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Abstract. We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus
and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sier-
piński carpet. Specifically, we construct large resistor network approximating the carpet, establish
weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the
associated critical exponent, and provide numerical approximations and rigorous two-sided bounds.
In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Haus-
dorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical
picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.

1. Introduction

We give a mixture of theoretical and numerical results pertaining to the prob-
lem of finding the (Ahlfors regular) conformal dimension of the Sierpiński carpet,
following the trailblazing numerical work in Malo’s PhD thesis [26] and inspired by
Barlow and Bass’s treatment of the spectral dimension in [4]. Our overarching goal
is to import into this context the concept of p-resistance and show that it is a fruitful
proxy for the combinatorial p-modulus (or p-extremal length), which became a well
established tool in this subject [12, 7, 17, 13, 10]. As will be explained, the basic
qualitative results about p-resistance can be deduced from their p-modulus coun-
terparts found in Carrasco Piaggio’s [13] and Bourdon and Kleiner’s [9]. However,
the resistance based approach is quite effective for more delicate quantitative ques-
tions and facilitates radical speedup of numerical computations. It comes with two
dualities (convex and topological) and lends itself to elementary yet powerful argu-
ments based on combining and rearranging networks. To present the ideas in the
simplest non-trivial case, we confine attention to the classical Sierpiński carpet, but
such p-electrical engineering could be deployed in much greater generality, including
the comprehensive setting in [13]. The ultimate hope is to apply our techniques to
Cannon’s conjecture, approached along the lines of [8].

The following introduction attempts a reasonably self-contained presentation of
the main results and ideas. More detailed statements and proofs are relegated to
sections 3 through 8. We also include preliminary Section 2, to fix notations and
review the principles for direct current (DC) circuits at (non-physical) exponent
p > 1, not hitherto used in the context of conformal dimension. The many figures
are an integral part of our results and arguments, and most should be viewed in color
to be fully intelligible.
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Figure 1.1. Sierpiński carpet approximant X4, shaded by the approximate intensity of the
p-current flowing from the bottom to the top (for p = 1.7965).

1.1. Sierpiński carpet. Taking N0 := {0, 1, 2, . . .}, the classical Sierpiński
carpet X (introduced in [30]) is the subset of the plane R2 given by the intersection
X =

⋂
n∈N0

Xn where X0 = [0, 1]2 is the unit square and the approximants Xn are
defined recursively by the rule that Xn+1 results from removing the (open) middle
square of side length 3−n−1 from each of the 8n squares making upXn (see Figure 1.1).
X is a metric space with the metric dE induced from the standard Euclidean distance
on R2. It is infinitely ramified—cannot be disconnected by removing finitely many
points—and, as such, provides a proving ground for a number of challenges in analysis
on fractals (see e.g. [3]).

1.2. Conformal dimension. The Ahlfors regular conformal dimension of the
carpet is the following infimum of the Hausdorff dimensions

(1.1) dimAR(X) := {dimHD(X, d) : d ∼qs dE}

where d ranges over all Ahlfors regular metrics onX and∼qs denotes quasi-symmetric
equivalence. The reader should consult [24, 18] for definitions and a discussion of the
challenge presented by the dimension of the carpet. The simplicity of the construction
of X does not betray the difficulty of pinning down dimAR(X). In that regard we
obtain the following approximation:

Numerical prediction:

dimAR(X) ≈ 1.7965.

Strictly speaking, this is a prediction, an educated guess about the consecutive
digits of dimAR(X). It should be compared with the best effort to date found in
Malo’s thesis [26], where two digits of dimAR(X) are predicted based on evidence
suggesting that it sits between 1.7 and 1.8. While we have high confidence in at least
the first four digits in 1.7965, we also provide rigorous computer assisted bounds
(Sections 5 and 7), including the following:

Rigorous computer assisted bounds:

1.765225 ≤ dimAR(X) ≤ 1.806703.
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The above bounds (and the number 1.7965) were found by computations on the
level n = 8 approximant X8, where a quasi-Newton iteration was used to solve a
nonlinear system with roughly 107 variables. Once a value of p is fixed, the proof of
a bound (by this p) amounts to a simple act of evaluating the p-norm of the solu-
tion. With more computing effort, the spread between the upper and lower bounds
could be narrowed; in particular, a lower bound by 1.783499 is readily achievable
(Proposition 7.8), but we had to stop somewhere. We give details on the numerical
procedures used in Section 8.

Effectiveness of our methods is not solely due to the computing power deployed.
To demonstrate this point (and bow to the traditional standards of mathematical
discourse), we state below much weaker bounds obtained in the simplest case, when
n = 1 and hand computation is feasible.

Theorem 1.1.
1.707491 ≤ dimAR(X) ≤ 1.847596.

This already improves on the previous state of art:

1.6309 ≈ 1 +
ln 2

ln 3
≤ dimAR(X) ≤

ln
(
(9 +

√
41)/2)

)
ln 3

≈ 1.858,

due to Tyson [31] and Kigami [21], respectively. Incidentally, Tyson’s lower bound
comes from X containing the Cantor comb, the product of the middle-thirds-Cantor
set and segment [0, 1]. Its sharpness has been an open question for some time (see,
e.g., Problem 15.22 in [18]). Conceptually, our affirmative answer rests on rigorous
expression of the intuition that the top-to-bottom current inX has to spill beyond the
comb and utilize more of the carpet, as illustrated by Figure 1.1 (see also Figure 7.20).

Note: In his new work [22], Kigami constructed an even more coprehensive version
of Carassco Piagio’s [13] framework with p-modulus replaced by p-energy, which is
equivalent to the p-resistance defined via potentials (as in Propositon 2.3). As an
application, he showed that dimAR(X) is boundeed above by the spectral dimension
studied by Barlow and Bass. For the Sierpiński carpet, [5] predicted the spectral
dimension to be approximately 1.8052 by computing up to the level n = 7. This
is better then our rigorous numerical upper bound 1.8067 obtained for n = 8 (cf.
Proposition 5.4). However, unlike 1.8067, the number 1.8052 is derived by Shank’s
transform based extrapolation—much like our prediction 1.7965. On the flip side, the
numerical problem being linear for p = 2, the spectral dimension could be further
approximated by using modern computers to levels n = 8 or 9. Additionally, in [2],
Albin et al. develop a theory of p-modulus for families of paths on graphs, including
the requisite convex duality and a discussion of applications and open problems. Note
that they use the edge-weighted version of the p-modulus, which coincides with the
p-conductance (the reciprocal of the p-resistance), but is not quite the same as the
vertex-weighted p-modulus we borrowed from [13, 26].

1.3. Uniformization picture. While chasing the digits of dimAR(X) may not
seem like a worthwhile pursuit, it sheds light on the existence of a metric realizing
the infimum in the definition of dimAR(X), a problem of great interest in connection
with Kapovich–Kleiner Conjecture [20, 6]. We propose one concrete way of generating
such an optimal metric by constructing a sequence of maps (Fn)n∈N defined on graph
approximations Gn toX (depicted in Figure 1.3 and detailed in subsection 1.4, ahead).
The conjecture is that Fn converge (in the Gromov–Hausdorff sense) to a quasi-
symmetric homeomorphism F : X → Xslit where Xslit is a planar slit carpet, a subset
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obtained by making infinitely many vertical slits in the interior of a rectangle in R2

(see [25]). In such case, the optimal metric d would coincide with the pull back via
F of the natural path metric on Xslit, and F could be viewed as a quasi-symmetric
uniformization of Sierpiński carpet. While Fn are constructed in subsection 1.9,
after necessary preliminaries are gathered, the reader is invited now to ponder the
depiction of F5 in Figure 1.2. This is how Sierpiński carpet (approximately) should
look to a complex analyst. (F6 offers too much detail to render on a printed page.)

Figure 1.2. Slit carpet uniformizing X (at approximation level n = 5).
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1.4. p-Resistance. Our approach to dimAR(X) is inspired by [4] where Barlow
and Bass study the spectral dimension of X by using the ordinary electrical resis-
tance of its approximations. We simply replace the classical DC circuit theory by its
counterpart at a variable exponent p > 1, as is done by substituting the Lp-norm in
the place of the L2-norm representing the energy dissipated by the current. This is of
course an old exploit used for a variety of theoretical and practical pursuits, partic-
ularly underlying the standard theory of p-harmonic functions and the p-Laplacian
(see e.g. [16, 23, 11, 1, 19]). In the theory of conformal dimension, it offers an alter-
native to the methods based on the p-modulus or p-extremal length. Specifically, we
study the p-resistance across an approximation to X presented as a resistor network,
a suitable finite graph with non-negative weights (resistances) over the edges. The
most straightforward approximations, much like the standard graph approximations in
[26], are the graphs Gn = (Vn, En) where the vertex set Vn consists of the vertices of
the squares making up the Xn and the edge set En collects the sides of those squares.
(We work with oriented graphs but the p-resistance does not depend on the orienta-
tion, so we often suppress it, as is done in Figure 1.3.) For visual appeal, we chose
not to include in Gn the horizontal edges along the top and bottom of Xn. (Those
edges will carry no current a priori.) The resistance of an edge e ∈ En is r(e) = 1

2
,

unless e lies in the boundary of Xn, in which case r(e) = 1. We note that the values
of the resistances of the individual edges in En are immaterial for the determination
of dimAR(X), as long as they are uniformly bounded from 0 and ∞ (Theorem 3.1).
The specific resistance choices we made are dictated by the recursive rules generating
the networks Gn (in Section 6), which influence our approximations to dimAR(X).

Figure 1.3. Standard network G3: edge resistance is r(e) = 1
2 for blue and r(e) = 1 for red

edges.

Denoting by An and Bn the sets of top and bottom vertices, respectively, we
consider flows from An to Bn; namely, functions J : En → R that satisfy Kirchhoff’s
first law, i.e., have vanishing divergence, divJ (v) = 0, at each vertex v ∈ Vn \
(An ∪ Bn). (Detailed definitions are given in Section 2.) The flux of J is J(J ) :=
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v∈Bn divJ (v) =

∑
v∈An −divJ (v), and its p-power is

(1.2) P (J ) :=
∑
e∈En

r(e)p
∗/p|J (e)|p∗

where p∗ is the Hölder exponent dual to p, i.e., 1/p+1/p∗ = 1. The p-resistance from
An to Bn is the result of a minimization over all flows from An to Bn:

(1.3) Rn(p) := min
J

P (J )p/p
∗

J(J )p
,

where (by homogeneity) J0 := J(J ) can be set to any non-zero value, say J0 = 1.
The function J 7→ P (J ) is strictly convex on the finite dimensional affine space of
unit flux flows J , and the minimum is uniquely realized. We refer to the optimal
flow as a p-current (or simply current when it is clear what p is used) and call (1.3)
a current power minimization problem.
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Figure 1.4. Log of the power ratio ln ρn(p) = p∗

p
ln
(
Rn(p)
1/2

)
as a function of p, steepening with

increasing n (for n = 1, . . . , 6).

We computed the current with flux J0 = 2 through Gn and its power Pn for n ≤ 8
(Section 8). For n = 0, J (e) = 1 on the two parallel resistors constituting G0, so
P0 = 2 and R0(p) = 1/2. Figure 1.4 shows plots1 of the logarithm of the power ratio

ρn(p) :=
Pn
P0

=

(
Rn(p)

R0(p)

) p∗
p

.

We depicted ln ρn(p), in lieu of Rn(p), because that is the quantity that will serve
best to articulate our estimates. In particular, the zeros of ln ρn(p) will give the
upper bounds (in Section 5). The plots of lnRn(p) are similar.

1.5. Critical exponent. The gateway to our approximation to dimAR(X) is
identification of this dimension as the critical exponent for the p-resistance:

1Due to the numerical cost, for n = 7, 8, we used a narrower range of p and the corresponding
plots are not included in Figure 1.4.
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Theorem 1.2. The Ahlfors-regular conformal dimension dimAR(X) coincides
with the resistance dimension of X, defined as

(1.4) pres := inf{p > 1: lim sup
n→∞

Rn(p) =∞}.

We note that, a priori, the set of p under the inf above is either one of (pres,∞) or
[pres,∞) (due to monotonicity of |J (e)|p∗ as a function of p∗; cf. Corollary 1.4). The
actual behavior of Rn(p) is revealed by the plots in Figure 1.4, suggestively pivoting
about a single point and tending to ±∞ on its opposite sides with the increasing of
n (although, zoomed Figure 8.25 reveals more nuance). Malo [26] uses the analogous
characterization based on the combinatorial p-modulus and derived from a sweeping
result, Theorem 1.3 in Carrasco Piaggio’s [13]—itself rooted in Pansu’s approach to
the dimension in [27] and preceded by unpublished work of Keith and Kleiner (see
remarks after Theorem 1.2 in [13] and at the end of sec. 3 in [9]). In particular, to
prove the theorem one only has to verify that the p-resistance is comparable to the
p-modulus, or rather to its reciprocal, the (combinatorial) extremal p-length (defined
in subsection 1.6).

While Theorem 1.2 is a manifestation of a general principle, it is the self-similarity
that affords the following result, which is also the departure point for our rigorous
estimates of dimAR(X).

Theorem 1.3. The sequence (Rn(p))n∈N is weakly sub- and sup- multiplicative,
i.e., there are α(p), β(p) > 0 (explicitly given and continuous in p) so that, for
m,n ∈ N,

(1.5) α(p)−pRn(p)Rm(p) ≤ Rn+m(p) ≤ β(p)pRn(p)Rm(p).

For p = 2, the inequalities of Theorem 1.3 follow from those in [4], and the gen-
eral case is similar; although, we use different networks and have to accommodate
the lack of Hilbert space structure on Lp. In a nutshell, weak sub-multiplicativity
arises from gluing smaller networks to form bigger ones. Weak sup-multiplicativity
is in the same vein once viewed on the other side of the topological duality of planar
networks (which we discuss in subsection 1.8). We note that [9, 13] already show2

sup-multiplicativity for extremal p-length in a general approximately self-similar set-
ting, and Lemma 4.4 in [9] also tackles sub-multiplicativity for the specific case of
the Sierpiński carpet. Thus Theorem 1.3 could be derived by simply using that the
extremal p-length and the p-resistance are comparable (Theorem 3.1). However, be-
yond giving an alternative proof, we offer constructions of reasonably small constants
α(p) and β(p). E.g., beside the more involved formulas (4.15) and (6.5) valid for all
p > 1, for p ∈ (1, 2)—which is the range of primary interest—we are able to use
Clarkson’s inequality to obtain α(p) = 2−1/p (Corollary 5.3); and also β(p) = 23/p−2

(Corollary 7.5), albeit the latter is for an alternative sequence of approximating net-
works, as discussed below. (For the original network see formula (6.7).) Naturally,
one has to pay attention to what families of curves or networks are considered, as
careful choices yield better constants.

Concerning dimAR(X), Theorem 1.3 can be applied as follows: checking that
β(p)pRm(p) < 1 for a specific p guarantees that Rn(p) converges geometrically to 0
(as n → ∞) and thus gives a lower bound, pres ≥ p. Similarly α(p)−pRm(p) > 1
yields an upper bound pres ≤ p. Although α(p) and β(p) are computed explicitly, the

2Their results are phrased in terms of the p-modulus, the reciprocal of the extremal p-length—
which switches “sub-” and “sup-”.
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resulting bounds on pres are not the best and can be improved by verifying weaker
conditions: supnRn+m(p)/Rn(p) < 1 and infnRn+m(p)/Rn(p) > 1, respectively, for
a specific value of m. (We used m = 1, . . . , 8.) This is the technical heart of this
paper and not without some important nuance, which we would like to address now,
even before all the definitions are in place.

For the lower bound, the naive idea is to use that Gn+m can be glued from copies of
Gm and deduce supnRn+m(p)/Rn(p) < 1 from Rm(p)/R0(p) < 1, which is equivalent
to the power ratio bound ρm(p) < 1. However, gluing flows on Gm into one flow on
the bigger network Gn+m is impossible and one is lead to use alternative networks G̃n
(see Figure 7.22) with resistances comparable to those of Gn. In particular, the power
ratio relevant for the lower bound is not that plotted in Figure 1.4; see Figure 7.23
instead.

