥

∥

2

L2(Ω,RN )
≤ IIIθ

≤
ˆ

(τ−θ,τ)

ξ′θξθ dt max
t∈(τ−θ,τ)

∥

∥

(

v − JuKh
)

(t)
∥

∥

2

L2(Ω,RN )

and hence, that

lim
θ↓0

IIIθ = −1
2

∥

∥

(

v − JuKh
)

(τ)
∥

∥

2

L2(Ω,RN )
.

Similarly, we obtain that

lim sup
θ↓0

|IVθ| ≤
∥

∥

(

JuKh − u
)

·
(

v − JuKh
)

(τ)
∥

∥

L1(Ω,RN )
.

Moreover, since 0 ≤ ξθ ≤ 1, ∂tJuKh ∈ L1(0, T ;L2(Ω,RN)) by (2.3) and u, JuKh, v ∈
C0([0, τ ];L2(Ω,RN)) we find that

lim
θ↓0

Vθ = 0.
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Next, we re-write
¨

ΩT

[

f p(x,Dṽ) + g(x, ṽ)
]

dx dt =

¨

Ω×(0,τ−θ)

[

f p(x,Dv) + g(x, v)
]

dx dt

+

¨

Ω×(τ−θ,τ)

[

f p(x,Dṽ) + g(x, ṽ)
]

dx dt

+

¨

Ω×(τ,T )

[

f p
(

x,DJuKh
)

+ g
(

x, JuKh
)]

dx dt.

By the growth conditions (1.14) and (1.10) and the fact that ṽ ∈ Lp(0, τ ;W 1,p(Ω,RN))∩
C0([0, τ ];L2(Ω,RN)), we conclude that

lim
θ↓0

¨

ΩT

[

f p(x,Dṽ) + g(x, ṽ)
]

dx dt =

¨

Ω×(0,τ)

[

f p(x,Dv) + g(x, v)
]

dx dt

+

¨

Ω×(τ,T )

[

f p
(

x,DJuKh
)

+ g
(

x, JuKh
)]

dx dt.

Combining the preceding computations and passing to the limit θ ↓ 0 leads to the
inequality

¨

Ωτ

[

f p(x,Du) + g(x, u)
]

dx dt

≤
¨

Ωτ

∂tv · (v − u) dx dt+

¨

Ωτ

[

f p(x,Dv) + g(x, v)
]

dx dt

− 1
2

∥

∥

(

v − JuKh
)

(τ)
∥

∥

2

L2(Ω,RN )
+ 1

2
‖v(0)− uo‖2L2(Ω)

− 1
2

∥

∥

(

JuKh − u
)

(T )
∥

∥

2

L2(Ω,RN )
+
∥

∥

(

JuKh − u
)

·
(

v − JuKh
)

(τ)
∥

∥

L1(Ω,RN )

+

¨

Ω×(τ,T )

[

f p
(

x,DJuKh
)

− f p(x,Du)
]

dx dt

+

¨

Ω×(τ,T )

[

g
(

x, JuKh
)

− g(x, u)
]

dx dt.

The last four terms of the preceding inequality vanish in the limit h ↓ 0. To this
end recall that JuKh → u in L∞(0, T ;L2(Ω,RN)) as h ↓ 0; cf. the proof of Lemma
A.4. By Lemma 2.13, we have that DJuKh → Du in Lp(ΩT ,R

Nn) as h ↓ 0. Hence,
applying Lemma 2.10 with the choices m = Nn, po = p for the term containing f p

and m = N , po = p = 2 for the term associated with g implies the claim. Altogether,
this shows that u is a variational solution on Ωτ . �
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