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Abstract. By means of some integral operators and kernel functions, we characterize when

a sense preserving homeomorphism h on the unit circle S1 is quasisymmetric, symmetric or p-

integrable asymptotic affine. As an application, we use these results to characterize the pull-back

operator, induced by a quasisymmetric homeomorphism on S1.

1. Introduction and results

Let ∆ = {z : |z| < 1} be the unit disk in the complex plane C, ∆∗ = C\∆ and
S1 = {z : |z| = 1}. We say that a sense preserving homeomorphism h on the unit
circle S1 is quasisymmetric if there is some M > 0 such that

1

M
≤

∣

∣

∣

∣

h(I1)

h(I2)

∣

∣

∣

∣

≤ M

for all pairs of adjacent arcs on the unit circle S1 with the same arc length |I1| = |I2| ≤
π. Beurling and Ahlfors gave a very important characterization of quasisymmetric
homeomorphism (see [BA]).

Theorem 1.1. [BA] A sense preserving self-homeomorphism h on the unit circle
S1 is quasisymmetric if and only if there exists some quasiconformal homeomorphism
of ∆ onto itself which has boundary value h.

In [BA], Beurling and Ahlfors constructed a quasiconformal extension of h, which
is called Beurling–Ahlfors extension. There is also another quasiconformal extension,
called Douady–Earle extension, of h to the unit disk which is conformally invariant
(see [DE]).

Hu and Shen [HS] introduced a integral operator T−
h which is induced by the

following kernel function

(1) φh(ζ, z) =
1

2πi

ˆ

S1

h(w)

(1− ζw)2(1− zh(w))
dw, (ζ, z) ∈ ∆×∆,

where h is a sense preserving homeomorphism on the unit circle S1. The function
φh is holomorphic and also appeared in [Cui]. The integral operator T−

h is defined as
for any holomorphic function ψ in ∆,

(2) T−
h ψ(ζ) =

1

π

¨

∆

φh(ζ, z)ψ(z̄) dx dy, ζ ∈ ∆.
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Let p ≥ 2. The Banach space Ap consists of all holomorphic functions φ in the
unit disk ∆ with finite norm

(3) ‖φ‖Ap =

(

1

π

¨

∆

|φ(z)|p(1− |z|2)p−2 dx dy

)
1

p

<∞.

When p = 2, A2 is a Hilbert space with inner product defined as

(4) 〈φ, ψ〉 =
1

π

¨

∆

φ(z)ψ(z) dx dy.

We use SH0(S
1) to denote the set of all sense preserving homeomorphisms h on

the unit circle S1, normalized by

(5)
1

2π

ˆ

S1

h(ζ)|dζ | = 0.

For w ∈ ∆, consider the Möbius transformation

(6) Ψw(ζ) =
ζ − w

1− wζ
, ζ ∈ ∆.

Let h ∈ SH0(S
1) and Hw be the Poisson extension of Ψw ◦ h. It is known that Hw

is a homeomorphism of ∆ onto ∆ for fix w ∈ ∆ (see [Cho]). Let p ≥ 2, we define
kernel function Hh,p as

(7) Hh,p(w) =

(

1

2π

¨

∆

|∂Hw(z)|p(1− |z|2)p−2 dx dy

)1/p

, w ∈ ∆.

The function Hh,2 already appeared in [Cui] and [HS].
We also consider the kernel function Φh,p, which is defined as

(8) Φh,p(w) =

(

1

2π

¨

∆

|φh(z, w)|
p(1− |z|2)p−2 dx dy

)1/p

, w ∈ ∆,

where p ≥ 2 and h ∈ SH0(S
1). The function Φh,2 has been used to study Teichmüller

theory in [HS, SW, TS].
Hu and Shen [HS] proved the following result.

Theorem 1.2. [HS] Let h ∈ SH0(S
1). If h is a quasisymmetric homeomorphism,

then the integral operator T−
h : A2 → A2 is bounded.

In this paper, we shall prove that the converse of Theorem 1.2 is also true and
therefore obtain a characterization of quasisymmetric homeomorphism. Indeed, we
prove the following general case.

Theorem 1.3. Let h ∈ SH0(S
1) and p ≥ 2.Then the following statements are

equivalent.