For the upper bound, we pass to the topologically dual network G∗n (see Fig-
ure 1.6), in order to trade infnRn+m(p)/Rn(p) > 1 for supnR

∗
n+m(p)/R∗n(p) < 1 and

then mimic what we did for the lower bound. Luckily, the gluing of flows in the
dual network G∗n is easy and readily reduces the problem to a power ratio bound.
Keep in mind that this power ratio bound is on the other side of the topological
duality and the requisite inequality will translate (via (1.21)) to ρm(p) > 1 in terms
of the power ratio of the original network Gn (as plotted in Figure 1.4). Overall, the
sup-multiplicativity and the upper bounds are technically easier and thus we give
their exposition first (Sections 4 and 5), with the sub-multiplicativity and the lower
bounds to follow (Sections 6 and 7).

Before proceeding with a more detailed exposition, we record the following corol-
lary of Theorem 1.3.

Corollary 1.4. At p = pres, R−X := lim infn→∞Rn(p) andR+
X := lim supn→∞Rn(p)

satisfy
β(p)−p ≤ R−X ≤ R+

X ≤ α(p)p.

For p 6= pres, the limit RX(p) := limn→∞Rn(p) exists, and it equals 0 for p < pres

and ∞ for p > pres.

Proof. Note that Rm(p) ≤ α(p)p for p = pres because, should it fail (for somem ∈
N), then α(p)−pRm(p) > 1 and limn→∞Rn(p) = 0 for all p near pres, contradicting
the definition of pres. Consequently, R+

X ≤ α(pres)
pres . The rest of the proof is left for

the reader. �

The question whether the limiting resistance RX := RX(pres) is well defined is
open and constitutes a stepping stone toward the existence of the extremal metric.

1.6. Resistance vs extremal length. Our next main point is the numerical
superiority of p-resistance over the combinatorial extremal p-length, as revealed below
by a brief look at the latter.

Write Γn for the collection of vertex sets of all paths connecting An to Bn in Gn
(treated as an undirected graph). The (discrete) extremal p-length of the family Γn is
defined as

(1.6) Λn(p) := max
m

(
minγ∈Γn

∑
v∈γ m(v)

)p∑
v∈Vn m(v)p

where the maximum is taken over all non-zero functions m : Vn → [0,∞), called
weights. For most purposes Λn(p) is interchangeable with Rn(p) because the two
are comparable: we show that there is C > 0, independent of n and p, such that



Conformal dimension via p-resistance: Sierpiński carpet 11

C−1Rn(p) ≤ Λn(p) ≤ CRn(p) (see Section 3). In particular, Λn(p) exhibit the same
type of critical behavior as Rn(p), with a critical jump from 0 to +∞ at

(1.7) pres = pel := inf{p > 1: lim sup
n→∞

Λn(p) = +∞}.

As already mentioned, the equality pel = dimAR(X) was shown in [26] based on its
variant in [13] where, roughly speaking, all paths with definite diameter are consid-
ered.

Compare the overall structures of (1.6) and (1.3). The max-min nature of (1.6)
makes it more complicated but some of this complexity can be removed. By scaling,
one restricts to m for which the minimal length lp(Γn, m) := minγ∈Γn

∑
v∈γ m(v) ≥ 1.

Such m, called admissible weights, form a convex set. The reciprocal of Λn(p), called
the p-modulus of Γn, is found by minimization over this set of the (p-th power of)
p-norm ‖m‖pp :=

∑
v∈Γn

m(v)p; specifically:

(1.8) Λn(p)−1 = inf{‖m‖pp : m : Vn → [0,∞) admissible}.

However, this convex minimization is inherently hampered by the huge number of
admissibility constraints: one for each γ ∈ Γn. In contrast, the convex minimization
for Rn(p) only has local divergence constraints at the vertices in Vn \ (An ∪ Bn) and
a single total flux constraint. The cardinality of Γn vastly exceeds that of Vn with
increasing n.

In [26], Malo computed numerical approximations to Λn(p) for n = 2, 3, 4, 5 and
several values of p (including 1.7 and 1.8). The long running time for the algorithm
limited the precision of Λn(p) to two digits for n = 4 and one significant digit for n =
5. As a result the 10−1 wide bracketing of pel, 1.7 ≤ pel ≤ 1.8, had to be done based on
the monotonicity properties of the numerical approximations to Λ2(p), Λ3(p), Λ4(p),
Λ5(p), which were taken as an indirect indication of whether lim supn→∞ Λn(p) is
finite or not. We were able to compute Rn(p) to 8 digit precision for n = 1, . . . , 8 at
the expense of less than 24 hours of a single core processing time (for each value of
p). This represents roughly 103 gain in speed and 106 gain in precision. We report
on those computations in Section 8 but outline their theoretical foundations below.

1.7. p-Ohm law and convex duality. Computation of the p-resistance
Rn(p) with explicit error bounds is readily done by adapting the Lagrange mul-
tipliers approach of the standard DC circuit theory. One introduces an auxiliary
function U : Vn → R, called a potential, such that U is constant on An and Bn, say
U|An = 0 and U|Bn = U0 for some (yet to be determined) U0 ∈ R. For every vertex
v ∈ Vn \ (An ∪ Bn), U(v) plays a role of the multiplier enforcing divJ (v) = 0. The
potential drop U0 is the Lagrange multiplier for the flux constraint J(J ) = J0. This
yields a Lagrangian (Section 2),

(1.9) L(J ,U) := U0J0 +
∑
e∈En

r(e)p
∗/p

p∗
|J (e)|p∗ −∇U(e)J (e)

where ∇U is the discrete gradient of U (i.e. ∇U(e) := U(e+) − U(e−) with e− and
e+ denoting the initial and terminal vertices of e). The associated Euler–Lagrange
equation is what we call p-Ohm law:

(1.10) ∇U(e) = ( r(e)J (e) )p
∗/p .

Above, and elsewhere, (t)p
∗/p is a shorthand for sign(t)|t|p∗/p. One seeks J : En → R

that is a flow from An to Bn and a potential U : Vn → R, including unknown U0 ∈
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R, that solve the system consisting of (1.10) coupled with the following boundary
conditions:

(1.11) J(J ) = J0 = 1, U|An = 0, U|Bn = U0.

For n ≤ 8, the number of unknowns reaches 107 yet no more than 11 steps of a
quasi-Newton method suffice to compute Rn(p) with 8 digit precision.

In convex optimization nomenclature, simultaneously solving for the primal vari-
able, J , and its dual variable, U , is called primal-dual approach (to the current power
minimization). Explicit error bounds come from convex duality (which also enters
other arguments). At the true optimum, we have

(1.12) Rn(p)1/p =
U0

P (Uopt)1/p
=
P (Jopt)

1/p∗

J0

with P (Uopt) = P (Jopt) = U0J0

where (overloading the notation) P (U) denotes the potential p-power defined as

(1.13) P (U) :=
∑
e∈En

|∇U(e)|p

r(e)
.

For approximate optimizers Japprox and Uapprox (really, any flow/potential pair sat-
isfying the boundary conditions), generally P (Uapprox) 6= P (Japprox), and the above
duality relation relaxes to

(1.14)
U0

P (Uapprox)1/p
≤ Rn(p)1/p ≤ P (Japprox)1/p∗

J0

.

The gap between the two extremes of (1.14) gives an explicit error bound on the
approximation to Rn(p)1/p.

Figure 1.5. Network G1 (red and pink) and its topological dual G∗1 (blue and green). Edge
resistance is 2−1 for red, 2p

∗/p for blue, and 1 for green and pink. (Midpoints of boundary edges of
G1 are vertices of G∗1 . Edge orientations are immaterial.)

1.8. Topological duality. The last conceptual piece underlying our techniques
(and required to state the conjecture about the extremal metric) is the discrete
analogue of the classical duality between the potential and the stream function in
two-dimensional fluid dynamics. We start with dualizing the graphs Gn = (Vn,Gn) to
obtain graphs G∗n = (V∗n, E∗n). The edges in E∗n and En are in bijective correspondence,
and the edge dual to e is denoted by e∗. In our renderings, see Figure 1.5, e∗ is
obtained by rotating e by 90◦ about its midpoint, with the additional proviso—
purely for figure making convenience—that e∗ is shortened to half-length by clipping
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at the midpoint if that point is on the boundary of Xn. (Section 2 discusses dualizing
in more detail, and the construction of G∗n is in Section 4.) The resistances of the
edges in E∗n are determined by the rule

(1.15) r(e)1/p r∗(e∗)1/p∗ = 1.

To avoid confusion with the convex duality (between J and U) we use the term
topological duality and employ ∗ superscript. Yet, be forewarned that ∗ in object∗

plays two distinct roles: it either signifies operation of taking the dual of object (e.g.,
G∗n and e∗ are duals of Gn and e) or just serves as a reminder that object∗ lives on
the other side of the duality (as in V∗n and r∗(·)). Which is the case should be clear
from the context.

Figure 1.6. Network G∗3 with superconducting islands (blue). (Edge resistances are r∗(e) =

2p
∗/p = 2p

∗−1 for blue and r∗(e) = 1 for red.)

Denoting by A∗n and B∗n the leftmost and rightmost vertices in V∗n (respectively),
we say that J ∗ is a flow from A∗n to B∗n iff divJ ∗(v) = 0 for every v ∈ V∗n that is not a
on the boundary of Xn, with the additional proviso that, for any bounded component
C of R2 \Xn,

(1.16) divJ ∗(C) :=
∑
v∈C

divJ ∗(v) = 0.

Intuitively, C shorts the terminals of the resistors in E∗n touching C; we think of such
C as superconducting islands. The p∗-power of a flow J ∗ is denoted by P ∗(J ∗), and
reads (cf. (1.2))

(1.17) P ∗(J ∗) :=
∑
e∈E∗n

r∗(e)p/p
∗ |J ∗(e)|p.

The p∗-resistance from A∗n to B∗n results from minimizing over all J ∗ as above:

(1.18) R∗n(p) := min
J ∗

P ∗(J ∗)p∗/p

J∗(J ∗)p∗
,
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where J∗(J ∗) is the flux of J ∗ from A∗n to B∗n, which can again be normalized to
J∗(J ∗) = J∗0 = 1. (Note that we chose to treat R∗n(p) as a function of p, not p∗.)
Just like we did for Gn, R∗n(p) can be found via Lagrange multipliers, which yield
p∗-Ohm law

(1.19) ∇U∗(e∗) = (r∗(e∗)J ∗(e∗))p/p
∗
.

Therefore, one seeks a flow J ∗ : E∗n → R from A∗n to B∗n and a potential U∗ : V∗n → R,
including the potential drop U∗0 ∈ R, solving the system consisting of (1.19) with
boundary conditions

(1.20) J∗(J ∗) = J∗0 = 1, U∗|A∗n = 0, U∗|B∗n = U∗0 , U∗|C = Const(C)

where C ranges over all bounded components of the complement ofXn (and Const(C)
is a C dependent constant).

The upshot of the topological duality (Proposition 2.5) is the following relation
between the resistances:

(1.21) Rn(p)1/pR∗n(p)1/p∗ = 1.

What is more, the optimal currents and potentials are linked via

(1.22) J ∗(e∗) = ∇U(e) and J (e) = ∇U∗(e∗).

1.9. Uniformization conjecture. We are ready to define the conjectural
uniformizing map behind Figure 1.2. The idea is to use the potential U (associated
to the top-to-bottom current J ) and its dual counterpart U∗ as coordinates. One
way to do this is to set

(1.23) Fn(v) := (U(v),U∗avg(v))

where U∗avg(v) is the average of U∗ over the vertices of G∗n that are near v ∈ Gn. (In
Figure 1.2, we used the vertices of G∗n that belong to the 3−n × 3−n square centered
at v.)

Linear interpolation between the vertices extends Fn to edges and yields a map
defined on the underlying subset |Gn| ⊂ R2 of the network Gn, equipped with the
Euclidean distance. Yn := Fn(|Gn|) is a connected subset of R2 (shown in Figure 1.2
for n = 5) equipped with the path metric induced by the Euclidean distance.

Conjecture 1.5. (Uniformization) The maps Fn : |Gn| → Yn converge in the
Gromov–Hausdorff sense to a quasi-symmetric homeomorphism F : X → Xslit where
Xslit is a planar slit Carpet (with the path metric induced by the Euclidean distance).
The carpet is a quasi-symmetric uniformization ofX in the sense that dimHD(Xslit) =
dimAR(X) = pres. Moreover, the limits R(pres) := limn→∞Rn(pres) and R∗(pres) :=
limn→∞R

∗
n(pres) exist and the underlying rectangle of Xslit has dimensions R(pres)×

R∗(pres). (Note: from (1.21), if one of the limits exists so does the other.)

An analogous conjecture can be stated in a continuous PDE setting by using
Fn : Xn → R2 where Fn(x, y) := (U(x, y),U∗(x, y)) is a pair of conjugate pres-
harmonic functions on the approximant Xn satisfying a continuous version of our
boundary conditions. Whichever setting one chooses, the key to the existence of
the optimal metric is likely to lie in a priori bounds on a suitable renormalization
operator. A construction of such an operator will be given elsewhere.
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2. Principles of DC circuits at exponent p > 1

2.1. Flows in resistor networks. A network of resistors, or simply a network,
is a finite directed graph G with non-negative weights over the edges. It is formalized
as a quintuple G = (V , E ,+,−, r). Here V and E are two finite sets, the vertex set
and the edge set. ± : E 7→ V are two maps, sending an edge e to vertices denoted
by e− and e+, respectively, and called the start and end vertices of e. r : E → (0,∞)
is a function assigning to an edge e weight r(e), of which we think as the resistance
of e. Incidentally, allowing r(e) to also take values 0 and ∞ is often convenient but
we do not do so at the outset to keep our formulations simpler. (In particular, this
will simplify assertions about uniqueness of current/potential.) Although we prefer
working with directed graphs, keep in mind that p-resistance will not depend on the
orientation of the edges and we shall freely modify G by reversing some edges (which
corresponds to an obvious modification of the quintuple). In particular, by a path we
mean a path in the underlying undirected graph. To formalize this, call a sequence
of edges γ = (e1, . . . , en) a strong path in G if e+

i = e−i+1 for i = 1, . . . , n− 1. Then a
sequence of edges is a path if it can be turned into a strong path upon reversing some
of the edges. There are two such strong paths, and picking one amounts to choosing
an orientation of the path. Later we shall require that G is planar (for the sake of
topological duality) but we do not make this assumption just yet.

We shall call functions J : E → R vectorfields on G and define the divergence of
J at v ∈ V as

divJ (v) :=
∑

e : e+=v

J (e) −
∑

e : e−=v

J (e).

We adopt the metaphor whereby J (e) is viewed as a flow rate of charges through e
(with J (e) > 0 when flowing from e− to e+). Thus divJ (v) is the excess of the inflow
over the outflow (at the vertex v). Note that the net excess is zero,

∑
v∈V divJ (v) = 0.

(Sums over the empty set are defaulted to zero.) Also, reversing the orientation of e
and replacing J (e) by −J (e) will be immaterial.

Given a subset O ⊂ V , a vectorfield J : E → R is a flow over O iff, for all
v ∈ O, divJ (v) = 0. This is to say that Kirchhoff’s first law is satisfied at all
v ∈ O, the charge is conserved. In our considerations the network G will have a
pair of distinguished disjoint non-empty subsets of vertices, A,B ⊂ V , to which we
refer as input and output sets, respectively. A flow in G from A to B is a flow over
O := V \ (A ∪ B), and the associated flux (from A to B) is

J(J ) := −
∑
v∈A

divJ (v) =
∑
v∈B

divJ (v).

Note that the equality is a consequence of vanishing of divergence on V \ (A∪B) and
that J(J ) > 0 intuitively means that the net flow is from A to B.

We call J a unit flow from A to B iff J(J ) = 1. To ensure that a flow with non-
zero flux exists we make a standing assumption that some vertex in A is connected
to some vertex of B, i.e., there is a path between the two. A triple (G,A,B) is what
we call a marked network. When there is no risk of confusion, the marking will be
tacitly assumed and a flow in G from A to B will be simply referred to as a flow.

2.2. p-Resistance and power minimization. From now on, unless stated
otherwise, p, p∗ ∈ (1,∞) with 1/p + 1/p∗ = 1. Keep in mind that p/p∗ = p− 1 and
p∗/p = p∗ − 1. The p-power of J : E → R is the P (J ) defined by (1.2).
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Proposition 2.1. (Flow optimization and p-Ohm law) For p > 1, given any
J0 6= 0, the following minimum over all flows from A to B with flux J(J ) = J0

(2.1) R(p) := min
J

P (J )p/p
∗

Jp
0

is attained at a unique flow J : E → R. This optimal flow J is uniquely characterized
by the fact that it satisfies the p-Ohm law (1.10) for some U : V → R and U0 ∈ R,
subject to boundary conditions (1.11). Moreover, R(p) does not depend on J0 and
is called the p-resistance of a marked network (G,A,B).

Proof. Clearly, we may well minimize P (J )/Jp∗

0 . The claimed independence on
J0 follows from invariance of this quotient under scaling of J . The existence and
uniqueness of the minimizing J is the result of P (·) being a strictly convex coercive
function on the finite dimensional space of all J : E → R, in which the flows from
A to B with the prescribed flux J0 constitute a non-empty affine subspace. (Strict
convexity follows from that of t 7→ |t|p∗ .)

If we introduce an auxiliary function U : V → R as stipulated by the proposi-
tion (i.e. U|A = 0 and U|B = U0 for some variable U0 ∈ R), then the Lagrangian
accounting for the zero divergence and the flux constraints is

L(J ,U) =
∑
e∈E

r(e)p
∗/p

p∗
|J (e)|p∗ −

∑
v 6∈A∪B

U(v)divJ (v)− U0 (J(J )− J0)

= U0J0 +
∑
e∈E

r(e)p
∗/p

p∗
|J (e)|p∗ −∇U(e)J (e)

where ∇U(e) := U(e+) − U(e−), and the second equality follows via summation by
parts: ∑

e∈E

∇U(e)J (e) =
∑
e∈E

(U(e+)− U(e−))J (e)

=
∑
v∈V

U(v)

( ∑
e : e+=v

J (e) −
∑

e : e−=v

J (e)

)
=
∑
v∈V

U(v)divJ (v)

=
∑
v 6∈A∪B

U(v)divJ (v) +
∑
v∈B

U0divJ (v)

=
∑
v 6∈A∪B

U(v)divJ (v) + U0J(J ).(2.2)

The p-Ohm law (1.10) is the Euler–Lagrange equation ∂L/∂J = 0. (The other
Euler–Lagrange equation ∂L/∂U = 0 amounts to the divergence and flux constraints
on J .)

Finally, if a flow J and a function U satisfy the boundary conditions (for some
J0, U0) as well as the p-Ohm law, then the Euler–Lagrange equations are satisfied.
This makes J a relative critical point of the power function. By strict convexity,
such a point is unique and hence coincides with the optimal flow. �

We call the unique optimal flow in the proposition a p-current with flux J0.
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Remark 2.2. From the proof, any flow J with J(J ) = 0 for which there is a
potential U (satisfying the boundary conditions for some U0) such that the p-Ohm
law holds is a minimizer and thus must be constant and equal to zero, J ≡ 0, by the
strict convexity argument.

2.3. Flow-potential (convex) duality. As mentioned in the introduction, the
p-resistance also arises from minimizing the power of functions U : V → R, called
potentials. We shall consider two such functions U and U ′ as equivalent iff U − U ′ is
locally constant, i.e., ∇(U − U ′)(e) = 0 for all e ∈ E . Thus the equivalence class of
U is encoded by its gradient ∇U : E → R. Such gradients are characterized among
all functions K : E → R by Kirchhoff’s second law stipulating vanishing of the work
along loops:

(2.3) workγ(K) = 0 (∀ γ closed loop in G).

Here a loop is an oriented path that starts and ends at the same vertex. The work
along an oriented path is workγ(K) :=

∑
iK(ei) where (e1, . . . , en) is the correspond-

ing strong path (along which we replace K by −K for each reversed edge).

Proposition 2.3. (Potential optimization and convex duality) Given any U0 6=
0, taking the p-power P (U) defined as in (1.13), the p-resistance R(p) defined by
(2.1) coincides with the maximum of U

p
0

P (U)
taken over over all U : V → R satisfying

U|A = 0 and U|B = U0,

(2.4) R(p) = max
U

Up
0

P (U)
.

The maximum is attained at U that is unique (up to a locally constant function) and
satisfies the p-Ohm law (1.10) for some flow J and J0 ∈ R, subject to boundary
conditions (1.11). Moreover, if U0, J0 6= 0, for any function U : V → R and a flow
J : E → R satisfying boundary conditions (1.11), we have the convex duality gap
bounds:

(2.5)
U0

P (U)1/p
≤ R(p)1/p ≤ P (J )1/p∗

J0

.

Proof. As before, the function K →
∑

e∈E
|K(e)|p
r(e)

is strictly convex and coercive
on the space of all K : E → R. This space has a non-empty affine subspace consisting
of all K that are gradients of U obeying the boundary conditions and that satisfy
Kirchhoff’s second law. Therefore P (U) is minimized by some U that is unique up
to the equivalence.

We have to produce a flow J satisfying the p-Ohm law. The first order condition
on the optimal U is d

dτ
|τ=0P (U+τδU) = 0, with the arbitrary perturbation δU : V → R

satisfying δU|A = δU|B = 0. It yields∑
e∈E

p
(∇U(e))p−1

r(e)
∇δU(e) = p

∑
v∈V

div
(

(∇U)p−1

r

)
(v) δU(v) = 0,

where we did summation by parts as in (2.2). (Recall that (t)p−1 stands for sign(t)|t|p−1

= d
dt
|t|p.) As a result, any optimal U satisfies over V \ (A∪B) the discrete p-Laplace

equation:

(2.6) div
(

(∇U)p−1

r

)
= 0.
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Such U are called p-harmonic on V \ (A ∪ B). Now, use the p-Ohm law to define a
vectorfield J : E → R associated to U , J (e) := (∇U(e))p/p

∗

r(e)
. This J is a flow due to

(2.6). J is clearly non-zero if U0 6= 0 and there is a path from A to B, as we assumed.
Then also J0 6= 0 by Remark 2.2.

To show the duality gap, for any U : V → R and a flow J : E → R (from A to
B) satisfying boundary conditions (1.11) with the U0 6= 0 and J0 6= 0, equality (2.2)
and Hölder inequality yield

(2.7) U0J0 =
∑
e

∇U(e)J (e) ≤ P (J )1/p∗P (U)1/p.

This gives the bounds (2.5). In particular, maxU
U0

P (U)1/p
≤ R(p)1/p ≤ minJ

P (J )1/p
∗

J0
.

To get (2.4), note that these are in fact equalities because Hölder inequality becomes
an equality if we let U be optimal and J be the associated flow. (Also, by further
scaling of J , we can adjust its flux to any desired J0 6= 0.) �

When J and U are related by the p-Ohm equation, we call U a potential of J
and say that J is induced by U . If J is additionally a flow from A to B and U satsfies
U|A = 0 and U|B = U0 (for some U0 6= 0) then we call (J ,U) a current-potential pair
for the marked network (G,A, B). Note that then J is a p-current (is optimal) and
U is p-harmonic.

Corollary 2.4. (Joule’s law) If J and U are a current-potential pair then
P (J ) = P (U), and the common value P := P (J ) = P (U) satisfies

(2.8) P = J0U0 =

(
U0

R(p)1/p

)p

=
(
R(p)1/pJ0

)p∗
.

Proof. That P (J ) = P (U) follows from the p-Ohm law and the definitions of
the powers. Because we have equality in (2.7), U0J0 = P 1/pP 1/p∗ = P . The other
equalities follow from the two characterizations of the resistance, R(p)1/p = U0/P

1/p

and R(p)1/p = P 1/p∗/J0. �

2.4. Simple network modifications. When computing p-resistance some
degree of simplification can be achieved by modifying a marked network so that the
resistance is unchanged. We shall refer to such modified networks as equivalent. Below
we list a few useful equivalences, with an indication of how to transform the currents
and their potentials between the two networks. Sometimes the transformation can
be already done at the level of arbitrary flows. Note that, for the resistance to be
unaffected, it suffices that the boundary conditions and the powers (of the flow and
the potential) are preserved under the transformation.

One trivial move is reversing a single edge e. Denoting the reversed edge by enew,
the correspondence of currents (even vectorfields) is given by Jnew(enew) = −J (e)
(with Jnew = J otherwise). The potential U is to be unchanged.

An even simpler move is removal of zero current edges, the edges where the current
is a priori zero (e.g., by symmetry considerations). This is why including in Gn the
horizontal edges along the top and bottom is immaterial for the top-to-bottom current
(cf. Figure 1.3).

If there is a vertex v that has only one incoming edge e1 and one outgoing edge
e2 (so e+

1 = v = e−2 ) then one can remove v and join e1 and e2, that is replace them
by a single edge e12 from v1 := e−1 to v2 := e+

2 with the resistance given by the serial
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law:

(2.9) r(e12)p
∗/p = r(e1)p

∗/p + r(e2)p
∗/p.

The power preserving current correspondence is then given by J (e12) = J (e1) =
J (e2) (the latter equality dictated by Kirchhoff’s first law). As to the potential U ,
it remains unchanged after the joining, apart from forgetting the value at v. The
opposite of joining amounts to dividing an edge e into e1 and e2 meeting at a new
vertex v. The current through ei is obvious, and the new potential value U(v) is
uniquely determined by U(e−) and U(e+) and the condition ∇U(e1)/r(e1)p

∗−1 =
∇U(e2)/r(e2)p

∗−1, which is dictated by the equality of currents and the p-Ohm law.

Figure 2.7. A network of unit resistors and its modifications by: removing a zero current edge
at the top and splitting into symmetric halves, joining serial edges and merging symmetric vertices,
merging parallel edges and one more serial joining. Edge resistances are in blue. The resistance
from A to B, computed via parallel and serial laws, is R = 1

2 ((1 + 21−p)1−p
∗

+ (1 + 2p
∗−1))p−1.

Presented with two parallel edges, i.e., e1 and e2 connecting the same vertices,
v1 := e−i and v2 := e+

i (i = 1, 2), e1 and e2 can be merged, that is replaced by a single
edge e12 (with e−12 = v1 and e+

12 = v2) whose resistance is given by the parallel law:

(2.10)
1

r(e12)
=

1

r(e1)
+

1

r(e2)
.

If we keep the potential unchanged, this law guarantees that its power is preserved.
The power preserving current correspondence is dictated via the p-Ohm law by the
potential drop U := U(v2) − U(v1), specifically, J (e12)p

∗/p = U
r(e12)

= U
r(e1)

+ U
r(e2)

=

(J (e1))p
∗/p + (J (e2))p

∗/p. Note that the correspondence of currents goes both ways:
given J (e12), there is a unique pair (J (e1),J (e2)) that satisfies the above equation
and J (e1) + J (e2) = J (e12). (This used p > 1.) In particular, there is an obvious
way to reverse merging: any edge can be also split into two parallel edges (with any
resistances satisfying (2.10)).

In some circumstances, particularly in presence of symmetry, one can also merge
and split vertices (while judiciously apportioning the edges to respect the Kirchhoff’s
first law). For instance, the first move in Figure 2.7 splits the three vertices on the
axis of symmetry, and the second move merges three pairs of symmetric vertices.
We shall not formalize this operation but only mention that we used it to confine
numerical computations to the lower-left quarter of Gn, thus lowering the memory
requirement fourfold.
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Figure 2.7 gives an example of a reduction of a marked network to a single resistor
by using a sequence of basic modifications. For more complex networks, only partial
reduction can be achieved and one cannot escape numerical optimization to find the
resistance.

2.5. Topological duality of planar circuits. Topological duality of networks
should be thought of as the classical duality of planar graphs with an additional
stipulation about resistances. We formalize it by defining what it means for two
marked networks to be dual in a way that makes it easy to see the duality between
Gn and G∗n (the two networks we use to approximate the Sierpiński carpet). To make
G∗n less ad hoc, we outline the construction of the dual for a restricted class of planar
networks that includes Gn.

First, recall that a current-potential pair, with the potential up to equivalence
(i.e. addition of a locally constant function), is encoded by a pair of vector-fields
(J ,K) where J and K = ∇U satisfy Kirchhoff’s first and second laws, respectively,
and are linked by the p-Ohm law (1.10), (K)p = (rJ )p

∗ . The boundary conditions
(1.11) amount to additionally requiring that the flux of J is J0 and the work of K
along any path from any vertex of A to any vertex of B is equal to the fixed potential
drop U0. For brevity, let us refer to this second requirement as: the work from A to
B is U0.

Given two marked networks (G,A,B) and (G∗,A∗,B∗), we call them topologically
dual iff the following conditions hold. There is a bijection E → E∗ between the edge
sets such that the resistances of e ∈ E and its counterpart e∗ ∈ E∗ satisfy (1.15) and
the induced correspondence between vectorfields on G and G∗ exchanges Kirchhoff’s
laws and the boundary conditions in a way codified below.

For any J : E → R and K∗ : E∗ → R such that J (e) = K∗(e∗) for all e ∈ E , we
require that: J satisfies Kirchhoff’s first law on V \ (A ∪ B) (i.e. is a flow in G) iff
K∗ satisfies Kirchhoff’s second law on G∗ (i.e. is a gradient of a potential on G∗, cf.
(2.3)). Likewise, we require that K∗ satisfies Kirchhoff’s first law on V∗ \ (A∗ ∪ B∗)
iff J satisfies Kirchhoff’s second law on G. Moreover, we demand that the flux of J
from A to B equals the work of K∗ from A∗ to B∗, and that the work of J from A
to B equals the flux of K∗ from A∗ to B∗.

Proposition 2.5. (Topological duality) Suppose that (G,A,B) and (G∗,A∗,B∗)
are topologically dual marked networks. Current-potential pairs (J ,U) for (G,A,B)
and current-potential pairs (J ∗,U∗) for (G∗,A∗,B∗) are in bijective correspondence
given by the following relations:

J ∗(e∗) = ∇U(e) and J (e) = ∇U∗(e∗),(2.11)
J∗0 = U0 and J0 = U∗0 .(2.12)

Moreover, all four powers are equal: P ∗(J ∗) = P (U) = P (J ) = P ∗(U∗), and the
p-resistance from A to B and the p∗-resistance from A∗ to B∗ satisfy

(2.13) R(p)1/pR∗(p)1/p∗ = 1.

Proof. Suppose that (J ,U) is the current-potential pair for (G,A,B) with drop
U0 and flux J0. Then the vectorfield K∗ : E∗ → R given by K∗(e∗) := J (e) sats-
fies Kirchhoff’s second law (because J satisfies the first law) and thus is of the
form K∗ = ∇U∗ for some U∗ : V∗ → R with U∗|A∗ = 0. Likewise, the vectorfield
J ∗ : E∗ → R given by J ∗(e∗) := ∇U(e) satisfies Kirchhoff’s first law so is a flow.
The formulas (2.11) are satisfied by construction and the p-Ohm law (1.10) translates
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to the p∗-Ohm law (1.19), making (J ∗,U∗) a current-potential pair. Moreover, by
the flux/work stipulation in the definition of topological duality, U∗ is constant equal
to J0 on B∗, U∗|B∗ = J0; so U∗0 = J0. Using the stipulation again, the flux J∗0 of J ∗
from A∗ to B∗ equals U0; so (2.12) holds.

To see the bijectivity, symmetric arguments can be made starting with a current-
potential pair (J ∗,U∗) for (G∗,A∗,B∗).

Finally, the equality of all four powers is immediate from their definitions and
(1.15). (2.13) then follows from the definitions of the resistances in terms of currents
and potentials (namely, (2.1) and (2.4) and their starred counterparts). �

To shed light on how the dual network of a given marked network (G,A,B) is
constructed, let us describe the process under the assumption that G is connected
and planar and each of A and B is a single vertex, or can be coalesced into a single
vertex while preserving planarity of the network. Such are all the marked networks
we use to approximate the carpet, including (Gn,An,Bn) (as in Figures 1.3 and 2.8).