(i) h is a quasisymmetric homeomorphism;
(ii) The integral operator T−

h : Ap → Ap is bounded;
(iii) supw∈∆Hh,p(w) <∞;
(iv) supw∈∆(1− |w|2)Φh,p(w) <∞.

A sense preserving homeomorphism h is called a symmetric homeomorphism if
for any pair of adjacent sub-intervals I1 and I2 with |I1| = |I2| in S1, it holds that

(9)
|h(I1)|

|h(I2)|
= 1 + o(1), |I1| = |I2| → 0+.
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The following result, due to Gardiner and Sullivan [GS], characterizes when a
quasisymmetric homeomorphism h is symmetric.

Theorem 1.4. [GS] A quasisymmetric homeomorphism h is symmetric if and
only if h has a quasiconformal extension f to the unit disk so that its complex
dilataion µ = ∂zf/∂zf satisfies the property that µ(z) → 0 as |z| → 1.

In terms of the integral operator T−
h , kernel functions Hh,p and Φh,p, we obtain

the following

Theorem 1.5. Let p ≥ 2 and h be a quasisymmetric homeomorphism on the
unit circle S1, normalized by (5). Then the following statements are equivalent.

(I) h is a symmetric homeomorphism;
(II) The integral operator T−

h : Ap → Ap is compact;
(III) lim|w|→1Hh,p(w) = 0;
(IV) lim|w|→1(1− |w2|)Φh,p(w) = 0.

Let p ≥ 2, the Besov space Bp(S
1) on the unit circle S1 is the collection of

measurable functions f (modulo functions which are constant almost everywhere)
for which the norm

(10) ‖f‖p =

(
ˆ 2π

0

ˆ 2π

0

|f(eit)− f(eiθ)|p

|t− θ|2
dt dθ

)1/p

is finite (see [Tr]). It is clear that the Besov space Bp(S
1) is a Banach space and

Bp(S
1) ⊂ Bq(S

1) for p ≤ q. B2(S
1) is the classic Sobolev space H1/2 which consists

of all integrable functions u ∈ L1([0, 2π]) on the unit circle with semi-norm

(11) ‖u‖p =

(

+∞
∑

n=−∞

|n||an(u)|
2

)1/2

,

where an(u) is the n-th Fourier coefficient of u, namely,

(12) an(u) =
1

2π

ˆ 2π

0

u(θ)e−inθ dθ.

Let p ≥ 2. Recall that a sense preserving homeomorphism h on the unit circle S1

is p-integrable asymptotic affine homeomorphism if h has a quasiconformal extension
f to the unit disk ∆ whose complex dilatation µ satisfies

(13)

¨

∆

|µ(z)|p

(1− |z|2)2
dx dy <∞.

The 2-integrable asymptotic affine homeomorphism was first introduced by Cui [Cui]
and was much investigated in recent years (see [RSS1, RSS2, Shen, TT, STW]). For
p ≥ 2, the p-integrable asymptotic affine homeomorphism was first introduced and
investigated by Guo [Guo] (see also [MY, Tang, Ya, HWS, TFS, TS]).

The authors proved the following result, which gives a intrinsic characteriztion
of p-integrable asymptotic affine homeomorphism without using quasiconformal ex-
tension (see [TS]).

Theorem 1.6. [TS] Let p ≥ 2 and h be a quasisymmetric homeomorphism,
normalized by (5), on the unit circle S1.Then h is a p-integrable asymptotic affine
homeomorphism if and only if h is absolutely continuous (with respect to the arc-
length measure) such that log h′ belongs to Bp(S

1).
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It should be pointed out that the case when p = 2 of Theorem 1.6 was proved by
Shen in [Shen].

We obtain a new characterization of p-integrable asymptotic affine homeomor-
phism by means of kernel functions Hh,p and Φh,p in this paper.

Theorem 1.7. Let p ≥ 2 and h be a quasisymmetric homeomorphism, normal-
ized by (5), on the unit circle S1.Then the following statements are equivalent.

(a) h is a p-integrable asymptotic affine homeomorphism;

(b)
˜

∆

Hh,p(w)p

(1−|w|2)2
du dv <∞;

(c)
˜

∆
Φh,p(w)

p(1− |w|2)p−2 du dv <∞.

We point out that the condition (c) in Theorem 1.7 is different from that in
Theorem 3.4 in [TS], which is

¨

∆

Φh,2(w)
p(1− |w|2)p−2 du dv <∞.