Embed G into the closed unit disk D := {(x, y) : x2 + y2 ≤ 1} so that only the
two input/output vertices, A and B, sit on the boundary circle and the remaining
vertices in V sit in the interior of D. To get the graph of G∗, first place a single
vertex in each connected component of what remains of D after removing the edges.
Further, place an edge e∗ between the vertices of any two components abutting along
an edge e ∈ E . The two input/output vertices A∗ and B∗ of thus constructed G∗ are
the vertices of the two components that contain arcs of the boundary circle. (The
orientation of the circle determines which is which.)

Figure 2.8. Two (equivalent) pairs, (G,A,B) and (G∗,A∗,B∗), of topologically dual marked
networks. (The one on the left is embedded in a closed disk bounded by the green circle.) The edge
resistance is 2−1 for thick black and 2p

∗/p for thick red; all other resistances are unit.

Example. Figure 2.8 depicts two pairs of dual marked networks (G,A,B) and
(G∗,A∗,B∗). The left pair is obtained from the right one by merging of the vertices
of the input/output sets. Comparing with Figure 1.5, note that (G,A,B) is also
equivalent to the level n = 1 standard approximation (G1,A1,B1) to the carpet.
Likewise, splitting the center vertex of the G∗ on the right into four new vertices
yields G∗1 . The only caveat is that, to guarantee a natural correspondence between
flows over V∗ \ (A∗ ∪ B∗) and flows over V∗1 \ (A∗1 ∪ B∗1) we have to require that
the latter have vanishing flux through the set of four vertices on the boundary of
the central square, the superconducting island. With this additional stipulation the
duality relations stated in Proposition 2.5 hold for (G1,A1,B1) and (G∗1 ,A∗1,B∗1).
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One can see that, for all n ≥ 1, the marked networks (Gn,An,Bn) and (G∗n,A∗n,B∗n),
discussed in the introduction, are topologically dual provided one modifies G∗n by co-
alescing the vertices on the boundary of every removed square into one vertex, or
(equivalently) imposes the superconducting boundary conditions, as we did in (1.20).
Formal proofs of duality of (Gn,An,Bn) and (G∗n,A∗n,B∗n) are done by induction on
n ∈ N, which is straightforward by the recursive constructions of the networks via
substitutions Φstd and Φ defined in Sections 6 and 4, respectively. We leave the
details as an exercise.

3. Resistance/length estimate (Th. 1.2)

As already mentioned, Theorem 1.2 depends on the equality pel = dimAR(X),
shown in [26]. In view of the definitions of pel and pres (see (1.7) and (1.4)), it
suffices to show that Rn(p) and Λn(p) are comparable up to a multiplicative constant
independent of n and p. This is the content of the following result, which applies to
any marked networks.

Theorem 3.1. Suppose that a sequence of marked networks (Gn,An,Bn)n∈N
satisfies uniform bounds on resistances and maximum degrees: 0 < rmin ≤ r(e) ≤
rmax for all e ∈ En and maxv∈Vn #{e ∈ En : v ∈ ∂e} ≤ D for all n ∈ N. (Here
∂e := {e−, e+} are the ends of e.) Then, for p > 1,

(3.1)
1

2Dp−1rmax

Rn(p) ≤ Λn(p) ≤ 2p−1Dp2−p+1

rmin

Rn(p).

In particular, the critical exponents for the p-resistance of (Gn,An,Bn) and the
p-extremal length of the paths connecting An to Bn coincide, i.e., pel = pres.

To make a connection with [2], of which we became aware only while revising
the manuscript, Th. 4.2 there implies that the p-resistance coincides with the edge-
weighted version of the p-extremal length. Thus Theorem 3.1 can be viewed as an
assertion about essential equivalence of the latter with the vertex-weighted version
of the p-extremal length we use.

For the standard approximations to the carpet, we have rmin = 1/2, rmax = 1,
and D = 4. Other sequences of networks we use have similar uniform bounds.

The rest of this section is devoted to the proof of the theorem. Since pel = pres is
immediate from inequalities (3.1), we only have to attend to the latter. Recall that
the family of all vertex sets of paths connecting An to Bn was denoted by Γn. Its
p-extremal length is (cf. (1.6) and (1.8))

(3.2) Λn(p) = max
m

lp(Γn, m)p

‖m‖pp

where lp(Γn, m) := minγ∈Γn

∑
v∈γ m(v) is called the m-length of Γn.

Proof of the left inequality in (3.1). Consider any potential U : Vn → R satisfying
the boundary conditions U|An = 0 and U|Bn = U0 with U0 > 0. Define a weight
m : Vn → [0,∞) by setting

(3.3) m(v) :=
∑

e∈En : v∈∂e

|∇U(e)|.
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First note that lp(Γn, m) ≥ U0 because, if γ ∈ Γn is a path with vertices (v0, . . . , vl)
and edges (e1, . . . , el) (so that ∂ei = {vi−1, vi}), then

(3.4)
∑
v∈γ

m(v) ≥
l∑

i=1

|∇U(ei)| ≥ U(vl)− U(v0) = U0.

Second, by using the convexity of t 7→ tp, we estimate

∑
v∈Vn

m(v)p =
∑
v∈Vn

( ∑
e∈En : v∈∂e

|∇U(e)|

)p

≤
∑
v∈Vn

Dp−1

( ∑
e∈En : v∈∂e

|∇U(e)|p
)

= 2Dp−1
∑
e∈En

|∇U(e)|p ≤ 2Dp−1rmax P (U)(3.5)

where the factor 2 is due to every edge having two ends. Inequalities (3.4) and (3.5)
yield

(3.6) Λn(p) = max
m

lp(Γn, m)p

‖m‖pp
≥
(
2Dp−1rmax

)−1 Up
0

P (U)
.

Via the potential based characterization of Rn(p) given by (2.4), maximizing over U
yields the desired Λn(p) ≥ (2Dp−1rmax)−1Rn(p). �

We now borrow from [26] the concept of extremal p-co-length, coming from gener-
alizing the form of topological max-flow/min-cut duality introduced in [29] for p = 2.
Thus, alongside the family of paths Γn, we consider the family Γ∗n of all subsets
γ∗ ⊂ Vn that separate An from Bn, i.e., γ∗ ∈ Γ∗n iff any path connecting An to Bn
contains a vertex in γ∗. Note that γ∗ need not be a path. The extremal p-co-length
of Γ∗n is

(3.7) Λ∗n(p) := max
m

l∗p(Γ
∗
n, m)p

∗

‖m‖pp

where m : Vn → [0,∞) is a weight and l∗p(Γ∗n, m) := minγ∗∈Γ∗n

∑
v∈γ∗ m(v)p/p

∗ is called
the m-co-length of Γ∗n.

By an argument based on Hölder inequality (Theorem 2.2.3 in [26]), the following
duality inequality holds for any m1, m2 : Vn → [0,∞):

(3.8) lp(Γn, m1) l∗p(Γ
∗
n, m2) ≤ ‖m1‖p‖m2‖p/p

∗

p .

Maximizing (once over m1 and once over m2), further yields

Λn(p)1/p ≤
( ‖m‖pp
l∗p(Γ

∗
n, m)p∗

)1/p∗

,(3.9)

Λ∗n(p)1/p∗ ≤
( ‖m‖pp
lp(Γn, m)p

)1/p

,(3.10)

valid for for any non-zero m : Vn → [0,∞). Clearly, the inequalities turn to equalities
exactly when m realizes the max in the definitions of Λn(p) and Λ∗n(p), respectively.
In particular, we have the duality relation (paralleling (2.13))

(3.11) Λn(p)1/p Λ∗n(p)1/p∗ = 1.
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Proof of the right inequality in (3.1). Consider a flow J from An to Bn with flux
J(J ) = J0 > 0. Define m : Vn → [0,∞) by

(3.12) m(v) :=
∑

e∈En : v∈∂e

|J (e)|p∗/p.

We first claim that

(3.13) l∗p(Γ
∗
n, m) ≥ 1

D
J0.

Fix γ∗ ∈ Γ∗n and consider vertices reachable from An without crossing γ∗:

VA := {v ∈ Vn : ∃ a path α with vertices in Vn \ γ∗ joining An to v}.
Clearly, An ⊂ VA, and Bn ∩ VA = ∅ because γ∗ separates. Thus

∑
v∈VA divJ (v) =∑

v∈An divJ (v) = −J0. At the same time, by cancelling the contributions from edges
with both ends in VA, we get

J0 =
∑
v∈VA

−divJ (v) =
∑

e : e−∈VA

J (e) −
∑

e: e+∈VA

J (e)

=
∑

e: e−∈VA, e+ 6∈VA

J (e) −
∑

e : e+∈VA, e− 6∈VA

J (e)

=
∑

e: e−∈VA, e+∈γ∗
J (e) −

∑
e : e+∈VA, e−∈γ∗

J (e)

≤
∑

e : ∂e∩γ∗ 6=∅

|J (e)|,(3.14)

where we also used that if e− ∈ VA and e+ 6∈ VA then e+ ∈ γ∗ (or else we could
connect from An to e+, putting e+ in VA). The above inequality allows one to
estimate: ∑

v∈γ∗
m(v)p/p

∗
=
∑
v∈γ∗

( ∑
e : v∈∂e

|J (e)|p∗/p
)p/p∗

≥
∑
v∈γ∗

1

D

∑
e : v∈∂e

|J (e)|

=
1

D

∑
e : ∂e∩γ∗ 6=∅

|J (e)| ≥ 1

D
J0(3.15)

where we used (t1 + . . . + tD)r ≥ 1
D

(tr1 + . . . + trD) for any t1, . . . , tD, r > 0. The
claimed inequality (3.13) follows by taking infimum over γ∗ ∈ Γ∗n.

Second, we majorize the p-norm of m (in a way similar to (3.5)):∑
v∈Vn

m(v)p =
∑
v

( ∑
e : v∈∂e

|J (e)|p∗/p
)p

≤
∑
v

Dp−1
∑

e : v∈∂e

(
|J (e)|p∗/p

)p
≤ Dp−1

∑
v

∑
e : v∈∂e

|J (e)|p∗ ≤ 2Dp−1
∑
e

|J (e)|p∗ = 2Dp−1r
−p∗/p
min P (J ).(3.16)

Thus, via (3.11), (3.13) and (3.16) yield

Λn(p) = Λ∗n(p)−p/p
∗

= inf
m

( ‖m‖pp
l∗p(Γ

∗
n, m)p∗

)p/p∗

≤

(
2Dp−1r

−p∗/p
min P (J )

( 1
D
J0)p∗

)p/p∗

=
2p−1Dp2−p+1

rmin

P (J )p/p
∗

Jp
0

.(3.17)
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Minimizing over all J yields the desired Λn(p) ≤ 2p−1Dp2−p+1

rmin
Rn(p). �

4. Sup-multiplicativity (Th. 1.3)

Our goal is to show the left inequality in Theorem 1.3:

(4.1) Rn+m(p) ≥ α(p)−pRn(p)Rm(p) (∀ m,n ∈ N)

where α(p) > 0 is explicitly identified. By topological duality relation (1.21) (shown
in Proposition 2.5), (4.1) is equivalent to

(4.2) R∗n+m(p) ≤ α(p)p
∗
R∗n(p)R∗m(p).

Figure 4.9. Tile substitution rule Φ: Tini (left) 7→ Φ(Tini) (right).

Figure 4.10. G∗3 is carried by the tiling T3 = Φ3(Tini) = Φ2(T1), a union of eight 2-supertiles
(one for each tile of T1). Each 2-supertile is carrying an imprinted copy of G∗2 .
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R∗n(p) is the resistance of the marked network (G∗n,A∗n,B∗n) dual to the standard
network (Gn,An,Bn). The dual networks were introduced in subsection 1.8 but here
we give their precise recursive definition. To make the recursion as simple as possible
we will actually produce slightly different networks, still denoted by G∗n, that are
equivalent (in the sense of subsection 2.4).

We generate G∗n by a simple tile substitution rule Φ whereby an initial unit-square
proto-tile Tini carrying a cross-wire made of four unit resistors is replaced by its 8
copies, translated and scaled down by 1

3
, as depicted in Figure 4.9. (We leave the

formal definition of Φ to a diligent reader.) Applying the rule Φ tile-by-tile (with
suitable translations and scaling) allows one to iterate and obtain a sequence of
tilings, Φ(Tini),Φ

2(Tini) := Φ(Φ(Tini)), . . ., where the n-th term Tn := Φn(Tini) is a
collection of 8n essentially disjoint square tiles covering the nth approximant Xn.
The individual tiles in Tn are 3−n× 3−n-squares, but (depending on taste) one could
well keep them at constant 1× 1 size and scale Xn by 3n instead.
G∗n is defined as the union of the resistors carried by the tiles of Tn. (The in-

put/output sets A∗n and B∗n are still made of the leftmost and rightmost vertices,
respectively.) Figure 4.10 depicts thus produced G∗n for n = 3. By discarding the
zero-current edges with ends along the upper and lower boundaries and by joining
pairs of serial resistors, this network is equivalent to the network G∗n discussed in the
introduction (Figure 1.6), justifying the overloading of the notation. Crucially for
our future considerations, because Φn+m(Tini) = Φm(Tn), the tiling Tn+m is a union
of 8n copies of Tm, each of the form T ′ = Φm(T ) where T is a tile of Tn. We refer to
such T ′ as m-super-tiles. (2-supertiles are colored in Figure 4.10.)

To start the proof of (4.2), fix n,m ∈ N. Let J be the current in (G∗n,A∗n,B∗n)
with flux J0 > 0. The crux is the following lemma, where J ′|T ′ stands for the
restriction of J ′ to the resistors associated to T ′ (and J |T is in the same vain). We
also set R∗m := R∗m(p) to streamline formulas.

Lemma 4.1. There is a unit flux flow J ′ on G∗n+m such that, for every m-
supertile T ′ = Φm(T ),

(4.3) P ∗(J ′|T ′) ≤ α(p)pR∗m
p/p∗P ∗(J |T )

with explicit α(p) > 0, independent of m,n and continuous in p > 1.

Assuming the lemma, one readily estimates the total power by summing over all
m-supertiles:

(4.4) P ∗(J ′) =
∑
T∈Tn

P ∗(J ′|T ′) ≤
∑
T∈Tn

α(p)pR∗m
p/p∗P ∗(J |T ) = α(p)pR∗m

p/p∗P ∗(J ).

This gives the desired inequality (4.2) as follows:

(4.5) R∗m+n ≤
P ∗(J ′)p∗/p

Jp∗

0

≤ α(p)p
∗
R∗m

P ∗(J )p
∗/p

Jp∗

0

= α(p)p
∗
R∗mR

∗
n.

It remains to prove Lemma 4.1, including identification of α(p).

Proof of Lemma 4.1. In what follows, by a flow in G∗m we mean any vectorfield
on G∗m, denoted for a moment by J◦ : E∗m → R, that has vanishing divergence at
all the vertices not on the boundary of Xm and satisfies boundary conditions (1.16)
associated to the super-conducting islands. Note that the variant of G∗m we are
working with has resistors terminating on all four sides of Xm. We allow J◦ to have
non-zero fluxes through each side: the left, bottom, right, and top side; and we record
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those fluxes (in that order) as a vector

f(J◦) = (x1, x2, x3, x4) ∈ R4,

called the flux vector of J◦. (Positive flux indicates inflow.)
Still keeping m ∈ N fixed, let J1010 be the unit current from left to right in G∗m, so

f(J1010) = (1, 0,−1, 0). By reflecting the portion of G∗m under the diagonal (y = x) in
its symmetry line (the anti-diagonal y = 1−x), J1010 yields a unit flux flow J1100 from
left to bottom in G∗m, i.e., f(J1100) = (1,−1, 0, 0). (Figure 5.11 depicts the flows for
m = 1.) Up to the flow reversal operation, there are four more counterparts of J1010

and J1100 under the symmetry group of the carpet: J0101, J0110, J0011, and J1001,
with flux vectors (0, 1, 0,−1), (0, 1,−1, 0), (0, 0, 1,−1), and (1, 0, 0,−1), respectively.
We shall refer to the flows in the set

(4.6) J = {J1010,J1100,J0101,J0110,J0011,J1001}

as pure replacement flows. By construction, they all have the same power

(4.7) P ∗m := P ∗(J◦) = R∗m
p/p∗ (J◦ ∈ J).

A simple but crucial property that will enable assembly of replacement flows into
a well defined flow J ′ on G∗n+m is that different J◦ ∈ J match across their sides
(with non-zero flux). Precisely, if we orient such a side and label the 3m vertices
sitting on it by 1, . . . , 3m (in their natural order), then there are numbers J∂(k)
(k = 1, . . . , 3m)—independent of J◦ ∈ J—so that, the current through vertex k is
equal to ±J∂(k). (Due to symmetry, the orientation choice of the side is immaterial,
as J∂(3m − k) = J∂(k).)

Capitalizing on the fact that the network G∗n+m is a union of 8n copies of G∗m,
each associated to an m-super-tile, the plan is to construct the unit flux flow J ′ in
G∗n+m by replacing the flow J |T in the copy of G∗0 associated to tile T (a cross-wire of
four resistors) with a new flow J ′T ′ in the copy of G∗m associated to the m-super-tile
T ′ = Φm(T ).

To describe how the replacement flow J ′T ′ is constructed, fix a tile T and let
x = (x1, x2, x3, x4) be the flux vector of J |T . (The xi are flow rates in the cross-wire,
so the dot product x · 1 = 0 where 1 := (1, 1, 1, 1), and the power dissipated in T is
‖x‖pp :=

∑
i |xi|p.) We are seeking the replacement flow J ′T ′ as a linear combination

of the pure replacement flows:

(4.8) J ′T ′ =
∑
J◦∈J

t(J◦)J◦

where the six parameters (t(J◦))J◦∈J ∈ RJ are chosen so that the flux vectors of J ′T ′

and J |T coincide:

(4.9) x =
∑
J◦∈J

t(J◦)f(J◦).

For a moment, we assume that such a choice is always possible—as will be evident
after inspecting the matrix (4.14) ahead. Observe that the above condition (4.9)
ensures that the replacement flows J ′T ′ (constructed as above for all supertiles T ′)
glue into a single well defined flow J ′ on G∗n+m. Indeed, if T and T̃ are adjacent
tiles of Tn then they have the same flux of J—equal to one of the xi associated to
tile T—through their common side. Therefore, at each individual vertex of the side
common to the m-supertiles T ′ and T̃ ′, the two replacement flows coincide on the
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two resistors meeting at the vertex—specifically, (4.9) implies that, at the kth vertex
(when viewed from T ′), the flow equals xiJ∂(k).

It remains to select the mixing parameters t := (t(J◦))J◦∈J in (4.8), which, of
course, is best done by minimizing the ratio of powers between J |T and its replace-
ment J ′|T ′ :
(4.10)

ρ∗(x) := min

{
P ∗
(∑

J◦∈J t(J◦)J◦
)∑4

i=1 |xi|p
:
∑
J◦∈J

t(J◦)f(J◦) = x, t = (t(J◦)) ∈ RJ

}
.

With this choice

(4.11) P ∗(J ′|T ′) ≤ ρ∗(x)P ∗(J |T ),

and, to conclude the proof, it remains to bound the power ratio ρ∗(x) uniformly in
m and x. Specifically, to obtain (4.3), we have to show the inequality

(4.12) ρ∗(x)1/p ≤ α(p)R∗m
1/p∗ = α(p)P ∗m

1/p (∀x ∈ R4 : x · 1 = 0).

This is easiest—next section will make sharper estimates—by invoking Minkowski’s
ineqaulity for the p-norm (while remembering (4.7)):

ρ∗(x)1/p ≤ max
x

min
t

∑
J◦∈J |t(J◦)|P

∗(J◦)1/p

(
∑4

i=1 |xi|p)1/p

=

(
max

x
min
t

∑
J◦∈J |t(J◦)|

(
∑4

i=1 |xi|p)1/p

)
P ∗m

1/p.

(4.13)

To secure (4.12), α(p) can be taken to be the max-min in the parentheses above. To
clearly express α(p) and stress that it no longer involves the flows, set D := #J = 6,
rename the parameters t = (t(J◦))J◦∈Ĵ and flux vectors f = (f(J◦))J◦∈Ĵ as t =

(tj)
D
j=1 and f = (fj)

D
j=1, respectively. Hence, treated as a matrix with columns fj, f

becomes

(4.14) f =


1 1 0 0 0 1
0 −1 1 1 0 0
−1 0 0 −1 1 0
0 0 −1 0 −1 −1

 .

Then our α(p) is given by a constrained max-min problem in R4 ×RD:

(4.15) α(p) := max
x:x·1=0

min
t:

∑
j tjfj=x

∑D
j=1 |tj|(∑4

i=1 |xi|p
)1/p

= max
x: ‖x‖p=1, x·1=0

min
t:

∑
j tjfj=x

D∑
j=1

|tj|.

We note that α(p) is a finite real number because the equation
∑

j tjfj = x can
always be solved given x with x · 1 = 0, as can be seen by inspecting the matrix f .
Clearly, α(p) is independent of m and positive. That it depends continuously on p

is a routine exercise. �

5. Upper bounds (Th. 1.1)

As explained in subsection 1.5, upper bounds for dimAR(X) (including the one
given in Theorem 1.1) can be obtained by computing the constant α(p) in the supmul-
tiplicative estimate (4.1) but, for better bounds, one can directly estimate resistance
ratios and show supnR

∗
n+m(p)/R∗n(p) < 1 for a specific m ∈ N. This task, which we

undertake in this section, will boil down to estimating the power ratio between the
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current J in G∗n and its replacement flow J ′ in G∗n+m, as constructed in the proof of
Lemma 4.1.

First, reaching back to (4.10), denote by ρ∗(rep)
m (p) the maximal power ratio under

the replacement of a current in G∗0 by a current in G∗m (with the same side fluxes),

(5.1) ρ∗(rep)
m (p) := max

x∈R4 : x·1=0
ρ∗(x).

Proposition 5.1. For m ∈ N, dimAR(X) ≤ p if

(5.2) ρ∗(rep)
m (p) < 1.

Proof. Summing over all tiles (as in (4.4)), inequality (4.11) gives

(5.3) P ∗(J ′) ≤ ρ∗(rep)
m (p)P ∗(J ).

Because J is a current in G∗n and J ′ is a flow in G∗n+m (with the same flux), this
yields the following inequality between the resistances

(5.4) R∗n+m(p) ≤ ρ∗(rep)
m (p)p

∗/pR∗n(p) (n ∈ N).

Hence, ρ∗(rep)
m (p) < 1 guarantees lim infn→∞R

∗
n(p) = 0. By duality, lim supn→∞Rn(p)

=∞, and the bound follows via Theorem 1.2. �

Continuing preliminary remarks, if the replacement flow is one of the pure re-
placement flows in J (cf. (4.6)), e.g., when x = (1, 0,−1, 0), the associated power ratio
ρ∗((1, 0,−1, 0)) is what we call (dual) pure power ratio, denoted by ρ∗m(p). Clearly,
ρ∗m(p) ≤ ρ

∗(rep)
m (p). Additionally, by recalling (4.7) and using the duality, we have

(5.5) ρ∗m(p) :=
P ∗m
P ∗0

=

(
R∗m(p)

R∗0(p)

)p/p∗

=

(
Rm(p)

R0(p)

)−1

= ρm(p)−p/p
∗
,

where ρm(p) := Pm/P0 = (Rm(p)/R0(p))p
∗/p is the (primary) pure power ratio, the

counterpart of ρ∗m(p) on the other side of the topological duality—which we plotted
in subsection 1.4. (Keep in mind that R∗0(p) = 2p

∗/p—from two serial unit resistors—
and P ∗0 = 2 and R0(p) = 1/2—from two parallel unit resistors.)

Because ρ∗m(p) (or ρm(p)) does not require maximization over x and thus is easier
to compute than ρ∗(rep)

m (p), the following technical theorem plays an important role
in easing the numerical workload and improving sharpness of our upper bounds.

Theorem 5.2. For any m ∈ N and p ∈ (1, 2),

ρ∗(rep)
m (p) = ρ∗m(p).

Corollary 5.3. For p ∈ (1, 2),

R∗n+m(p) ≤ 2−p
∗/pR∗n(p)R∗m(p) (m,n ∈ N).

In particular, the sup-multiplicativity in Theorem 1.3 holds with α(p) = 2−1/p.

Proof of Corollary 5.3. In view of Theorem 5.2 (coupled with (5.5) and R∗0(p) =
2p
∗/p), inequality (5.4) reads:

R∗n+m(p) ≤ ρ∗m(p)p
∗/pR∗n(p) =

R∗m(p)

R∗0(p)
R∗n(p) = 2−p

∗/pR∗n(p)R∗m(p).

To recognize that α(p) = 2−1/p, revisit (4.2). �

Postponing the proof of Theorem 5.2, we turn to the resulting upper bounds
(including the one in subsection 1.2). They were found by computing the zeros of
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ln ρm(p) = − p

p∗
ln ρ∗m(p) as a function of p ∈ (1, 2) (Figure 1.4), which we located

with 10−8 precision and rounded up to the nearest 10−6 (cf. Section 8).

Proposition 5.4.

dimAR(X) ≤ 1.847596 (m = 1),

dimAR(X) ≤ 1.830543 (m = 2),

dimAR(X) ≤ 1.821203 (m = 3),

dimAR(X) ≤ 1.815778 (m = 4),

dimAR(X) ≤ 1.812292 (m = 5),

dimAR(X) ≤ 1.809864 (m = 6),

dimAR(X) ≤ 1.808076 (m = 7),

dimAR(X) ≤ 1.806703 (m = 8).

Proof of Proposition 5.4 (computer assisted). Fix one of the listed p (and the cor-
responding m). Via Proposition 5.1 and Theorem 5.2, it suffices to show ρ∗m(p) < 1.
To do this we computed a flow J approx

1010 that is an approximation to the pure replace-
ment current J1010. From (5.5), ρ∗m(p) ≤ P ∗approx/2 where P ∗approx := P ∗(J approx

1010 ). The
proof is ended by evaluating P ∗approx with sufficient numerical precision to guarantee
P ∗approx/2 < 1. �

Remark 5.5. One could speculate (cf. Section 6) whether an analogous current
replacement scheme with power ratio ρm(p) = Pm/P0 exists on the primary side of
topological duality, i.e., between Gn and Gn+m. In such case, for any m ∈ N, the
common zero of ln ρ∗m(p) and ln ρm(p) would be equal to dimAR(X) (since arbitrary
small perturbations of p would yield both ρm(p) < 1 and ρ∗m(p) < 1). However, the
zeros visibly vary with m (see Figure 1.4), so such scheme cannot exist.

Figure 5.11. Approximations to pure replacement flows J approx
1010 (left) and J approx

1100 (right) for
parameters µ = 0.2041 and δ = 0.0332 (at p = 1.8477 and m = 1). In Japprox

1010 , the incoming flow
rates (indicated by shading) are: 1/2−µ in the upper/lower resistors and 2µ in the middle resistor;
2µ+ 2δ through the superconducting center island (not depicted), and 1/2− µ− δ in the resistors
above/below the island.

Proof of the upper bound in Theorem 1.1. This bound coincides with the one
given by Proposition 5.4 for m = 1. We treat it separately because, in this case,
all computations can be tracked by hand, yielding a fully rigorous human verifiable
proof. To shorten our decimals let us round up to p = 1.8477.

First, we find a good unit flux flow J approx
1010 in G∗1 . Because of symmetry, we look

among the flows as depicted on the left of Figure 5.11, which are parametrized by
just two real parameters µ and δ. We compute half of the total power dissipated in



Conformal dimension via p-resistance: Sierpiński carpet 31

the 24 unit resistors with non-zero current to be

(5.6)
P ∗approx

2
= 2|1/2−µ|p+4|1/2−µ−δ|p+4|δ|p+|2µ|p+|2µ+2δ|p ≈ 0.999885 < 1,

where the approximation is for specific values µ = 0.2041 and δ = 0.0332 at p =

1.8477. This p was selected so that the minimum of P
∗
approx

2
over µ and δ is just shy of

1, in a way that is guaranteed by the precision of the numerical evaluation of P ∗approx
2

.
(P
∗
approx

2
is a convex function of (µ, δ); Figure 5.12 depicts it near the unique minimum

(µ, β) ≈ (0.2041, 0.0332).) �
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Figure 5.12. Contours of the power of the flow J approx
1010 as a function of parameters (µ, δ); note

a unique minimum (µ, δ) ≈ (0.2041, 0.0332). (p = 1.8477 and m = 1.)

It remains to prove Theorem 5.2. The argument depends on closer analysis of
the replacement flows J ′T ′ , defined by (4.8) as a linear combination of the six pure
replacement flows in J. Because we fix the m-supertile T ′ and identify its network
with G∗m, let us strike the superscript T ′ and simplify J ′T ′ to J ′ (not to be confused
with the flow J ′ on G∗n+m we spoke about before).

To start, let the vector field F1 : E∗m → R come from restricting the pure replace-
ment flow J1010 to the left triangle, by which we mean the edges of G∗m contained in
the region given by |x| ≥ |y|, x ≤ 0 in the translated coordinate system with origin
at the center of X. On the edges not in the triangle we set F1 to zero, so F1 is not
a flow on G∗m as it has non-zero divergence along the diagonal sides of the triangle
(with flux 1

2
through each side). Likewise, let T2 be a similar restriction of J1010 to

the bottom triangle (with fluxes 1
2
and −1

2
through its two diagonal sides and none

through its base). Further, let F2, F3, F4 be the counterclockwise rotations of F1 by
90◦, 180◦, 270◦; and let T1, T3, T4 be the rotations of T2 by 270◦, 90◦, 180◦. (See Fig-
ure 5.13.) Note that J1010 can be decomposed as J1010 = F1 − F3 + T2 − T4, and all
other pure replacement flows in the sextuple J can be decomposed similarly.

Lemma 5.6. (Structure of replacement flows) Given x ∈ R4 with x · 1 = 0, if
J ′ is a linear combination of the pure replacement flows (i.e., equals J ′T ′ in (4.8))
and has flux vector x (i.e., (4.9) holds) then, for some κ ∈ R,

(5.7) J ′ =
4∑
i=1

xiFi +
4∑
i=1

(
xi−1 − xi+1

2
+ κ

)
Ti

where the addition of the indices is mod 4 (i.e. 4 + 1 = 1 and 1− 1 = 4). Moreover,
any J ′ as above is a linear combination of the pure replacement flows in J.
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−F4

−F2
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T2

T3
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J1010 J1111 J0000

−T4

F3

Figure 5.13. Pure J1010, saddle J1111, and vortex J0000 flows decomposed into vector fields Fi
and Ti. (Arrows indicate the general direction of the flow.)

Proof of Lemma 5.6. Clearly, J ′ is a linear combination J ′ =
∑4

i=1 aiFi + biTi
(for some ai, bi ∈ R) because this is so for each pure replacement flow. The fluxes
of J ′ through the sides are xi and they come from the aiFi, so ai = xi (for i =
1, . . . , 4). The coefficients bi are determined by vanishing of divergence along the
boundaries of the triangles—amounting to balancing of fluxes between the triangles.
For instance, consider the flux from the left triangle to the top triangle across the
half-diagonal y = −x, x ≤ 0. In the flow J ′, a1F1, a4F4, b1T1, and b4T4 meet along
this half-diagonal so balancing of fluxes dictates a1

1
2

+a4
1
2

+b1(−1
2
)+b4

1
2

= 0. Thus
b1 − b4 = a1 + a4 = x1 + x4. By considering all four half-diagonals, we get four
continuity equations:

(5.8) bi+1 − bi = xi+1 + xi (i = 1, 2, 3, 4)

which solve to

(5.9) bi =
1

2
(xi−1 − xi+1) + κ (κ ∈ R).