The operator T−
h is also related to the pull-back operator Th which is defined by

(14) Th(f) = f ◦ h, f ∈ Bp(S
1),

where h ∈ SH0(S
1). Vodop’yanov proved in [Vo] that the homeomorphism for which

Th is a bounded operator on Bp(S
1) (p ≥ 2) is precisely quasisymmetric.

Theorem 1.8. [Vo] Let p ≥ 2 and h ∈ SH0(S
1). Then Th is a bounded operator

on Bp(S
1) if and only if h is a quasisymmetric homeomorphism.

Bourdaud and Sickel [BS] characterized the homeomorphisms for which Th is a
bounded operator on Bp(S

1) for the case when 1 < p <∞. For the case when p = 2,
i.e., the Sobolev space H1/2, Nag and Sullivan gave a different proof of Theorem 1.8
in [NS] and proved that the universal Teichmüller space can be embedded in the
universal Siegel period matrix space by means of the pull-back operator Th (see
also [TT]). This operator Th on H1/2 has played an important role in the study of
Teichmüller theory (see [HS, TT, SW, NS, Pa, Shen, STW, TS]).

By using Theorem 1.3, we shall give the “if” part of Theorem 1.8 a different proof.
We end this introduction section with the organization of the paper. In section 2,

we prove Theorem 1.3 by establishing a relationship between the complex dilatation of
the Douady–Earle extension of h ∈ SH0(S

1) and the integral operator T−
h . Section 3

is devoted to the proof of Theorems 1.5 and 1.7. We shall use Theorem 1.3 to study
the pull-back operator Th in section 4.

2. Characterizations of quasisymmetric homeomorphisms

In this section, we shall prove Theorem 1.3. Let us begin with some lemmas.
The following result will prove very useful in our proof.

Lemma 2.1. [Zhu] Suppose that (X, µ) is a measure space and K(x, y) is a
nonnegative measurable function on X ×X, K is the integral operator with kernel
K(x, y), that is

Kϕ(z) =

¨

X

K(x, y)ϕ(y) dµ(y).
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Let 1 < p <∞ with 1/p+ 1/q = 1. If there exist positive constant C1 and C2 and a
positive measurable function h on X such that

¨

X

K(x, y)hq(y) dµ(y) ≤ C1h
q(x)

for almost every x ∈ X and
¨

X

K(x, y)hp(x) dµ(x) ≤ C2h
p(y)

for almost every y ∈ X, then K is a bounded operator on Lp(X, dµ) with norm less

then or equal to C
1/q
1 C

1/p
2 .

See [Zhu] for a proof.
We also need the following integral estimates (see [Zhu]).

Lemma 2.2. [Zhu] Suppose that z ∈ ∆, s > 0 and t > −1. Then there exists
constant C > 0 so that

1

C

1

(1− |z|2)s
≤

¨

∆

(1− |w|2)t

|1− zw̄|2+t+s
du dv ≤ C

1

(1− |z|2)s
.

Let h ∈ SH0(S
1) and

(15) F (z, w) =
1

2π

ˆ

S1

h(ζ)− w

1− wh(ζ)

1− |z|2

|ζ − z|2
|dζ |,

where (z, w) ∈ ∆×∆. The Douady–Earle extension E(h) of h is defined as

E(h) =

{

h(z), for z ∈ S1,

w, where F (z, w) = 0 for z ∈ ∆,

(see [DE]).
The following result gives an estimate of the complex dilatation of the Douady–

Earle extension E(h) of h ∈ SH0(S
1) at the origin, which is needed in our proof of

Theorem 1.3.

Lemma 2.3. Let h ∈ SH0(S
1) and ν be the complex dilatation of the Douady–

Earle extension E(h) of h. Then there exists a positive constant C0 > 0 such that

(16)
|ν(0)|p

(1− |ν(0)|2)p/2
≤ C0

1

2π

¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy.

Proof. The Fourier coefficient of h are

an =
1

2π

ˆ π

−π

e−inth(eit) dt, n = 0,±1,±2, · · · .