(To verify that these are solutions: 2(bi+1−bi) = xi−xi+2−xi−1 +xi+1 = 2xi+1 +2xi
since −xi+2 − xi−1 = xi + xi+1.) This proves (5.7).

It remains to see that J ′ given by (5.7) is a linear combination of pure replacement
flows. To do this (and for future reference), let us introduce two special replacement
flows: saddle flow J1111 and vortex flow J0000—see Figure 5.13—defined by

J1111 := F1 − F2 + F3 − F4 =
1

2
(J1100 − J0110 + J0011 + J1001) ,(5.10)

J0000 := T1 + T2 + T3 + T4 =
1

2
(−J1100 − J0110 − J0011 + J1001)(5.11)

with the verification of the equalities left for the reader. One then checks that J ′ in
(5.7) can be expressed as follows

(5.12) J ′ = x1 − x3

2
J1010 −

x4 − x2

2
J0101 +

x1 + x3

2
J1111 + κJ0000,

making it a linear combination of the six pure replacement flows. �

Conclusion of proof of Theorem 5.2: In view of the definition (5.1) of ρ∗(rep)
m (p)

and ρ∗m(p) = P ∗m
2

(from (5.5)), the task is to show that, for any fixed x ∈ R4 with
x · 1 = 0, we have ρ∗(x) ≤ P ∗m

2
. This, in turn, amounts to showing existence of a

choice of the linear combination in (4.8) forming the replacement current J ′ := J ′T
′
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with flux vector x so that

(5.13)
P ∗(J ′)∑4
i=1 |xi|p

≤ P ∗m
2
.

By (5.7), x determines J ′ up to one parameter κ ∈ R, and we set κ := 0.
The power P ∗(J ′) is the sum of the powers contributed by individual edges,

organized into disjoint orbits under the dihedral symmetry group D4 of X. To fix
attention, let us consider a single edge e in the bottom half of the left triangle.
Assume first that e is not contained in the x-axis, in which case its orbit consist
of eight edges. Set e1 := e and let e8 be the image of e under the reflection in
the x-axis. Moreover let e2, e3 and e4, e5 and e6, e7 be the images of e8, e1 under
counterclockwise rotations by 90◦, 180◦, 270◦, respectively. Because F1(e1) = F1(e8)
and T1(e1) = −T1(e8), the power contributed by the pair e1, e8 is

|J ′(e1)|p + |J ′(e8)|p =

∣∣∣∣x1F1(e) +
x4 − x2

2
T1(e)

∣∣∣∣p +

∣∣∣∣x1F1(e)− x4 − x2

2
T1(e)

∣∣∣∣p .
The situation is similar in the three other triangles. Taking into account F1(e1) =
F1(e8) = F2(e2) = F2(e3) = F3(e4) = F3(e5) = F4(e7) = . . . and −T1(e1) = T1(e8) =
T2(e2) = −T2(e3) = T3(e4) = −T3(e5) = T4(e6) = . . . the total power contribution
from the dihedral orbit of e is

8∑
j=1

|J ′(ei)|p =
4∑
i=1

∣∣∣∣xiF1(e) +
xi−1 − xi+1

2
T1(e)

∣∣∣∣p +

∣∣∣∣xiF1(e)− xi−1 − xi+1

2
T1(e)

∣∣∣∣p

≤
4∑
i=1

2 |xiF1(e)|p + 2

∣∣∣∣xi−1 − xi+1

2
T1(e)

∣∣∣∣p
= 2|F1(e)|p

4∑
i=1

|xi|p + 2|T1(e)|p
4∑
i=1

∣∣∣∣xi−1 − xi+1

2

∣∣∣∣p
≤ 2|F1(e)|p

4∑
i=1

|xi|p + 2|T1(e)|p
4∑
i=1

|xi|p(5.14)

where the first inequality is an instance of Clarkson’s inequality [14, 28]

(5.15) ‖x + y‖pp + ‖x− y‖pp ≤ 2‖x‖pp + 2‖y‖pp (p ∈ (1, 2), x,y ∈ R4),

and we also exploited the fact that σ : R4 → R4 given by σ((xi)
4
i=1) := (xi+1)4

i=1 is
an isometry of ‖ · ‖p so that

(5.16)
∥∥σ−1x− σx

∥∥
p
≤
∥∥σ−1x

∥∥
p

+ ‖σx‖p = 2‖x‖p.

When e is in the left triangle and on the x-axis, its dihedral orbit consist of only
four edges e1 := e, e2, e3, e4 obtained by iterated rotation by 90◦. Because Ti(ei) = 0,
the power contribution of this orbit is

(5.17)
4∑
j=1

|J ′(ei)|p =
4∑
i=1

|xiFi(ei)|p =
4∑
i=1

|xiF1(e)|p =
4∑
i=1

|xi|p |F1(e)|p .

Compare the right hand sides of (5.14) and (5.17) to the two corresponding
contributions of the orbit of e to the power P ∗m = P ∗(J1010) of the pure current
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J1010 = F1 − F3 + T2 − T4:
8∑
j=1

|J1010(ei)|p = 4 |F1(e1)|p + 4 |T1(e1)|p and
4∑
j=1

|J1010(ei)|p = 2 |F1(e1)|p .

They differ by the factor
∑4
i=1 |xi|p

2
. Therefore, summing over all orbits yields

P ∗(J ′) ≤ 1

2

4∑
i=1

|xi|p P ∗(J1010) =
1

2

4∑
i=1

|xi|p P ∗m,

which is the inequality (5.13) we set out to prove. �

6. Sub-multiplicativity (Th. 1.3)

Our goal is to prove the right inequality in Theorem 1.3:

(6.1) Rn+m(p) ≤ β(p)pRn(p)Rm(p) (∀ m,n ∈ N)

where β = β(p) > 0 is explicitly identified.

Figure 6.14. Substitution Φstd : TA, TB , TC (above) 7→ Φ(TA), Φ(TB), Φ(TC) (below). All unit
resistors. (Network vertices, at the squares’ corners, are suppressed.)

Figure 6.15. Substitution Φ: TA, TB , TC , TD (above) 7→ Φ(TA), Φ(TB), Φ(TC), Φ(TD) (below).
All half-unit resistors (i.e., r(e) = 2−p/p

∗
); none on tile edges.

The argument mirrors the proof of (4.2), with the standard network Gn in the
place of its dual G∗n, but (in view of Remark 5.5) we have to employ a more complex
substitution. (Another approach is to use a different network altogether, as we do
in the next section.) To start, let us generate Gn via the standard substitution rule
Φstd with three distinct proto-tiles depicted in Figure 6.14. (Here and elsewhere, we
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consider the proto-tiles up to congruence by Euclidean motions.) We designate proto-
tile TC as the initial proto-tile, which means that we consider the sequence of tilings
Φn

std(TC). By merging all pairs of parallel resistors, the marked network carried by the
tiling Φn

std(TC) is equivalent to the standard network Gn in Figure 1.3. (Incidentally,
this explains the non-unit resistances in Gn.) An astute reader will note that, had we
allowed the immaterial zero-current edges along the top and the bottom, we could
have used a single proto-tile TA and the network of Φn

std(TA). However, dealing with
three proto-tiles is a build-up for what follows. (In this section, in all networks, we
designate the top and bottom vertices as the input and output sets.) The difficulty
to overcome is that Φstd is marred by the flaw of having resistors along tile’s edges.
This means that we can no longer use simple matching of fluxes across sides to secure
Kirchhoff’s first law when gluing flows on individual tiles (or supertiles) into a global
flow (as we did in Section 4).

We remedy the problem by recutting the network into different tiles, as expressed
by the new substitution, with four proto-tiles, depicted in Figure 6.15. Individual
arrows represent resistors of resistance 2−p/p

∗ each, which makes them half-unit resis-
tors: two in series give resistance one (per (2.9)). The idea is that four copies of tile
TC (rotated by 0◦, 90◦, 180◦, 270◦) form a tiling, denote it by TC×4, whose network
is equivalent (by joining serial resistors) to that of four unit resistors along the edges
of a unit square, a version of G0 including the zero current edges. Thus one should
think of TC as carrying a quarter of G0 and of Φ as substituting the two (half-unit)
resistors by sixteen such resistors. The other three proto-tiles carry an even number
of resistors that can be split into several pairs, each forming a corner (i.e., meeting
at the 90 degree angle). The effect of Φ on tiles TA, TB, TD amounts to replacing
each such corner pair by the network carried by Φ(TC), suitably rotated or reflected.
E.g., TB carries 4 resistors arranged into two corners, one a reflection of the other in
a vertical axis; correspondingly, Φ(TB) carries 32 resistors coming as two symmetric
copies of those carried by Φ(TC). (To avert a possible confusion: TA carries 8 resistors
arranged into four corners, each a copy of the network carried by TC , but TA is not
the same as TC×4.) Consequently, by an easy induction on n, the network carried
by Φn(TC×4) (see Figure 6.16) is equivalent to Gn (upon joining and merging pairs of
resistors and dropping the zero-current edges). In the following arguments, we abuse
the notation and still denote this Φ-born network by Gn.

Before starting the estimates, consider the decomposition of Gn+m into networks
carried by m-supertiles T ′ = Φm(T ) where T is a tile of the tiling Φn(TC×4) (Fig-
ure 6.16). Although, the network carried by T ′ is no longer a copy of the whole
Gm, it is a union of several translated copies of Gm−1 and halves of Gm−1; see Fig-
ures 6.17 and 6.18. (This is again proven by induction on m.) This will allow us
to directly relate Rn+m(p) and Rm−1(p), which will be enough because Rm−1(p) and
Rm(p) are comparable on the force of the following easy lemma the proof of which is
relegated to the end of this section.

Lemma 6.1. For all m ∈ N, we have 1
2
Rm−1(p) ≤ Rm(p) ≤ 3p−1Rm−1(p).

To start the proof of inequality (6.1), fix m,n ∈ N and let J be the unit flux
current in Gn. We also drop p from Rm(p) to streamline formulas. Inequality (6.1)
results (along the same lines) from the following analogue of Lemma 4.1, which gives
a replacement flow and a bound on its power.
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Lemma 6.2. There is a unit flux flow J ′ on Gn+m such that, for every m-
supertile T ′ = Φm(T ),

(6.2) P (J ′|T ′) ≤ β(p)p
∗
Rp∗/p
m P (J |T )

with explicit β(p) > 0, independent of m,n and continuous in p > 1.

Figure 6.16. The network carried by Φ3(TC×4). Merging parallel resistors yields G3. (The
2-supertiles are colored.)

Proof of Lemma 6.2. Consider a tile T and the associated m-super-tile T ′ :=
Φm(T ). Let J1 be the unit flux current from top to bottom in Gm−1. As before,
cutting J1 in half along the diagonal and reflecting the upper half in the anti-diagonal,
constructs a unit flow J2 in Gm−1 from left to bottom. Set P := P (J1) = P (J2).
Our main task is constructing from J1 and J2 replacement flows on m-supertiles.

First, given a flow J on Gn, denote by f(J |T ) ∈ Rk the flux vector recording
the flow through the individual resistors in T listed in the counterclockwise order of
their appearance along the boundary of T starting with the top of the left side of
T (and with positive sign indicating inflow). The dimension k = kτ depends on the
tile type τ ∈ {A,B,C,D}. Hence, for type C tile, f(J |T ) = (c,−c) ∈ R2 where c is
the flow through the bottom resistor. Accordingly, the flow vectors for type B,D,A
form linear subspaces of R4,R6,R8 of dimensions 3, 5, 7, respectively.
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An analogous flux vector f(J ′|T ′) ∈ Rk, recording the fluxes through the sides
of a supertile T ′ = Φm(T ), can be associated to the restriction of any flow J ′ on
Gn+m to T ′. Here we define the sides of T ′ so that they bijectively correspond to the
resistors in T : a side is a segment of the boundary of T ′ spanned by the vertices of
one of the half-copies of Gm−1 making up the network carried by T ′. In this way,
the resistors with vertices on any particular side are the ones generated by Φm from
a single resistor in T . For instance, supertile Φm(TC)—see Figure 6.17 (left)—has
two sides: the bottom one and the right one, and f(J ′|T ′) = (c,−c) ∈ R2 where c
is the flow through the bottom side. (The left and upper edges of T ′ do not count
as sides; the flow cannot enter T ′ through them.) The B,D,A supertiles have 4,6,8
sides, respectively—see Figure 6.17 (right) and Figure 6.18.

Figure 6.17. 2-supertiles are stitched from copies of G1 and half-G1: 2-supertile Φ2(TC) (left)
uses 1×G1 and 2×half-G1; 2-supertile Φ2(TB) (right) uses 2×G1 and 4×half-G1. (Green segments
indicate sides. Φ2(TB) has four sides.)

Figure 6.18. 2-supertile Φ2(TD) (left) uses 3 × G1 and 6 × half-G1 2-supertile Φ2(TA) (right)
uses 4× G1 and 8× half-G1. (Green segments indicate sides; 6 for Φ2(TD) and 8 for Φ2(TA).)

The next step is to use multiple copies of currents J1 and J2 in Gm−1 and their
images under the dihedral symmetry group (and flow reversal) to make pure replace-
ment flows in m-super-tiles T ′ = Φm(T ) with flux vectors that linearly span the
space of all possible flux vectors for the given tile type of T . For T = TC , looking
at Figure 6.17, let JC be the flow with flux vector (1,−1) obtained by gluing: the
bottom half of J1 (reversed so it inflows through the bottom), J2 rotated by 90◦,
and another bottom half of J1 rotated by 90◦. One could call this flow a corner flow.
Note that P (JC) = 2P . For T = TB, we will have three pure replacement flows.



38 Jaroslaw Kwapisz

The first two JB,1 and JB,2 with flux vectors (1,−1, 0, 0) and (0, 0,−1, 1), respec-
tively, are corner flows, using only half of the supertile. The third, with flux vector
(1, 0, 0,−1), is JB,3 obtained by gluing (suitably rotated): two halves of J1 and two
full J1 into a horizontal strip going from left to right, what we call pass-through flow.
Note that P (JB,3) = 3P . In a similar way, one makes JD,1, . . . ,JD,5 so that their
flux vectors are linearly independent (and have entries 0 or ±1). (E.g., JD,1 could be
the snaking flow with flux (0, 1, 0,−1, 0, 0) obtained from two copies of J2, one copy
of J1, and two copies of half of J1.) JA,1, . . . ,JA,7 follow suit. The power of any
pure replacement flow is bounded by some universal multiple of P ; by our count, it
is 4P , the power of the snaking flow.

We finished collecting the needed pure replacement flows Jτ,i (τ ∈ {A,B,C,D},
i = 1, . . . , kτ−1). Denote by fτ,i := f(Jτ,i) ∈ Rkτ their flux vectors. By construction,
for any possible tile type τ ∈ {A,B,C,D} of tile T and any flux vector x ∈ Rkτ of
the restricted flow J |T , one can linearly combine the pure replacement flows Jτ,i to
get a flow J ′T ′ on the m-supertile T ′ = Φm(T ),

(6.3) J ′T ′ =
kτ∑
i=1

tiJτ,i,

with the prescribed flux:

(6.4) x =
kτ∑
i=1

tifτ,i.

Crucially, the individual flows J ′T ′ assemble into a flow on Gn+m by the same ar-
gument verifying Kirchhoff’s first law at the vertices on boundaries between two
m-supertiles used in the proof of Lemma 4.1.

Just like we defined α(p) in Section 4, we take β̃(p) given by

(6.5) β̃(p) := max
τ

max
x : ‖x‖p∗=1, x·1=0

min
t:

∑
i tifτ,i=x

∑
i

|ti|.