It was shown (see [DE, Po, CZ]) that

Fz(0, 0) =
1

2π

ˆ π

−π

e−ith(eit) dt = a1,(17)

Fz(0, 0) =
1

2π

ˆ π

−π

eith(eit) dt = a−1,(18)

Fw(0, 0) = 1,(19)

Fw(0, 0) =
1

2π

ˆ π

−π

h(eit)2 dt = b.(20)
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For simplicity of notations, we write Fz for Fz(0, 0), etc. By a straight forward
computation, we get

F z + FwE(h)z + FwE(h)z = 0,

Fz + FwE(h)z + FwE(h)z = 0.

Therefore, we have

(21)
|ν(0)|p

(1− |ν(0)|2)p/2
=

|a1b+ a−1|
p

(|a1|2 − |a−1|2)p/2(1− |b|2)p/2
,

where ν is the complex dilataion of E(h). It is known that if h is a sense-preserving
homeomorphism on S1, then there exists a positive constant δ > 0 so that

(22) |a1|
2 − |a−1|

2 = δ > 0, 1− |b|2 ≥
δ2

4
,

(see [Po]). Noting that |h(ζ)| = 1 for |ζ | = 1, we have |a1| ≤ 1. Consequently,
combining (21) with (22) yields

(23)
|ν(0)|p

(1− |ν(0)|2)p/2
≤
δ

3p

2

2p
|a1b+ a−1|

p ≤ δ
3p

2 (|a−1|
p + |b|p).

We borrow some ideas from [Cui] to estimate |a−1| and |b|. Let H be the Poisson
extension of h. Observing that H(0) = 0 and using Cauchy–Green formula to the
function zH(z), we obtain

|a−1| =

∣

∣

∣

∣

1

2πi

ˆ

S1

ζh(ζ)

ζ − 0
dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2π

¨

∆

∂H(z) dx dy

∣

∣

∣

∣

.

It follows from the Hölder inequality that there exists a constant C1 > 0 so that

|a−1|
p ≤

1

2π

¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy

(

1

2π

¨

∆

(1− |z|2)
2−p

p−1 dx dy

)p−1

≤ C1
1

2π

¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy.

(24)

Similarly, using Cauchy–Green formula to the function H2(z), we deduce that there
exists a constant C2 > 0 such that

|b| =

∣

∣

∣

∣

1

2πi

ˆ

S1

h2(ζ)

ζ − 0
dζ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2π

¨

∆

2H(z)

z
∂H(z) dx dy

∣

∣

∣

∣

≤ C2

∣

∣

∣

∣

1

2π

¨

∆

∂H(z) dx dy

∣

∣

∣

∣

.

By using the Hölder inequality agian and arguing similar to (24), we deduce that
there exists a constant C3 > 0 so that

(25) |b|p ≤ C3
1

2π

¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy.

Therefore, it follows from (23), (24) and (25) that there exists a constant C4 > 0
such that

(26)
|ν(0)|p

(1− |ν(0)|2)p/2
≤ C4

1

2π

¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy.

The proof follows. �

We point out that Lemma 2.3 is an extension of Proposition 7 in [CZ], where
p = 2 and h is assumed to be a quasisymmetric homeomorphism on the unit circle
S1.

Now, we start our proof of Theorem 1.3.
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Proof of Theorem 1.3. It is known that

(27) ∂Hw0(z) = (1− |w0|
2)φh(z, w0),

see [Cui] and [HS]. This shows that (iii) ⇔ (iv). Therefore, it remains to show that
(i) ⇒ (ii) ⇒ (iii) ⇒ (i).

We first show that (i) ⇒ (ii). Assume that h is a quasisymmetric homeomorphism
on the unit circle S1, normalized by (5), and f is the Beurling–Ahlfors extension of
h into ∆. Let ζ ∈ ∆, by a result of [HS], we have

T−
h ψ(ζ) =

1

π

¨

∆

∂f(w)ψ(f(w))

(1− ζw)2
du dv.

Thus,

‖T−
h ψ‖

p
Ap =

1

π

¨

∆

∣

∣

∣

∣

1

π

¨

∆

∂f(w)ψ(f(w))

(1− ζw)2
du dv

∣

∣

∣

∣

p

(1− |ζ |2)p−2 dξ dη

≤
1

πp+1

¨

∆

∣

∣

∣

∣

¨

∆

(1− |w|2)2−p|∂f(w)ψ(f(w))|

|1− ζw|2
(1− |w|2)p−2 du dv

∣

∣

∣

∣

p

· (1− |ζ |2)p−2 dξ dη.