The power ratio is then estimated uniformly in x by the triangle inequality

ρ(x)1/p∗ := max
τ

min
t:

∑
i tifτ,i=x

P (J ′T ′)1/p∗

P (J |T )1/p∗

≤ max
τ

max
x:x·1=0

min
t:

∑
i tifτ,i=x

∑
i |ti|P (J ′τ,i)1/p∗

P (J |T )1/p∗

≤ β̃(p) max
τ,i

P (J ′τ,i)1/p∗

where we used that ‖x‖p
∗

p∗ = P (J |T ). Thus

(6.6) ρ(x) ≤ β̃(p)p
∗
4P = β̃(p)p

∗
4R

p∗/p
m−1

where we used that P (J ′τ,i) ≤ 4P . Combined with Lemma 6.1, this gives inequality
(6.1) with

�(6.7) β(p) := β̃(p)41/p∗21/p = β̃(p)21+1/p∗ .

Proof of Lemma 6.1. We first prove the second inequality, which reads R∗m/R∗m−1

≥ 1/3 on the other side of the topological duality.
Consider the unit flux current J ′ in G∗m so that P ∗m = P ∗(J ′). Taking Φ to be

the substitution used in Section 4 to generate G∗m, one can obtain a flow J in G∗m−1
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by replacing the network carried by each 1-supertile T ′ = Φ(T ) in G∗m (Figure 4.9,
right) with a simple cross-wire of four resistors carried by the tile T (Figure 4.9, left).
In order to satisfy Kirchhoff’s first law, we collapse the flow in T ′ to one in T in an
obvious way: the flows in the four resistors of T are set to the respective side fluxes
xi (i = 1, 2, 3, 4) of T ′. The power dissipated by J in T is then

∑4
i=1 |xi|p. On the

other hand, the power P ∗(J ′|T ′) dissipated by J ′ in T ′ can be crudely estimated from
below as follows. The current J ′ in the three resistors attached to the left side of T ′
is of the form t1x1, t2x1, t3x1 where

∑
j tj = 1, with the associated power estimated

via convexity of t 7→ tp:
3∑
j=1

|tjx1|p = 3|x1|p
(∑

j |tj|p

3

)
≥ 3|x1|p

∣∣∣∣
∑

j tj

3

∣∣∣∣p = |x1|p31−p.

By accounting for all four sides, we get P ∗(J ′|T ′) ≥
∑4

i=1 |xi|p31−p = 31−pP ∗(J |T ).

Therefore, P ∗m/P ∗m−1 ≥ 31−p, which amounts to R∗m/R∗m−1 ≥ 3
(1−p)p∗

p = 3−1.
The other inequality Rm/Rm−1 ≥ 1

2
follows by a similar argument involving

potentials on the dual side. Consider a potential U ′ of the current in G∗m with drop
U0 = 1. As before, replace each 1-supertile with a cross-wire and assign to the center
of the cross the potential of the superconducting island, while letting the potential
of the arm ends be unchanged (i.e. inherited form the corresponding vertices in G∗m).
This produces a unit drop potential U on G∗m−1. Note that each edge of E∗m−1 is an
arm of the cross-wire and thus corresponds to two edges e1, e2 ∈ E∗m. The respective
drops of the potential, δ := ∇U(e) and δj := ∇U ′(ej) (j = 1, 2), satisfy δ = δ1 + δ2,
and their contributions to the power are again related by convexity:

2∑
j=1

|δj|p
∗ ≥ 2

(
1

2

2∑
j=1

|δj|

)p∗

≥ 21−p∗|δ|p∗ .

We conclude that P ∗(U ′) ≥ 21−p∗P ∗(U), which gives R∗m ≤ 2p
∗−1R∗m−1, or Rm ≥

2−1Rm−1 on the other side of the duality. �

Note that when relating resistances at different approximation levels, one faces a
choice to either proceed from a richer network to a simpler network—by reducing, i.e.,
collapsing a current or restricting a potential, as in Lemma 6.1—or vice versa—by
extending/interpolating, as in Lemma 6.2. Exercising good power control is crucial,
and it is more subtle and effective in the latter case. Additional choices in forging an
argument come from picking sides of the two dualities (convex and topological).

7. Lower bounds (Th. 1.1)

As explained in subsection 1.5, lower bounds for dimAR(X) (including the one
given in Theorem 1.1) are broadly based on the sup-multiplicative estimate (4.1) and
come from uniform bounds on the resistance ratios between networks. These boil
down to estimating suitable power ratios, as we will do here, paralleling Section 5 (on
the other side of topological duality). However, we introduce an important variation
by changing the approximating networks. This both simplifies computations and
sharpens the results. We abandon the standard graph approximations Gn in favor
of networks G̃n created by the substitution given in Figure 7.19, with TA serving as
the initial tile. The network G̃n, carried by Φn(TA), has no resistors touching the top
and the bottom and is naturally taken with the left and right vertices as the input
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and output sets, respectively. (This represents 90◦ rotation with respect to Gn but
matches G∗n and will help us parallel Section 5.)

The key is that the substitution places no resistors along edges of its tiles and is
simpler than the one used in the previous section, yet the resistances of the networks
are comparable (Lemma 7.1). (In particular, this section gives another proof of
submultiplicativity (6.1).) Beyond the use of a different network, the lower bounds (as
compared to the upper bounds) are complicated by more difficult estimates of power
ratios—due to exponents p and p∗ sitting on the opposite sides of the hilbertian 2. In
particular, pursuing the analogue of Theorem 5.2 (Theorem 7.4), we faced a choice to
either considerably weaken the inequality or treat it as a conjecture (Conjecture 7.3),
to be numerically verified for every pair of specific p and m we have to consider. One
either has to settle for weaker lower bounds or accept more computer assistance in
the proofs. For instance, to show dimAR(X) > 1 + ln 2

ln 3
≈ 1.6309, one can either use

G̃2 and skirt the conjecture (Proposition 7.7) or use a smaller network G̃1 and verify
the conjecture (see Proof of Theorem 1.1, ahead). (By resistor joining and symmetry,
G̃2 reduces to circa 20 resistors, while G̃1 reduces to only 4 resistors.)

Figure 7.19. Alternative substitution rule Φ: TA, TB , TC (above) 7→ Φ(TA), Φ(TB), Φ(TC)

(below). The network G̃n is carried by Φn(TA).

To start, observe that the network G̃n (cf. Figure 7.22) allows for easy gluing of
flows, much like G∗n did. One way to see this is to note that G̃n is a subnetwork of
G∗n obtained by pruning the resistors that connect to the boundaries of the supercon-
ducting islands. Therefore, flows in G̃n are synonymous with flows G∗n that vanish on
those resistors. As a result, we can repeat the constructions in Sections 4 and 5 (with
obvious modifications) to construct a scheme whereby a flow J on G̃n is replaced by
a flow J ′ on G̃n+m by substituting the restricted flow J |T in the network carried
by each tile T with a replacement flow J ′T ′ on the network carried by the supertile
T ′ = Φm(T ), while preserving the flux vectors. As before, the replacement flow J ′T ′

is obtained as a linear combination of six pure replacement flows in the set

(7.1) J = {J1010,J1100,J0101,J0110,J0011,J1001} ,
which all have the same power

P̃m := P (J◦) = R̃m(p)p
∗/p (J◦ ∈ J).

The tilde in P̃m and R̃m(p) is to avoid confusion with the corresponding powers
Pm and resistances Rm(p) for the standard network; although, the following lemma
makes the distinction inconsequential for the value of the critical exponent pres.

Lemma 7.1. There is a constant C > 0 such that 1
C
≤ R̃n(p)/Rn(p) ≤ C for all

n ∈ N and p > 1.
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Proof. See Appendix 9. �

Figure 7.20. Replacement flows J1010 (left) and J1100 (right) form = 1. In J1010: the incoming
flow intensities are 1/2− µ upper/lower and 2µ center; here µ ≈ 0.1258652.

Figure 7.21. Three 2-supertiles for the alternative substitution.

Figure 7.22. 3-supertile Φ3(TC) is a union of eight 2-supertiles. For left-to-right flows, its
network is equivalent to G̃3 (carried by Φ3(TA)) by removing the edges touching the top and bottom.
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We can repeat the formulas from Section 4 with p and p∗ swapped (and some ∗
erased). In particular, the power ratio upon replacing J |T with flux vector x by the
optimal combination of pure replacement flows is (cf. (4.10))

(7.2) ρ̃(x) := min

{
P
(∑

J◦∈J t(J◦)J◦
)∑4

i=1 |xi|p
∗ :

∑
J◦∈J

t(J◦)f(J◦) = x, t = (t(J◦)) ∈ RJ

}
.

Keep in mind that ρ̃(x) depends on m ∈ N, which we keep temporarily fixed. Propo-
sition 5.1 has the following analogue:

Proposition 7.2. For m ∈ N, dimAR(X) ≥ p if

(7.3) ρ̃(rep)
m (p) := max

x∈R4: x·1=0
ρ̃(x) < 1.

Proof. Summing over all tiles

(7.4) P (J ′) ≤ ρ̃(rep)
m (p)P (J ),

which, in terms of resistances, gives

(7.5) R̃n+m(p) ≤ ρ̃(rep)
m (p)p/p

∗
R̃n(p) (n ∈ N).

If ρ̃(rep)
m (p) < 1, then (7.5) guarantees limn→∞ R̃n(p) = 0 (via Corollary 1.4), and we

are done by Theorem 1.2. �

As before, in the game of minimizing the maximal (replacement) power ratio

ρ̃
(rep)
m (p), one hopes that it is already attained as the pure power ratio (corresponding

to x = (1, 0,−1, 0)), defined by (cf. (5.5)):

(7.6) ρ̃m(p) :=
P̃m

P̃0

=
P̃m
2

=

(
R̃m(p)

R̃0(p)

)p∗/p

where we used that R̃0(p) = 2p/p
∗ (from two serial unit resistors) and P̃0 = 2.

However, the counterpart of Theorem 5.2 remains a conjecture.

Conjecture 7.3. For any m ∈ N and p ∈ (1, 2), the maximal power ratio is
attained on the pure replacement flows and (therefore) satisfies

ρ̃(rep)
m (p) = ρ̃m(p).

Nevertheless, we have the following weaker result.

Theorem 7.4. For any m ∈ N and p ∈ (1, 2),

ρ̃(rep)
m (p) ≤ 2

2−p
p−1 ρ̃m(p).

Proof. We repeat the proof of Theorem 5.2 with p and p∗ swapped and one
change in (5.14), substituting the following version of Clarkson’s inequality valid for
p∗ ≥ 2 [14, 28]:

(7.7) ‖x + y‖p
∗

p∗ + ‖x− y‖p
∗

p∗ ≤ 2p
∗−2
(

2‖x‖p
∗

p∗ + 2‖y‖p
∗

p∗

)
(x,y ∈ R4).

The only difference is the extra multiplicative penalty factor 2p
∗−2. It remains to

check that 2−p
p−1

= −1 + 1
p−1

= −1 + p∗

p
= −1 + (1− 1

p∗
)p∗ = p∗ − 2. �

Digressing, we record the following counterpart of Corollary 5.3:

Corollary 7.5. For p ∈ (1, 2),

R̃n+m ≤ 23−2pR̃n(p)R̃m(p) (m,n ∈ N).



Conformal dimension via p-resistance: Sierpiński carpet 43

Proof. In view of Theorem 7.4, equation (7.6), and R̃0(p) = 2p/p
∗

= 2p−1, in-
equality (7.5) gives:

R̃n+m(p) ≤
(

2
2−p
p−1 ρ̃m(p)

)p/p∗
R̃n(p) = 2

2−p
p−1

p

p∗
R̃m(p)

R̃0(p)
R̃n(p) = 22−p21−pR̃m(p)R̃n(p).

�
Going back to pursuing lower bounds, Theorem 7.4 and Proposition 7.2 give:

Corollary 7.6. For m ∈ N, dimAR(X) ≥ p if

(7.8) ρ̃m(p) < 22−p∗ = 2
p−2
p−1 .
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Figure 7.23. Log of the power ratio ln ρ̃m(p) for G̃m as a function of p, steepening with increasing
m (for m = 1, . . . , 8). The dashed reference graph is that of p−2

p−1 ln 2.

By computing the plots of ln ρ̃m(p) (see Figure 7.23) for increasing values of m
and intersecting with the reference plot of p−2

p−1
ln 2 (to 10−8 precision, see Section 8),

we find p for which ρ̃m(p) < 2
p−2
p−1 is nearly an equality, as listed below.

Proposition 7.7. (Rigorous computer assisted bounds)

dimAR(X) ≥ 1.147018 (m = 1),

dimAR(X) ≥ 1.631569 (m = 2),

dimAR(X) ≥ 1.699604 (m = 3),

dimAR(X) ≥ 1.728198 (m = 4),

dimAR(X) ≥ 1.743808 (m = 5),

dimAR(X) ≥ 1.753609 (m = 6),

dimAR(X) ≥ 1.760330 (m = 7),

dimAR(X) ≥ 1.765225 (m = 8).

Proof (computer assisted). Fix one of the listed p (and the corresponding m).
By Corollary 7.6, one just has to show ρ̃m(p) < 2

p−2
p−1 . To do this we computed a flow

J approx
1010 that is an approximation to the pure replacement current J1010. Note that
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ρ̃m(p) ≤ P̃approx/2 where P̃approx := P (J approx
1010 ), which we evaluated with sufficient

numerical precision to guarantee P̃approx/2 < 2
p−2
p−1 . �

Taking Conjecture 7.3 for granted, much better bounds are found by selecting p

that are just below the zeros of ln ρ̃m(p).

Proposition 7.8. (Computer assisted bounds, assuming Conjecture 7.3)

dimAR(X) ≥ 1.707491 (m = 1∗),
dimAR(X) ≥ 1.744155 (m = 2∗),
dimAR(X) ≥ 1.761130 (m = 3∗),
dimAR(X) ≥ 1.770127 (m = 4∗),
dimAR(X) ≥ 1.775526 (m = 5),

dimAR(X) ≥ 1.779092 (m = 6),

dimAR(X) ≥ 1.781618 (m = 7),

dimAR(X) ≥ 1.783499 (m = 8).

The stars by m = 1, . . . , 4 indicate that we actually verified Conjecture 7.3 nu-
merically for those values of m (and the corresponding p). The explanation of how
this was done follows.

(Numerical) Verification of Conjecture 7.3. In absence of a conceptual proof of
the conjecture, we resort to its verification for concrete m and p by explicit study
of the function ρ̃(x) maximized in (7.3). Because ρ̃(x) is invariant under scaling we
can normalize the absolute flux 1

2

∑4
i=1 |xi| and solve the maximization (7.2) over the

two dimensional domain

(7.9) Σ :=

{
x ∈ R4 : x · 1 = 0,

1

2

4∑
i=1

|xi| = 1

}
.

Σ is the boundary of a convex 3 dimensional polyhedron. By rotating, it suffices
to consider x ∈ Σ with |x1| = max4

i=1{|xi|}. Finally, using the reflection symmetry
and flow reversal reduces considerations to the following subdomains of Σ:

• three-way split flow (one in and three out):

Σ4sss := {x ∈ Σ: x1 ≥ 0 ≥ x2, x3, x4 and |x1| ≥ |x2|, |x3|, |x4|}.
• saddle flow (two opposite, in and out):

Σ4312 := {x ∈ Σ: x1, x3 ≥ 0 ≥ x2, x4 and |x1| ≥ |x3|, |x2| and |x2| ≥ |x4|}.
• turning cross flow (strongest turns):

Σ4123 := {x ∈ Σ: x1, x2 ≥ 0 ≥ x3, x4 and |x1| ≥ |x4| ≥ |x3| ≥ |x2|}.
• straight cross flow (strongest goes straight):

Σ4132 := {x ∈ Σ: x1, x2 ≥ 0 ≥ x3, x4 and |x1| ≥ |x3| ≥ |x4| ≥ |x2|}.
The labeling of domains is just a convenient recording of the absolute strengths of
the flow rates xi, e.g., Σ4132 indicates that |x1| is largest followed by |x3| and then
|x4|, with |x2| being the smallest. Σ4sss signifies that |x1| is largest with |x2|, |x3|, |x4|
smaller, in no particular order.

For any fixed x, to obtain an upper bound on ρ̃(x), we make an explicit choice
of the mixing parameters t = (t(J◦))J◦∈J used to generate the replacement flow
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J ′ :=
∑
J◦∈J t(J◦)J◦ in the convex minimization (7.2) defining ρ̃(x). Our choices are

as follows (where we describe each x by two real parameters s and t).