(28)

Let dµ(w) = (1− |w|2)p−2 du dv and

(29) K(ζ, w) =
(1− |w|2)2−p

|1− ζw|2
, (ζ, w) ∈ ∆×∆.

Consider the test function h(w) = (1 − |w|2)
3

2p
−1. It follows from Lemma 2.2 that

there exists constant C1 > 0 such that
¨

∆

(1− |w|2)2−p

|1− ζw|2
h(w)q dµ(w) =

¨

∆

(1− |w|2)
3q

2p
−q

|1− ζw|2
du dv

≤ C1(1− |w|2)
3

2p
−1 = C1h(w)

q.

(30)

On the other hand, by Lemma 2.2 again, we deduce that there exists constant C2 > 0
so that

¨

∆

(1− |w|2)2−p

|1− ζw|2
h(ζ)p dµ(ζ) =

¨

∆

(1− |w|2)2−p(1− |ζ |2)−1/2

|1− ζw|2
dξ dη

≤ C2(1− |ζ |2)
3

2
−p = C2h(ζ)

p.

(31)

Combining (30) with (31) and using Lemma 2.1, we deduce that the following oper-
ator

Kϕ(ζ) =

¨

∆

K(ζ, w)ϕ(ζ) dµ(w),

is bounded on Lp(∆, dµ). Consequently, it follows from (28) that there exists constant
C3 > 0 such that

‖T−
h ψ‖

p
Ap ≤

C3

πp+1

¨

∆

|∂f(ζ)ψ(f(ζ))|p(1− |ζ |2)p−2 dξ dη.(32)

It is well known that the Beurling–Ahlfors extension f is bilipschitz continuous with
respect to the hyperbolic metric (see [A, Le]), that is

(33)
1

C ′
3

(1− |f(ζ)|2) ≤ (1− |ζ |2)J
1/2
f (ζ) ≤ C ′

3(1− |f(ζ)|2),
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where C ′
3 is a positive constant depending only on the complex dilatation of f and

Jf is the Jacobian of f . Let g = f−1 and µ be the complex dilatation of g. By (32)
and a change of variable, we obtain

‖T−
h ψ‖

p
Ap

≤
C3

πp+1

¨

∆

|∂f(ζ)|p

(|∂f(ζ)|2 − |∂f(ζ)|2)p/2
|ψ(f(ζ))|p(1− |ζ |2)p−2J

p/2
f (ζ) dξ dη

≤ C4
1

π

¨

∆

|µ(w)|p

(1− |µ(w)|2)p/2
|ψ(w)|p (1− |w|2)p−2 du dv

≤ C4
1

π

kp

(1− k2)p/2
‖ψ‖pAp,

(34)

where k = ‖µ‖∞ < 1 and C4 is a positive constant depending only on the complex
dilatation of f . This shows that (i) ⇒ (ii).

We next prove that (ii) ⇒ (iii). Let h be a sense-preserving homeomorphism on
S1. Suppose that the operator T−

h : Bp → Bp is bounded. For w0 ∈ ∆, consider the
function

(35) ψw0
(ζ) =

1− |w0|
2

(1− w0ζ)2
.

By Lemma 2.2, we conclude that there exists a constant C5 > 0 independing of w0

such that

(36) ‖ψw0
‖pAp =

1

π

¨

∆

(1− |w0|
2)p(1− |ζ |2)p−2

|1− w0ζ |2p
dξ dη ≤ C5 <∞.

It was proved in [HS] that

(37) T−
h ψw0

(ζ) = (1− |w0|
2)φh(ζ, w0).

Noting that T−
h : Bp → Bp is bounded, combining (36), (37) with (27), we deduce

that there exists a constant C6 > 0 so that

(38) Hh,p(w0)
p = ‖T−

h ψw0
‖pAp ≤ C6‖ψw0

‖pAp ≤ C5C6 <∞.

This finishes the proof of (ii) ⇒ (iii).
Finally, we show that (iii) ⇒ (i). Suppose that h ∈ SH0(S

1) and supw0∈∆Hh,p(w0)
p

<∞. By Theorem 1.1, to show that h is quasisymmetric, it is sufficient to show that
h has a quasiconformal extension to the unit disk ∆. Indeed, we shall show that the
Douady–Earle extension E(h) of h is a quasiconformal mapping of ∆ onto ∆.

It is well known that if h is a sense-preserving homeomorphism on S1, then E(h)
is a homeomorphism of ∆ onto ∆ (see [DE, Po]). We next estimate the complex
dilatation of E(h).

Let (w0, z0) ∈ ∆ × ∆ with w0 = E(h)(z0). Consider the following two Möbius
transformations

(39) Ψw0
(ζ) =

ζ − w0

1− w0ζ
, Γz0(ζ) =

ζ + z0
1 + z0ζ

, ζ ∈ ∆.

Let h = Ψw0
◦ h ◦ Γz0 and H be the Poisson extension of h. Noting that H ◦ Γ−1

z0
is

harmonic, we have H ◦ Γ−1
z0

= Hw0, where Hw0 is the Poisson extension of Ψw0
◦ h.

Since the Douady–Earle extension is conformal invariant (see [DE]), we have

E(h) = Ψw0
◦ E(h) ◦ Γz0.
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Let µ be the complex dilatation of the converse E(h)−1 of E(h). A computation gives
¨

∆

|∂H(z)|p(1− |z|2)p−2 dx dy =

¨

∆

|∂Hw0(z)|p(1− |z|2)p−2 dx dy

and

|νh(0)| = |µ(w0)|,

where νh is the complex dilatation of E(h). Consequently, applying Lemma 2.3 to
the quasisymmetric homeomorphism h yields

(40)
|µ(w0)|

p

(1− |µ(w0)|2)p/2
≤ C ′

4

1

2π

¨

∆

|∂Hw0(z)|p(1− |z|2)p−2 dx dy,

where C ′
4 is a positive constant which independs on w0 ∈ ∆.

Let ν be the complex dilatation of E(h). Observing that |ν(z0)| = |µ(w0)|, by
the condition (iii), we get

sup
z0∈∆

|ν(z0)|
p

(1− |ν(z0)|2)p/2
≤ C ′

4 <∞.

On the other hand, it is known that for z0 ∈ ∆,

|∂E(h)(z0)|
2 − |∂E(h)(z0)|

2 > 0,

(see [Po, DE]). Therefore, we conclude that ‖ν‖∞ < 1. This implies E(h) is a
quasiconformal mapping of ∆ onto ∆. The proof follows. �

3. Characterizations of symmetric and p-integrable

asymptotic affine homeomorphisms

In this section, we shall prove Theorem 1.5 and Theorem 1.7, which give some
characterizations of symmetric and p-integrable asymptotic affine homeomorphisms.

We first prove Theorem 1.5.

Proof of Theorem 1.5. We first prove that (I) ⇒ (II). Suppose that h is a
symmetric homeomorphism. Then h has a quasiconformal extension f to ∆ with
complex dilatation µ, which is bilipschitz continuous with respect to the hyperbolic
metric and satisfies the property that for any ε > 0, there exists a constant r0 > 0
so that |µ(z)| < ε for all |z| > r0 (see [GS]). Assume that {ψn}

∞
n=1 is a bounded

sequence of Ap and converges to zero on any compact subset of ∆. Thus, there exists
N0 > 0 so that for all n > N0,

¨

|w≤r0

|ψn(w)|
p(1− |w|2)p−2 du dv < ε.

It follows from (34) that for all n > N0,

‖T−
h ψn‖

p
Ap ≤

C ′′
4k

p

π(1− k2)p/2
ε+

C ′′
4 ε

p

π(1− ε2)p/2
‖ψn‖Ap

,

where k = ‖µ‖∞ and C ′′
4 > 0 depends only on k. This implies that {T−

h ψn}
∞
n=1

converges to zero in Ap. Therefore, T−
h : Ap → Ap is a compact operator.

We next prove that (II) ⇒ (III). Consider the function ψw0
as in (35), which

tends to zero on any compact subset of ∆ as |w0| → 1. Also, from (36), we have
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‖ψw0
‖pAp

< C5, where C5 is independent of w0. Since T−
h : Ap → Ap is compact, we

get from the first equality of (38) that

lim
|w0|→1

Hh,p(w0) = lim
|w0|→1

‖T−
h ψw0

‖Ap = 0.

We proceed to show that (III) ⇒ (I). Let E(h) be the Douady–Earle extension
of h with complex dilatation ν. From (40) and the condition (III), we have

lim
|w|→1

|µ(w)| = 0,

where µ is the complex dilatation of the converse E(h)−1 of E(h). Noting that
|ν(z)| = |µ(w)|, where E(h)(z) = w, we get

lim
|z|→1

|ν(z)| = 0.