Σ4sss = {x = (1,−t,−s, s+ t− 1) : s, t ≥ 0, s+ t ≤ 1},
J ′(s, t) := sJ1010 + tJ1100 + (1− s− t)J1001,

Σ4312 = {x = (s,−t, 1− s, t− 1) : 1/2 ≤ t ≤ s ≤ 1},
J ′(s, t) := sJ1100 + (1− s)J0011 + (s− t)J0101,

Σ4123 = {x = (1− s, s,−t, t− 1) : 0 ≤ s ≤ t ≤ 1/2},
J ′(s, t) := sJ0101 + tJ1010 + (1− s− t)J1001,

Σ4132 = {x = (1− s, s,−t, t− 1) : t ≥ 1/2, s+ t ≤ 1},
J ′(s, t) := sJ0101 + tJ1010 + (1− s− t)J1001.

By this construction

(7.10) ρ̃(x) ≤ ρ̃+(x) :=
P (J ′)∑4
i=1 |xi|p

∗

where J ′ and thus also ρ̃+(x) depend only on (s, t). To verify the conjecture, we check
that ρ̃+(x), as a function of (s, t), attains its maximum at the corners of the triangular
domains Σ4sss, . . . ,Σ4132. We then evaluate it there to see that the maximum is
ρ̃+((1, 0,−1, 0)) = ρ̃m(p). This is convincingly done by using a computer to generate
contour plots of ρ+(x) over the four domains and witnessing their convexity. We
performed this computation for m = 1, . . . , 4. For example, Figure 7.25 depicts plots
of ρ̃+(x) for m = 1 and p = 1.707491. (We further comment on this case below.) �

Remark 7.9. That the plots of the power ratios (Figure 7.25) over Σ4123 and
Σ4132 coincide upon mapping (s, t) to (s, 1− t) is explained by interchanging x3 and
x4. Indeed, the flow J ′4123 = sJ0101 + tJ1010 + (1− s− t)J1001 transforms then into

sJ0110 + tJ1001 + (1−s−t)J1010 = (sJ0101 + sJ1010 + (t− s)J1001) + (1− s− t)J1010

= sJ0101 + (1− t)J1010 + (t− s)J1001

which is the J ′4132 flow with parameters (s, 1− t).
To conclude, we attend to the lower bound in Theorem 1.1. Note that it comes

from rounding down to four digits the bound given by Proposition 7.8 form = 1. This
is the simplest instance of our method, dealing with just a few resistors, making it
easier to detail all that goes into the proof and clearly articulate the level of computer
assistance.

Proof of the lower bound in Theorem 1.1: We set p = 1.707491. First, we find
a good unit flux flow J approx

1010 in G̃1. Because of symmetry, we look among the flows
as depicted in Figure 7.20, which can be parametrized by just one real parameter
µ ∈ [0, 1/2]. This parameter can be selected ad hoc to be µ = 0.1258652. This se-
lection happens to be an approximate minimizer of the p-power, with p = 1.707491,
dissipated in the 22 unit resistors with non-zero current. By joining and using sym-
metry, the number of resistors can be reduced to 4—which yields the four terms
in the formula (7.11), below. Denote the power of J approx

1010 by P̃ ′1. By construction
P̃1 ≤ P̃ ′1.

A small explicit computation (for p = 1.707491 and µ = 0.1258652) gives

(7.11) ρ̃1 =
P̃1

2
≤ P̃ ′1

2
= 4|1/2|p∗ + 4|µ|p∗ + 2|1/2− µ|p∗ + |2µ|p∗ ≈ 0.9999996 < 1.
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It remains to verify Conjecture 7.3, which can be done by showing that ρ̃+(x) ≤
P̃ ′1
2
for all x. As already mentioned, it suffices to check that ρ̃+(x)—a concrete function

of the parameters s and t, evaluated by using J approx
1010 —attains its maximum at the

corners of the domains. We shy away from solving this calculus exercise here and only
present computer generated contour plots (Figure 7.25), where the sought behavior
of ρ̃+(x) is apparent. �
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Figure 7.24. Power of replacement flow J1010 (depicted in Figure 7.20) is a convex function
of µ with a unique minimum near µ = 0.1258652, where the power ratio is 0.9999996 < 1 for
p = 1.707491.
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Figure 7.25. The power ratio of the replacement flow J ′ as a function of parameters s (horizon-
tal axis) and t (vertical axis). J4sss, J4312 (above) and J4123, J4132 (below). Lighter color/shading
indicates higher power ratio. We use p = 1.707491—which is nearly optimal for m = 1—and an
approximation J approx

1010 . (J4123 and J4132 are congruent by Remark 7.9.)

8. Numerics

The numerics behind the prediction dimAR(X) ≈ 1.7965 and our upper bounds
for dimAR(X) are based on the computation of the p-resistance Rn(p) and the cor-
responding currents and potentials for the standard networks Gn with n = 1, . . . , 8.
(The resistance, current, and potential for the dual networks G∗n are then computed
by the duality relations.) Below we provide some details about the numerics on Gn.
The lower bounds rely on the analogous computations for the alternative networks
G̃n.
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We solve (1.3) by using the primal-dual approach, i.e., simultaneous solving of
the Euler–Lagrange equations (1.10) for potentials U(v) and currents J (e), subject
to Kirchhoff’s first law at the interior vertices and the flux/potential drop boundary
conditions (1.11). By using symmetry, we confine the computation to the bottom
left quarter of the network Gn.

To solve the nonlinear equations (1.10), we use Mathematica’s FindRoot func-
tion, which implements a variant of quasi-Newton method called Broyden–Fletcher–
Goldfarb–Shanno algorithm (in its limited-memory version (L-BFGS) for systems of
size > 250). We run the code on a single core Intel(R) Xeon(R) CPU E5-2640 v3
2.60GH with 188GB of RAM, under Ubuntu 14.04 OS. (Incidentally, for n = 6, an
eight years old laptop suffices and only about 1.3 GB of RAM is used in sub 30 min
time.)

Computing the solutions to 8-digit precision for n < 8 and 7 digit precision for
n = 8 takes no more than 8 quasi-Newton steps. When n = 8, the quarter-network
has 10, 065, 674 edges and 5, 275, 720 vertices, and Mathematica utilizes virtually all
of the available RAM memory, taking circa 54 hours to finish. Table 8.1 reports the

values of the pure power ratio ρn(p) = Pn
P0

=
(
Rn(p)
R0(p)

)p∗/p
for several p and n, together

with the computation time. (Recall that R0 = 1
2
, and P0 = 2 because we passed unit

current through each of the two resistors in G0, so the total flux J0 = 1 + 1 = 2.)

n p 1.797 1.798 1.799 1.800 1.801 1.802 1.803 seconds

1 0.93302724 0.93438418 0.93573978 0.93709402 0.93844692 0.93979847 0.94114868 2.4 · 10−2

2 0.91092471 0.91356353 0.91620350 0.91884459 0.92148680 0.92413012 0.92677453 9.6 · 10−2

3 0.90361233 0.90751319 0.91142121 0.91533640 0.91925872 0.92318816 0.92712471 4.7 · 10−1

4 0.90042774 0.90558235 0.91075365 0.91594164 0.92114631 0.92636766 0.93160569 3.6 · 100

5 0.89880763 0.90521203 0.91164610 0.91810988 0.92460341 0.93112675 0.93767996 5.4 · 101

6 0.89799388 0.90564725 0.91334673 0.92109246 0.92888457 0.93672321 0.94460851 4.5 · 102

7 0.89765931 0.90656283 0.91553238 0.92456824 0.93367071 0.94284010 0.95207669 5.4 · 103

8 0.89763003 0.90778602 0.91803144 0.92836683 0.93879270 0.94930960 0.95991807 9.4 · 104

Figure 8.1. Power ratios ρn(p) and their computing times.

Between the 0.001 spaced values of p (in Table 8.1), we interpolated ρn(p) by cubic
splines (via Interpolation[] function in Mathematica), with the interpolation error
estimated by using the standard centered differences for the fourth derivative, [15]:

interpolation error ≤ 5

384
0.0014 max |ρ(4)

n (p)| ≤ 1.5 · 10−11,

well below the 10−8 precision threshold.
The interpolated plots of ln ρn(p) are depicted in Figure 8.26. The inset picture

depicts the plots of detrended functions gn(p) := ln ρn(p)−ln ρ1(p)
n−1

for n = 2, . . . , 8, which
are coarsely approximated by anp + bn with the slopes an ≈ 1.4, seemingly (yet
imperceptibly in the figure) decreasing to a∞ ≈ 1.38, and with bn tending to some
value b∞ ' −2.52. That is, we have an approximate functional form ln ρn(p) ≈
n(a∞p + b∞) + a0p + b0, describing a family of steepening lines pivoting about a
single point, whose abscissa p∞ := −b∞/a∞ is a rough approximation to pres (cf.
Figure 1.4). To better resolve pres, we study the abscissas pi,j of the intersection
points between the i-th and j-th graph, which are listed in Table 8.2.

We extrapolate the sequence of points (pn, yn) where the graphs of ln ρn(p) and
ln ρn−1(p) intersect (n = 2, . . . , 8). (The pn = pn,n−1 appear on the diagonal of
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Table 8.2.) Looking at Figure 8.26, these points appear to move left-and-down along
the envelope of the steepening graphs and conjecturally converge to a single point
(pres, yres), where the abscissa pres is the conformal dimension and the ordinate yres

gives the critical resistance; specifically, yres = p∗

p
ln R(pres)

1
2

where R(pres) is as in
Conjecture 1.5.
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Figure 8.26. Log of the power ratio log ρn(p) for 1.797 ≤ p ≤ 1.803 (for n = 1, . . . , 8); cf.
Figure 1.4. Inset: graphs of detrended functions gn(p) := ln ρn(p)−ln ρ1(p)

n−1 .

j i 2 3 4 5 6 7 8
1 1.81398 1.80837 1.80544 1.80366 1.80247 1.80161 1.80096
2 1.80273 1.80113 1.80019 1.79956 1.79911 1.79876
3 1.79953 1.79891 1.79849 1.79819 1.79796
4 1.79829 1.79797 1.79774 1.79756
5 1.79765 1.79746 1.79732
6 1.79727 1.79715
7 1.79702

Table 8.2. Values pi,j of p where ρi(p) = ρj(p).

To extrapolate the value pres from mere first seven terms of the sequence (pn)∞n=2

we utilize Shanks transform, as done in [4]. The difference quotients(
pn+1 − pn

pn − pn−1

)7

n=3

≈ (0.2847, 0.3842, 0.5209, 0.5985, 0.6398)

suggest that pn converge geometrically (with the asymptotic quotient ≤ 0.7). This
justifies acceleration of this convergence via Shanks transform, whereby (pn)8

n=2 yields
points

(8.1) p̂n = pn+1 −
pn+1 − pn

pn+1 − 2pn + pn−1

(pn+1 − pn) (n = 3, . . . , 7),

reported to five digits past the decimal point as
(p̂n)7

n=3 = (1.79825, 1.79753, 1.79696, 1.79670, 1.79659).

The associated difference quotients(
p̂n+1 − p̂n

p̂n − p̂n−1

)6

n=4

= (0.787742, 0.453624, 0.423594)
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again indicate geometric convergence, prompting a repeated Shanks transform yield-
ing3

(ˆ̂pn)6
n=4 = (1.79484, 1.79648, 1.79651).

On the basis of the last value we predict the five significant digits of the conformal
dimension to be

pres ≈ 1.7965.

We checked that this prediction is not degraded by amplification of the round-off
error under the Shanks transform. Indeed, the precision of pn was 10−8 and the ratio
of the first and second differences in (8.1) does not exceed 3, so p̂n retain at least 10−7

precision. The situation is similar for the second application of Shanks transform, so
we have confidence that any errors in the five reported digits ˆ̂pn are inherent to the
departure of the sequence (pn) from geometric behavior.

9. Appendix: Proof of Lemma 7.1

We start with a simple general criterion allowing rough comparison of extremal
lengths. Let G = (V , E) and G̃ = (Ṽ , Ẽ) be two networks and Γ and Γ̃ be two families
of (vertices of) paths in G and G̃, respectively. Given M > 0, we shall say that
(G̃, Γ̃) is M -quasi-contained in (G,Γ) iff to each ṽ ∈ Ṽ there is associated a subset
B(ṽ) ⊂ V—of which one should think as neighbors of ṽ—such that:

(i) given any ṽ0, . . . , ṽk ∈ Ṽ that are vertices of a path γ̃ ∈ Γ̃ there are v0, . . . , vk′ ∈⋃k
j=1B(ṽj) that are vertices of a path γ ∈ Γ;

(ii) for any ṽ ∈ Ṽ , the cardinality of B(ṽ) does not exceed M ;
(iii) for any v ∈ V , the number of ṽ ∈ V with v ∈ B(ṽ) does not exceed M .
IfM -quasi-containment holds both ways, we call (G̃, Γ̃) and (G,Γ) M -quasi-equal.

Fact 9.1. If (G̃, Γ̃) is M -quasi-contained in (G,Γ) then the p-extremal lengths of
Γ and Γ̃ (defined as in (1.6) or (1.8)) satisfy

(9.1) Λ(p) ≤MpΛ̃(p) (p > 1).

Proof. Given an admissible weight m : V → [0,∞), we define m̃ : Ṽ → [0,∞) by

(9.2) m̃(ṽ) :=
∑
v∈B(ṽ)

m(v).

The weight m̃ is admissible by construction because, for any γ̃ ∈ Γ̃, taking γ ∈ Γ as
in (i) yields

(9.3)
∑
ṽ∈γ̃

m̃(ṽ) ≥
∑
v∈γ

m(v) ≥ 1.

At the same time convexity of t 7→ tp and (ii) and (iii) give

(9.4)
∑
ṽ∈Ṽ

m̃(ṽ)p =
∑
ṽ∈Ṽ

 ∑
v∈B(ṽ)

m(v)

p

≤
∑
ṽ∈Ṽ

∑
v∈B(ṽ)

Mp−1m(v)p ≤Mp−1
∑
v∈V

Mm(v)p.

By arbitrariness of m, via (1.8), we get the desired inequality:

�(9.5) Λ̃(p)−1 ≤MpΛ(p)−1.

3The difference quotient for these is 0.015014, and one more Shank transform yields 1.79651.
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Corollary 9.2. If (G̃, Γ̃) and (G,Γ) are M -quasi-equal then

(9.6) M−pΛ̃(p) ≤ Λ(p) ≤MpΛ̃(p) (p > 1).

Proof of Lemma 7.1. We fix n ∈ N and drop the subscript n, that is let G := Gn
and G̃ := G̃n. To align the input/output sets we rotate G by 90 degrees, so that the
leftmost vertices are the inputs and the rightmost vertices are the outputs for both
networks. For Γ and Γ̃ we take the paths connecting input to output (as in (3.2)).

Because, by Proposition 3.1, Λ̃(p) is comparable to R̃n(p) = P̃
p∗/p
n and Λ(p) is

comparable to Rn(p) = P
p∗/p
n , it suffices to show that (G̃, Γ̃) and (G,Γ) are M -quasi

equal (and then lean on Corollary 9.2).
Recall that, including the zero current edges along the sides for simplicity, G is

the network carried by the tiling Φn
std(TA) where Φstd is as in Figure 6.14 and G̃ is

carried by the tiling Φn(TC) where Φ is as in Figure 7.19. Although the networks
they carry differ, the tiles for both tilings coincide and are the 3−n×3−n grid squares
making up the carpet approximant Xn.

Given ṽ ∈ Ṽ associate to it all the tiles that contain ṽ or intersect (touch) such
tiles containing ṽ. Define B(ṽ) as the set of all vertices in V that belong to the tiles
associated to ṽ. We leave it as an exercise to verify the conditions (i),(ii), (iii) for a
suitable M > 0 (that does not depend on n ∈ N). Thus (G̃, Γ̃) is M -quasi contained
in (G,Γ). The analogous construction with G̃ and G switched shows the opposite
M -quasi containment. �
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