Thus, we conclude from Theorem 1.4 that h is symmetric.
Finally, it follows from (27) that (III) ⇔ (IV). The proof of Theorem 1.5 is

completed. �

We next prove Theorem 1.7.

Proof of Theorem 1.7. It follows from (27) that (b) ⇔ (c). We need only to
show that (a) ⇔ (b). Let h be a p-integrable asymptotic affine homeomorphism on
the unit circle S1. Then h has a quasiconformal extension f to the unit disk ∆ with
complex dilatation µ, which is bilipschitz continuous with respect to the hyperbolic
metric and satisfies

(41)

¨

∆

|µ(z)|p

(1− |z|2)2
dx dy <∞,

(see [Cui, Tang]). By applying Lemma 2.2, we conclude from (37), (27) and (34)
that there exist two positive constants C1 and C2 so that

¨

∆

Hh,p(w)
p

(1− |w|2)2
du dv ≤ C1

1

π

¨

∆

¨

∆

|µ(z)|p |ψw(z)|
p

(1 − |µ(z)|2)p/2
(1− |z|2)p−2

(1− |w|2)2
du dv dx dy

≤ C2

¨

∆

|µ(z)|p

(1− |z|2)2
dx dy <∞,

(42)

where ψw is defined as in (35). This finishes the proof of (a) ⇒ (b).
Conversely, we consider the Douady–Earle extension E(h) of h with complex

dilatation ν. From (40), we obtain
¨

∆

|µ(w)|p

(1− |w|2)2
du dv <∞,

where µ is the complex dilatation of the converse E(h)−1 of E(h). Noting that the
set of all p-integrable asymptotic affine homeomorphisms on the unit circle S1 is a
group (see [Tang]), we conclude that

¨

∆

|ν(w)|p

(1− |w|2)2
du dv <∞.

This completes the proof of Theorem 1.7. �

Combing Theorem 1.7 and Theorem 1.6 gives the following
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Corollary 3.1. Let p ≥ 2 and h be a quasisymmetric homeomorphism, normal-
ized by (5), on the unit circle S1.Then h is absolutely continuous (with respect to
the arc-length measure) such that log h′ belongs to Bp(S

1) if and only if

(43)

¨

∆

Hh,p(w)
p

(1− |w|2)2
du dv <∞.

4. Pull-back operators indecued by quasisymmetric homeomorphisms

In this section, we shall use Theorem 1.3 to prove the “if” part of Theorem 1.8.
We first recall some notions. Let p ≥ 2 and Dp(∆) denote the space of all harmonic
functions u in the unit disk ∆ with semi-norm

(44) ‖u‖Dp
=

(

1

π

¨

∆

(|∂u(z)| + |∂u(z)|)p(1− |z|2)p−2 dx dy

)
1

p

.

Let H be the Poisson integral operator. It is well known that a integrable function
v on the unit circle S1 belongs to the the Besov space Bp(S

1) if and only if H(v) ∈
Dp(∆) and there is constant C > 0 such that for any v ∈ Bp(S

1),

1

C
‖v‖p ≤ ‖H(v)‖Dp

≤ C‖v‖p

(see [Tr], [RS]). We denote by Dp
a(∆) be the Banach space of all analytic functions

ϕ in ∆ with the semi-norm

(45) ‖u‖Dp
a
=

(

1

π

¨

∆

|ϕ′(z)|p(1− |z|2)p−2 dx dy

)
1

p

.

Then it is clear that Dp(∆) = Dp
a(∆)⊕Dp

a(∆), precisely, for each u ∈ Dp
a(∆), there

exists a unique pair of holomorphic functions ϕ and ψ in Dp
a(∆) with ϕ(0)− u(0) =

ψ(0) = 0 such that u = ϕ + ψ. Define two operator P+ and P− by P+u = ϕ and

P−u = ψ(z). Let h ∈ SH0(S
1), we define two further operators P+

h = P+ ◦H ◦ Th
and P−

h = P− ◦H ◦ Th.
We state the “if” part of Theorem 1.8 as following

Theorem 4.1. Let 2 ≤ p < ∞ and h ∈ SH0(S
1). If h is a quasisymmetric

homeomorphism, then Th : Bp(S
1) → Bp(S

1) is a bounded operator.

Proof. To prove Theorem 4.1, we need another integral operator, which is defined
by the following kernel function

(46) ψh(ζ, z) =
1

2πi

ˆ

S1

h(w)

(ζ − w)2(1− zh(w))
dw, (ζ, z) ∈ ∆×∆.

The integral operator T+
h is defined as

(47) T+
h ψ(ζ) =

1

π

¨

∆

ψh(ζ, z)ψ(z̄) dx dy, ψ ∈ Ap, ζ ∈ ∆.

Let ζ ∈ ∆ and f be the Beurling–Ahlfors extension of h into ∆, by a result of
[HS], we have

T+
h ψ(ζ) =

1

π

¨

∆

∂f(w)ψ(f(w))

(1− ζw̄)2
du dv.
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Thus,

‖T+
h ψ‖

p
Ap =

1

π

¨

∆

∣

∣

∣

∣

1

π

¨

∆

∂f(w)ψ(f(w))

(1− ζw̄)2
du dv

∣

∣

∣

∣

p

(1− |ζ |2)p−2 dξ dη

≤
1

πp+1

¨

∆

∣

∣

∣

∣

¨

∆

(1− |w|2)2−p|∂f(w)ψ(f(w))|

|1− ζw̄|2
(1− |w|2)p−2 du dv

∣

∣

∣

∣

p

· (1− |ζ |2)p−2 dξ dη.

(48)

Let dµ(w) = (1− |w|2)p−2dudv and

(49) K1(ζ, w) =
(1− |w|2)2−p

|1− ζw̄|2
, (ζ, w) ∈ ∆×∆.

Consider the test function h(w) = (1 − |w|2)
3

2p
−1. By the same method as in Theo-

rem 1.3, we can deduce that the following operator

K1ϕ(ζ) =

¨

∆

K1(ζ, w)ϕ(ζ) dµ(w),

is bounded on Lp(∆, dµ). Thus, we conclude from (48) that there exists constant
C ′

1 > 0 so that

(50) ‖T+
h ψ‖

p
Ap ≤

C ′
1

πp+1

¨

∆

|∂f(ζ)ψ(f(ζ))|p(1− |ζ |2)p−2 dξ dη.

Let Jf be the Jacobian of f and µ the complex dilatation of g = f−1. By (50), (33)
and a change of variable, we conclude that there exists constant C ′

2 > 0 so that

‖T+
h ψ‖

p
Ap

≤
C ′

1

πp+1

¨

∆

|∂f(ζ)|p

(|∂f(ζ)|2 − |∂f(ζ)|2)p/2
|ψ(f(ζ))|p(1− |ζ |2)p−2J

p/2
f (ζ) dξ dη

≤ C ′
2

1

π

¨

∆

1

(1− |µ(w)|2)p/2
|ψ(w)|p (1− |w|2)p−2 du dv

≤ C ′
2

1

π

1

(1− k2)p/1
‖ψ‖pAp,

(51)

where k = ‖µ‖∞ < 1.
It is cleat that Dϕ(z) = ϕ′(z) determines an isometric isomorphism from Dp

a(∆)
onto Ap. By the same reasoning as in the proof of Theorem 3.1 in [HS], we can show
that on Dp

a(∆),

(52) D ◦ P+
h = T+

h ◦D, D ◦ P−
h = T−

h ◦D.

Thus, we conclude from (34), (51) and (52) that P+
h : Dp

a(∆) → Dp
a(∆) and P−

h : Dp
a(∆)

→ Dp
a(∆) are bounded operators.

Let u ∈ Bp(S
1) and H(u) = ϕ+ ψ. Observe that

H ◦ Thu(z) = H ◦ Thϕ(z) +H ◦ Thψ(z)

= P+
h ϕ(z) + P−

h ϕ(z̄) + P+
h ψ(z) + P−

h ψ(z̄).
(53)

We conclude from the discussions above that there exist positive constant C ′
3, C

′
4, C

′
5

such that

‖Thu‖p ≤ C ′
3‖H ◦ Thu‖Dp

≤ C ′
4(‖ϕ‖Dp

a
+ ‖ψ‖Dp

a
) ≤ C ′

5‖u‖p.

The proof follows. �
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